Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Σύγχρονος Αυτόματος Έλεγχος. είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π2)"

Transcript

1 Σύγχρονος Αυτόματος Έλεγχος.Ορισμοί και Χρήσιμες Ιδιότητες (Π) (A) είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π) x x x... xn (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι x y x y (Π4) Ένας τετραγωνικός πίνακας Α ονομάζεται θετικά ορισμένος (συμβολικά Α>0) όταν ισχύει η παρακάτω συνθήκη (Π5) Ένας τετραγωνικός πίνακας Α ονομάζεται θετικά ημι-ορισμένος (συμβολικά Α 0) όταν ισχύει η παρακάτω συνθήκη (Π6) Ιδιότητες Θετικά Ορισμένων και Ημι-Ορισμένων Πινάκων: (Π6.) Αν ο Α είναι θετικά ορισμένος, τότε όλες οι ιδιοτιμές του είναι πραγματικές και θετικές. (Π6.) Αν ο Α είναι θετικά ορισμένος, τότε είναι αντιστρέψιμος και A 0. (Π6.3) Αν ο Α είναι θετικά ημι-ορισμένος, τότε όλες οι ιδιοτιμές του είναι πραγματικές και μη-αρνητικές. (Π6.4) Αν ο Α είναι θετικά ορισμένος ή ημι-ορισμένος ισχύει ότι ( A) x x Ax ( A) x, x, όπου A), ( A) είναι η ελάχιστη min A 0 x Ax 0, x 0 A 0 x Ax 0, x 0 max min ( max και η μέγιστη αντίστοιχα ιδιοτιμή του πίνακα Α [Τι πρόσημο έχουν οι ιδιοτιμές A), ( A) και γιατί;]. min ( max (Π6.5) Αν ο Α είναι θετικά ορισμένος τότε ( A ) ( A) (Π7) Για δυό πίνακες A, B έχουμε ότι ( AB) B A.

2 .Ευστάθεια και Ευρωστία Ελεγκτών Θεώρημα Lyapunov Έστω το σύστημα x f ( x, w), x n, w m όπου x, w είναι το διάνυσμα κατάστασης και εξωγενών διαταραχών, αντίστοιχα. Το διάνυσμα εξωγενών διαταραχών μπορεί να είναι χρονικά μεταβαλλόμενο αλλά πεπερασμένο, δηλαδή w max max w( t). t Αν υπάρχει μια συνάρτηση (συνάρτηση Lyapunov) ικανοποιεί τις παρακάτω ιδιότητες:. V ( x) 0 x 0, V(0) 0 x 0. V ( x) x V x 3. V ( ) ( x) f ( x, w) 0, x, w, όπου το x n του το οποίο εμπεριέχει το σημείο x 0. V ( x), V : n, η οποία είναι ένα κλειστό υποσύνολο Τότε, ισχύει ότι για κάθε αρχική τιμή x (0), το διάνυσμα κατάστασης x (t ) θα εισέλθει στο υποσύνολο και θα παραμείνει εκεί για πάντα. Ευρωστία Ελεγκτών σε Γραμμικά Χρονικά Αμετάβλητα Συστήματα Βαθμωτό Σύστημα Έστω το βαθμωτό σύστημα x ( a a) x ( b b) u w όπου όλες οι ποσότητες στην παραπάνω εξίσωση είναι ΒΑΘΜΩΤΑ μεγέθη. Οι παράμετροι a, b αντιστοιχούν στις ονομαστικές (γνωστές) παραμέτρους του συστήματος, οι παράμετροι a, b () αντιστοιχούν στις (άγνωστες αλλά σταθερές) παραμετρικές αβεβαιότητες του συστήματος, ενώ το (άγνωστο και χρονικά μεταβαλλόμενο) μέγεθος w αντιστοιχεί στις εξωγενείς διαταραχές. Το ερώτημα που τίθεται είναι αν σχεδιασθεί ένας ελεγκτής για το «ονομαστικό» σύστημα x ax bu

3 κατά πόσο αυτός ο ελεγκτής θα είναι αποτελεσματικός για το «πραγματικό» σύστημα (). Έστω λοιπόν ο ελεγκτής u Kx ο οποίος, για να είναι αποτελεσματικός για το «ονομαστικό» σύστημα, θα πρέπει το κέρδος του Κ να ικανοποιεί την παρακάτω σχέση [γιατί;] ( a bk) 0 Η ανάλυση της αποτελεσματικότητας του παραπάνω ελεγκτή για το πραγματικό σύστημα θα γίνει μέσω της παρακάτω συνάρτησης Lyapunov [γιατί η παρακάτω συνάρτηση είναι συνάρτηση Lyapunov;] Έχουμε ότι V V x a a bk bkx wx Κάνοντας χρήση της ιδιότητας (Π3), έχουμε ότι V x a a bk bk w max x x w a a bk bk x w όπου a a bk bk. Για να ισχύει το Εύρωστο Θεώρημα Lyapunov, θα πρέπει 0. Σε αυτήν την περίπτωση (δηλαδή αν 0) έχουμε ότι (σύμφωνα με το Εύρωστο Θεώρημα Lyapunov) η κατάσταση x θα εισέλθει και θα παραμείνει για wmax πάντα στο σύνολο x : x. [γιατί;] 3

4 Ευρωστία Ελεγκτών σε Γραμμικά Χρονικά Αμετάβλητα Συστήματα Πολυδιάστατο Σύστημα Τώρα εξετάζουμε την επέκταση των παραπάνω σε μη-βαθμωτά συστήματα. Παρόμοια με την παράγραφο.3. υποθέτουμε ότι το πραγματικό σύστημα είναι το παρακάτω: x n m ( A A) x ( B B) u w, x, u, Όπως και στην παράγραφο.3., οι πίνακες (γνωστές) παραμέτρους του συστήματος, οι πίνακες w n () A, B αντιστοιχούν στις ονομαστικές A, B αντιστοιχούν στις (άγνωστες αλλά σταθερές) παραμετρικές αβεβαιότητες του συστήματος, ενώ το (άγνωστο και χρονικά μεταβαλλόμενο) διάνυσμα w αντιστοιχεί στις εξωγενείς διαταραχές. Το ερώτημα που τίθεται και εδώ είναι αν σχεδιασθεί ένας ελεγκτής για το «ονομαστικό» σύστημα x Ax Bu κατά πόσο αυτός ο ελεγκτής θα είναι αποτελεσματικός για το «πραγματικό» σύστημα (). Έστω λοιπόν ο ελεγκτής u Kx ο οποίος, για να είναι αποτελεσματικός για το «ονομαστικό» σύστημα, θα πρέπει ο πίνακας κέρδους να ικανοποιεί την παρακάτω σχέση [γιατί;] ( A BK) P ( A BK) P Q για κάποιους θετικά ορισμένους πίνακες P και Q. Συνέπεια της παραπάνω σχέσης είναι ότι αν ορίσουμε σαν συνάρτηση Lyapunov την συνάρτηση [γιατί η παρακάτω συνάρτηση είναι συνάρτηση Lyapunov;] V x Px τότε (για την περίπτωση του ονομαστικού συστήματος) έχουμε ότι [γιατί;] V x Τώρα, για την περίπτωση του πραγματικού συστήματος έχουμε ότι Qx 4

5 V ( A A) x ( B B) Kx w Px x P( A A) x ( B B) Kx w ( A A) x ( B B) Kx Px x P( A A) x ( B B) Kx w Px ( A A BK BK) x Px x P( A A BK BK) x w Px x A A BK BK P PA A BK BK x w Px x x A A BK BK P PA A BK BK x w Px x x A A BK BK P PA A BK BK x w P x A A BK BK P PA A BK BK P I x w x x w x Pw Pw x x Pw Pw ( 7) ( 3) όπου A A BK BK P PA A BK BK P I Για να ισχύει το Εύρωστο Θεώρημα Lyapunov, θα πρέπει 0 (δηλαδή ο πίνακας θα πρέπει να είναι θετικά ορισμένος). Σε αυτήν την περίπτωση (δηλαδή αν 0) έχουμε ότι (σύμφωνα με το Εύρωστο Θεώρημα Lyapunov) η κατάσταση x θα εισέλθει και θα παραμείνει για πάντα στο σύνολο x : x w max min. [γιατί;] 5

6 3.Γραμμικός Τετραγωνικός Έλεγχος (ΓΤΕ) Για το σύστημα Ο έλεγχος που ελαχιστοποιεί το κριτήριο όπου είναι θετικά ορισμένοι πίνακες, δίνεται από τη σχέση όπου ο πίνακας είναι ένας θετικά ορισμένος πίνακας, που υπολογίζεται ως η λύση της παρακάτω αλγεβρικής εξίσωσης Riccati: Η παραπάνω εξίσωση μπορεί να λυθεί κάνοντας χρήση της συνάρτησης care της matlab. 4.Παρατηρητής Θεωρείστε το Γραμμικό Χρονικά Αμετάβλητο (ΓΑΧ) σύστημα x Ax Bu, x k y Cx, y Παρατηρήστε ότι στο παραπάνω σύστημα, το διάνυσμα κατάστασης δεν είναι διαθέσιμο. Ένας παρατηρητής για το παραπάνω σύστημα είναι ο παρακάτω: xˆ ( A L C) xˆ Bu Ly L όπου οι πίνακες Φ και Ψ είναι θετικά ορισμένοι πίνακες σχεδιασμού. CX Η επίλυση της τελευταίας εξίσωσης (αλγεβρική εξίσωση Riccati) μπορεί να επιλυθεί κάνοντας χρήση της συνάρτησης care της matlab. Στην περίπτωση που το διάνυσμα κατάστασης δεν είναι διαθέσιμο, ο ελεγκτής θα πάρει τη μορφή (Ε) u R B Pxˆ όπου όλες οι ποσότητες έχουν ορισθεί παραπάνω. n, u XA A X XC m CX 6

7 5. Ανάλυση Ευστάθειας και Ευρωστίας ΓΤΕ και Παρατηρητή Για την ανάλυση ευστάθειας και ευρωστίας ελεγκτή που σχεδιάστηκε βάσει της θεωρίας ΓΤΕ, χρησιμοποιούμε την συνάρτηση Lyapunov. Για την ανάλυση ευστάθειας και ευρωστίας παρατηρητή που σχεδιάστηκε βάσει της θεωρίας ΓΤΕ, χρησιμοποιούμε την συνάρτηση Lyapunov. Και στις δύο περιπτώσεις, για την ανάλυση θα χρειασθεί ότι οι πίνακες και είναι θετικά ημιορισμένοι. Στην περίπτωση του ελεγκτή (Ε), για την ανάλυση ευστάθειας και ευρωστίας χρησιμοποιούμε την συνάρτηση Lyapunov. 7

8 6. Έλεγχος σε σταθερό σημείο (set point regulation) Στην περίπτωση που επιθυμούμε ο έλεγχος αντί να οδηγήσει το διάνυσμα κατάστασης στο 0, να το οδηγήσει σε ένα σταθερό σημείο x*, μπορούμε να εφαρμόσουμε Γραμμικό Τετραγωνικό Έλεγχο με τις παρακάτω αλλαγές:. Ορίζουμε το νέο διάνυσμα και "σπάμε" τον έλεγχο ως εξής: όπου. Μπορούμε να δούμε ότι η καταστατική εξίσωση του συστήματος μπορεί να γραφεί ως (αποδείξτε το!).. Ο Γραμμικός Τετραγωνικός Έλεγχος είναι τώρα εφαρμόσιμος για το νέο σύστημα (θα πρέπει το κριτήριο κόστους να αλλάξει για να είναι συνάρτηση μόνο των. 8

9 Σχεδιασμός Ελεγκτή: Η Γενική Περίπτωση Σχεδιάζουμε καταρχάς τον ελεγκτή, εφαρμόζοντας ΓΤΕ (βλ. κεφάλαιο 3) και θεωρώντας ότι (Υπόθεση ) το διάνυσμα κατάστασης x είναι διαθέσιμο (δηλαδή ότι y=x) (Υπόθεση ) ο σκοπός του ελέγχου είναι να φέρουμε το διάνυσμα κατάστασης x ασυμπτωτικά στο 0. Ελέγχουμε την ευστάθεια και την ευρωστία του συστήματος κλειστού βρόχου (βλ. κεφάλαιο και κεφάλαιο 5). Αν η απάντηση δεν είναι ικανοποιητική, μεταβάλουμε τους πίνακες σχεδιασμού Q, R. Αφαιρούμε την Υπόθεση, κάνοντας χρήση του Κεφαλαίου 6. Αφαιρούμε την Υπόθεση, κάνοντας χρήση παρατηρητή (Κεφαλαίου 5). Ελέγχουμε την ευστάθεια και την ευρωστία του συστήματος κλειστού βρόχου (βλ. κεφάλαιο και κεφάλαιο 5). Αν η απάντηση δεν είναι ικανοποιητική, μεταβάλουμε τους πίνακες σχεδιασμού Q, R, Φ και Ψ. 9

10 0

11 Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a 4 0, a3 5, a 8, a0 ).. Να βρείτε τις καταστατικές εξισώσεις του συστήματος στην μορφή x Ax Bu. Να αναπτύξετε πηγαίο κώδικα σε matlab ο οποίος, δεδομένου ενός θετικά ορισμένου πίνακα Q, να παράγει έναν ελεγκτή u Kx ο οποίος να ικανοποιεί την παρακάτω εξίσωση Lyapunov ( A BK) P ( A BK) P Q 3. Να εξετάσετε την ευρωστία του ελεγκτή αν το πραγματικό σύστημα είναι το παρακάτω: όπου x n m ( A A) x ( B B) u w, x, u, A, B 0.3, w w και να «βελτιστοποιήστε» το ελεγκτή έτσι ώστε η κατάσταση του συστήματος να συγκλίνει σε τιμές x Να προσομοιώστε το σύστημα όταν επιδρά σε αυτό ο παραπάνω ελεγκτής. 5. Υποθέστε ότι στο παραπάνω σύστημα, μόνο η η από τις καταστάσεις είναι διαθέσιμη για μέτρηση. Να σχεδιάστε ένα παρατηρητή για το σύστημα και να προσομοιώστε το σύστημα όταν επιδρά σε αυτό ο συνδυασμένος παρατηρητής/ελεγκτής. n

12 Άσκηση :Σχεδιασμός Ελεγκτή για Προσέγγιση Στόχου Το πρόβλημα: Ένα ελεγχόμενο όχημα που βρίσκεται στο σημείο, επιθυμούμε να πάει στη θέση του στόχου. Οι δυναμικές εξισώσεις του οχήματος είναι οι εξής: (Ο) Σε αντίθεση όμως με άλλα κλασικά προβλήματα αυτόματου ελέγχου, το πρόβλημα εδώ είναι ότι δεν είναι γνωστή η θέση του στόχου. Αυτό που είναι γνωστό σε κάθε χρονική στιγμή είναι η απόσταση του οχήματος από τον στόχο Άρα η εφαρμογή κλασσικών μεθόδων αυτόματου ελέγχου δεν είναι δυνατή, καθώς η έξοδος του συστήματος είναι μη γραμμική συνάρτηση. Λύση: Για να εφαρμόσουμε τα εργαλεία αυτόματου ελέγχου, θα πρέπει να "φέρουμε" το σύστημα στην μορφή καταστατικών εξισώσεων (state-space equations): όπου ξ, w είναι εξωγενείς παράγοντες (προσοχή: οι όροι x,y, A, B,... δεν είναι απαραίτητα οι ίδιοι με αυτούς των εξισώσεων του οχήματος που δίνονται από την σχέση (Ο)) Βήμα ο: Σαν πρώτο βήμα πάντα ξεκινάμε από την εξίσωση εξόδου του συστήματος. Διαλέγουμε σαν έξοδο την συνάρτηση (γιατί;) y= Βήμα ο: Γραμματικοποιούμε την παραπάνω εξίσωση, κάνοντας χρήση της προσέγγισης κατά aylor: f( x ) f x f x f x x x x x! 0 ( ) ( 0) ( 0)( 0) ( 0)... Το πρόβλημα με την προσέγγιση κατά aylor είναι ότι πρέπει να επιλεγεί σωστά το σημείο. Επιλέγουμε διαφορετικά σημεία και ελέγχουμε τις εξισώσεις που προκύπτουν. Για παράδειγμα: (Επιλογή ) Έστω ότι =(0,0). Τότε το ανάπτυγμα aylor γίνεται: (A)

13 y f ( x) (0 x ) (0 x ) (( x x ) ) x (( x x ) ) x... * * * * x 0 x 0 3 ή, ισοδύναμα * * * * y x x x x x x w () όπου w είναι το σφάλμα προσέγγισης, το οποίο μπορούμε να θεωρήσουμε εξωγενή παράγοντα. (Επιλογή ) Έστω ότι =(, ). Σε αυτή την περίπτωση έχουμε ότι y 0 0x 0x w () Η διαφορά των εξισώσεων () και () είναι ότι ενώ η πρώτη είναι γραμμική συνάρτηση ως προς το, η δεύτερη είναι εντελώς ανεξάρτητη από το. Επιλέγουμε την Επιλογή, για δυο λόγους: (a) επιθυμούμε μια συνάρτηση της μορφής. Προφανώς, αυτή η απαίτηση ικανοποιείται με τη σχέση (), ως εξής: * * x y [ x x ] [0] u y0 w όπου y0 x * x * x (3) (b) Ο εξωγενής παράγοντας w είναι πολύ μικρότερος στην Επιλογή από ότι στην Επιλογή (γιατί;) Βήμα 3ο: Το πρόβλημα με την σχέση (3) είναι ότι δεν είναι στην μορφή γιατί υπάρχει στη σχέση (3) και ο σταθερός όρος y 0. Προχωράμε σε μετασχηματισμό των μεταβλητών της σχέσης (3), για να απαλλαγούμε από τον σταθερό όρο: x x Ορίζουμε: x x a x x a Όπου x x x a x x a και συνεπώς η σχέση (3) γίνεται: * * * * (3) y x x x ( x a ) x ( x a ) w * * * * * * ή y x x x x x a x x x a w Επιλέγουμε τους όρους α, α έτσι ώστε να "φεύγει" ο σταθερός όρος: * x * * * * x x x a x a * x και τελικά καταλήγουμε στην παρακάτω σχέση y x*, x* x w x, x x* x x x* y Cx w ή

14 (4) Βήμα 4ο: Η εξίσωση εξόδου (4) έχει την μορφή που επιθυμούμε, αλλά με μεταβλητή κατάστασης το διάνυσμα. Θα πρέπει να βρούμε και την αντίστοιχη διαφορική εξίσωση για αυτό το διάνυσμα. Παρατηρώντας ότι * x x x x a * x x έχουμε x Ax Bu x ( x a) x A( x a) Bu x Ax Aa Bu (5) Η παραπάνω εξίσωση είναι στην μορφή που επιθυμούμε (με εξαίρεση τον σταθερό όρο, το οποίο μπορούμε να εξαλείψουμε όχι με μετασχησμό μεταβλητών όπως στην περίπτωση της εξίσωσης εξόδου, αλλά με κατάλληλη επιλογή σήματος ελέγχου): Βήμα 5ο: Είμαστε έτοιμοι να σχεδιάσουμε τον ελεγκτή του προβλήματος για το σύστημα (4), (5) κάνοντας χρήση της παρακάτω διαδικασίας: Υπο-βήμα 5.α: Υποθέτουμε ότι (Υπόθεση ) το διάνυσμα κατάστασης είναι διαθέσιμο (δηλαδή υποθέτουμε ότι. (Υπόθεση ) ο επιθυμητός σκοπός του ελεγκτή είναι να φέρει το διάνυσμα κατάστασης στο 0. Ορίζουμε : u u u x Ax Aa Bu Bu x Ax Bu όπου το ικανοποιεί τη σχέση, οπότε το παραπάνω σύστημα είναι σε μορφή που μπορεί να εφαρμοστεί κατευθείαν ο σχεδιασμός ελεγκτή με χρήση Γραμμικού-Τετραγωνικού Έλεγχου, ως εξής: Επιλέγοντας κατάλληλα τους πίνακες R,Q, μπορούμε να σχεδιάσουμε τον ελεγκτή. Υπο-βήμα 5.β: "Αφαιρούμε" την Υπόθεση, δηλαδή υποθέτουμε ότι (Υπόθεση ) το διάνυσμα κατάστασης είναι διαθέσιμο (δηλαδή υποθέτουμε ότι. Σε αυτή την περίπτωση, ο ελεγκτής γίνεται: (6) 4

15 όπου ο πίνακας κέρδους k είναι αυτός του υπο-βήματος 5.α και δηλώνει το επιθυμητό σημείο στο οποίο επιθυμούμε να βρεθεί το σύστημά μας (δηλαδή το διάνυσμα θα πρέπει να είναι τέτοιο ώστε όταν, τότε ο στόχος του ελεγκτή έχει επιτευθεί. Προφανώς, ο στόχος του ελεγκτή έχει επιτευχθεί όταν ή, ισοδύναμα, όταν και άρα [ ] Υπο-βήμα 5.γ: "Αφαιρούμε" και την Υπόθεση. Προφανώς, η υλοποίηση του ελεγκτή (7) απαιτεί γνώση της θέσης του στόχου (παρατηρήστε ότι και τα δύο διανύσματα εξαρτώνται από την θέση του στόχου. Επειδή, όμως η θέση του στόχου δεν είναι γνωστή, απαιτείται ο σχεδιασμός ενός παρατηρητή που θα εκτιμά την άγνωστη αυτή θέση. Η μορφή αυτού του παρατηρητή είναι ως εξής: Παρατηρητής-Εκτιμητής xˆ Axˆ Bu L( y yˆ ) yˆ Cxˆ όπου δηλώνει την εκτίμηση του διανύσματος x το οποίο θέλουμε να εκτιμήσουμε. Στην περίπτωσή μας το διάνυσμα που θέλουμε να εκτιμήσουμε είναι το x* και για αυτό το λόγο. Δουλεύοντας όπως στο Βήμα, μπορούμε να σχεδιάσου με τον εκτιμητή για το x* ως εξής: (7) Θεωρούμε z=x-x* οπότε προσέγγισης κατά aylor: y d z z cz w κάνοντας χρήση της 5

16 f( z) z f ( z0) f ( z0) z y f ( z0) ( z z0) ( z z0) w z z f ( z ) z z z0 z0 z0 f ( z ) z ( z z ) z ( z z ) w ( z ) ( z ) w z z w y z z Ή y Cz w, w z x x* z Ax Bu x* 0 y ˆ Cz w zˆ Ax Bu L( yˆ y) y d zˆ x xˆ* xˆ* x zˆ Οπότε, η τελική μορφή που παίρνει ο ελεγκτής είναι ίδια με την μορφή (7), αντικαθιστώντας τα δύο διανύσματα με τις εκτιμήσεις τους (πως;). Η ευστάθεια και ευρωστία του συνολικού ελεγκτή μπορεί να αναλυθεί κάνοντας χρήση της μεθόδου Lyapunov. Ποια συνάρτηση Lyapunov πρέπει να επιλέξουμε για να ελέγξουμε την ευστάθεια και ευρωστία του ελεγκτή (7); Ποια συνάρτηση Lyapunov πρέπει να επιλέξουμε για να ελέγξουμε την ευστάθεια και ευρωστία του τελικού ελεγκτή; Προφανώς, η ίδια μέθοδος που παρουσιάστηκε παραπάνω μπορεί να ακολουθηθεί για οποιαδήποτε μη-γραμμική συνάρτηση εξόδου, π.χ. Τι θα συμβεί αν στο αρχικό σύστημα (Ο) υπάρχει εξωγενής παράγοντας ή αβεβαιότητα σε σχέση με τις παραμέτρους του; 6

17 Κώδικας matlab Ο παρακάτω κώδικας matlab μπορεί να χρησιμοποιηθεί ως παράδειγμα για την ανάπτυξη κώδικα που επιλύει προβλήματα σχεδιασμού ελεγκτών. clear all close all %% Basics in CS sys=tf([],[,0.4,]); % Frequency domain H(s)=/(s^+0.4*s+) ss(sys) %System overview [A,B,C,D]=tfss([],[,0.4,]); %transfer function to state space conversion. [NUM,DEN]=sstf(A,B,C,D); %State-space to transfer function conversion. [Z,P,~] = tfzp([],[ 0.4 ]); %ransfer function to zero-pole conversion % System Response (step, imapulse), fixed time step(sys) impulse(sys) %% LQR %definition A=[0 0; 0 0 ; ]; B=[0 0 0.]'; C=[ 0 0]; D=0; sys=ss(a,b,c,d); %Find the max-real eigenvalue. max(real(eig(a)))<0 %Define simulation time,u, start point t = 0:0.00:50; u=zeros(size(t)); x0 = [ ]; %Simulate time response of LI models to arbitrary inputs lsim(sys,u,t,x0); %Q R matrices Q=eye(size(A)); R=; 7

18 %Compute K,L. Linear-quadratic regulator design for state space systems [K L P]=lqr(A,B,Q,R); %Define closed-loop system sys=ss(a-b*k,[0 0 0]',C,D); %Find the max-real eigenvalue. max(real(eig(a-k*b)))<0 %Simulate time response for closed-loop system lsim(sys,u,t,x0); %% Q R matrices analysis %fine-tuning --> Q,R matrices (HOW???) Q=[ ; ; ]; R=3; [K L P]=lqr(A,B,Q,R); dt=0.; x =[3*rand-.7 3*rand-.7 3*rand-.7]'; for i = :00 x=x+dt*(a-b*k)*x; if abs(-k*x)> break; end; end %% sub-optimal controller j=0; for g=0.0:0.0:5 if max(real(eig(a-g*b*k))) >= 0 j=j+; pos(j,:)=[max(real(eig(a-g*b*k))) g]; else neg(round(g*00-j),:)=[max(real(eig(a-g*b*k))) g]; end end hold on plot(pos(:,),pos(:,),'r',neg(:,),neg(:,),'g') plot(pos(j,),pos(j,),'ob'); h = legend('max_eigvalue > 0','max_eigvalue < 0',); set(h,'interpreter','none') grid on 8

19 title('maximum eigvalue of the system with g'); xlabel('g'); ylabel('maximum eigvalue'); hold off neg(,:) 9

Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι

Σύγχρονος Αυτόματος Έλεγχος. (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει x, y ότι Σύγχρονος Αυτόματος Έλεγχος 1.Ορισμοί και Χρήσιμες Ιδιότητες (Π1) λ(a) είναι το διάνυσμα ιδιοτιμών του πίνακα Α (Π) x = x 1 + x +... + xn (Π3) Η «ιδιότητα του τριγώνου»: για οποιαδήποτε διανύσματα ισχύει

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a

Συστήματα Αυτομάτου Ελέγχου ΙΙ. Άσκηση. γραμμάτων του επιθέτου σας (π.χ. για το επίθετο Κοσματόπουλος, οι αριθμοί α ι θα είναι a Συστήματα Αυτομάτου Ελέγχου ΙΙ Άσκηση Θεωρείστε το σύστημα με συνάρτηση μεταφοράς: Y ( s) a s 4 3 a3s a U ( s) s a όπου οι αριθμοί α ι αντιστοιχούν στους αντίστοιχους αριθμούς των 4 πρώτων γραμμάτων του

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος 6 η διάλεξη Σχεδίαση στο χώρο κατάστασης Ψηφιακός Έλεγχος Μέθοδος μετατόπισης ιδιοτιμών Έστω γραμμικό χρονικά αμετάβλητο σύστημα διακριτού χρόνου: ( + ) = + x k Ax k Bu k Εφαρμόζουμε γραμμικό

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 11 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 11 Πάτρα 2008 Προσαρμοστικός LQ έλεγχος για μη ελαχίστης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 5: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ Regulators) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 6: Το γραμμικό τετραγωνικό πρόβλημα βέλτιστης Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016

ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 2016 ΜΟΝΤΕΡΝΑ ΘΕΩΡΙΑ ΕΛΕΓΧΟΥ ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑΣ ΣΥΣΤΗΜΑΤΩΝ ΙΙ Τμήμα Μαθηματικών - Τομέας Υπολογιστών & Αριθμητικής Ανάλυσης Εξετάσεις Σεπτεμβρίου 016 Θέμα 1. α) (Μον.1.5) Αποδείξτε ότι αν το σύστημα στο χώρο

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 20. Παρατηρητής Κατάστασης Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 11: Στοχαστικός βέλτιστος έλεγχος γραμμικών συστημάτων με χρήση τετραγωνικών κριτηρίων (LQG Problem) Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας» Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 13 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 13 Πάτρα 28 Προσαρμοστικός έλεγχος με μοντέλο αναφοράς

Διαβάστε περισσότερα

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου

Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Ο Γραμμικός Τετραγωνικός Ρυθμιστής: Ευρεση Νόμου Ελέγχου Για την ανεύρεση της µορφής των λύσεων στρεφόµαστε προς τις αναγκαίες συνθήκες, αρχικά στις Εξισώσεις Euler-Lagrange: Τ Τ Τ! f d! f = 0 t t0, t

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα

Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος , 8ο Εξάμηνο. Ρομποτική II. Ευφυή και Επιδέξια Ρομποτικά Συστήματα Σχολή Ηλεκτρολόγων Μηχ/κών και Μηχ/κών Υπολογιστών, Ε.Μ.Π., Ακαδημαϊκό Έτος 009-0, 8ο Εξάμηνο Ρομποτική II Ευφυή και Επιδέξια Ρομποτικά Συστήματα Κων/νος Τζαφέστας Τομέας Σημάτων, Ελέγχου & Ρομποτικής

Διαβάστε περισσότερα

Άσκηση 3. Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα. Έλεγχος ανατροφοδότησης κατάστασης

Άσκηση 3. Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα. Έλεγχος ανατροφοδότησης κατάστασης Άσκηση 3 Έλεγχος ανατροφοδότησης κατάστασης dc κινητήρα Έλεγχος ανατροφοδότησης κατάστασης Ένα γραμμικό χρονικά αμετάβλητο (LTI) σύστημα όπως γνωρίζουμε, μπορεί να περιγραφεί στο πεδίο του χρόνου μέσω

Διαβάστε περισσότερα

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Εισαγωγή στη Θεωρία Βέλτιστου Ελέγχου Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (h>p://courseware.mech.ntua.gr/ml23147/) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (h>p://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή

Διαβάστε περισσότερα

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ

1. ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ . ΣΤΑΤΙΚΗ ΑΡΙΣΤΟΠΟΙΗΣΗ. Μέγιστα και Ελάχιστα Συναρτήσεων Χωρίς Περιορισμούς Συναρτήσεις μιας Μεταβλητής Εστω f ( x) είναι συνάρτηση μιας μόνο μεταβλητής. Εστω επίσης ότι x είναι ένα σημείο στο πεδίο ορισμού

Διαβάστε περισσότερα

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών

Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Σχεδίαση Συστημάτων Αυτομάτου Ελέγχου με χρήση Αλγεβρικών Τεχνικών (Συνοπτικές σημειώσεις με παραδείγματα) ( Επίκουρος Καθηγητής

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 9: Αρχή της Βελτιστοποίησης-Θεωρία Hamilton Jacobi Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Περιγραφή και Ανάλυση Συστημάτων Ελέγχου στο Χώρο Κατάστασης Aναστασία Βελώνη Τμήμα Η.Υ.Σ

Διαβάστε περισσότερα

Βιομηχανικοί Ελεγκτές

Βιομηχανικοί Ελεγκτές ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τ.Τ Βιομηχανικοί Ελεγκτές Ενότητα #10: Μοντέρνες Μέθοδοι Αναλογικού Ελέγχου Κωνσταντίνος Αλαφοδήμος Τμήματος Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 1: Εισαγωγή Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται

Διαβάστε περισσότερα

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11: Βέλτιστος Έλεγχος με φραγμένη είσοδο - Αρχή ελαχίστου του Pontryagin Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι

ΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.

Διαβάστε περισσότερα

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ Ονοματεπώνυμο:......... Α.Μ....... Ετος... ΑΙΘΟΥΣΑ:....... I. (περί τις 55μ. = ++5++. Σωστό ή Λάθος: ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - //8 ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ (αʹ Αν AB = BA όπου A, B τετραγωνικά και

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 17. Ανάδραση του ανύσματος κατάστασης και επανατοποθέτηση πόλων του συστήματος Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου. Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου

Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου. Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου Η Πολυεδρική Προσέγγιση στην Ανάλυση και Σύνθεση Συστηµάτων Ελέγχου Εργαστήριο Συστηµάτων Αυτοµάτου Ελέγχου Η Τετραγωνική Προσέγγιση Ευκλείδια Απόσταση (Eucldean dstance) Ευκλείδια νορµ (Eucldean norm)

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 16. Ανάστροφο εκκρεμές (ανάδραση κατάστασης) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής

Αυτόματος Έλεγχος. Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών. Παναγιώτης Σεφερλής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9 η : Σχεδίαση ελεγκτών με το γεωμετρικό τόπο ριζών Παναγιώτης Σεφερλής Εργαστήριο Δυναμικής Μηχανών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov)

Ορισμοί (Σημείο ισορροπίας - Ευστάθεια κατά Lyapunov) Ορισμοί (ημείο ισορροπίας - Ευστάθεια κατά Lyapuo) Έστω ότι στη γενική περίπτωση το σύστημα περιγράφεται στο χώρο κατάστασης με το μαθηματικό πρότυπο: = f(, t), (t 0 ) = 0 () όπου είναι ένα διάστατο διάνυσμα

Διαβάστε περισσότερα

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4)

(1) L{a 1 x 1 + a 2 x 2 } = a 1 L{x 1 } + a 2 L{x 2 } (2) x(t) = δ(t t ) x(t ) dt x[i] = δ[i i ] x[i ] (3) h[i, i ] x[i ] (4) Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων Γραμμικά χρονικά μεταβαλλόμενα συστήματα Συνάρτηση συστήματος Ένα σύστημα L απεικονίζει κάθε σήμα εισόδου x σε ένα σήμα εξόδου y, δηλ., συνεχής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΧΩΡΟ ΚΑΤΑΣΤΑΣΗΣ Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το

Διαβάστε περισσότερα

x (t) u (t) = x 0 u 0 e 2t,

x (t) u (t) = x 0 u 0 e 2t, Κεφάλαιο 7 Η ΕΝΝΟΙΑ ΤΗΣ ΕΥΣΤΑΘΕΙΑΣ Η ευαισθησία της λύσης μιας ΔΕ σε μεταβολές της αρχικής τιμής είναι έ- να θεμελιώδες ζήτημα στη θεωρία αλλά και στις εφαρμογές των διαφορικών εξισώσεων. Παράδειγμα 7.0.3.

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα Ιδιάζουσες τιμές πίνακα Επειδή οι πίνακες που παρουσιάζονται στις εφαρμογές είναι μη τετραγωνικοί, υπάρχει ανάγκη να βρεθεί μία μέθοδος που να «μελετά» τους μη τετραγωνικούς με «μεθόδους και ποσά» που

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 9 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 9 Πάτρα 2008 Ρύθμιση ελαχίστης διασποράς Η στρατηγική

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 20 ΘΕΜΑ Ο (4,0 μονάδες). Να προσδιοριστεί η συνάρτηση μεταφοράς / του συστήματος που περιγράφεται από το δομικό (λειτουργικό) διάγραμμα. (2,0

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

2. Η μέθοδος του Euler

2. Η μέθοδος του Euler 2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια

Διαβάστε περισσότερα

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1

Ψηφιακός Έλεγχος. 11 η διάλεξη Ασκήσεις. Ψηφιακός Έλεγχος 1 Ψηφιακός Έλεγχος η διάλεξη Ψηφιακός Έλεγχος Άσκηση 3 Θεωρούμε το σύστημα διακριτού χρόνου της μορφής με A R, B R, C R nxn nx xn ( + ) + Cx( k) x k Ax k Bu k y k Υποθέτουμε ότι το διάνυσμα κατάστασης x(k)

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος 6/6/06 Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) 0 Δίνεται ο πίνακας A =. Nα υπολογίσετε την βαθμίδα του και να βρείτε τη διάσταση και από μία βάση α) του μηδενοχώρου

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και

. Οι ιδιοτιμές του 3 3 canonical-πίνακα είναι οι ρίζες της. , β) η δεύτερη είσοδος επηρεάζει μόνο το μεσαίο 3 3 πίνακα και ο ΘΕΜΑ [6. βαθμοί] 5 u x x + u Ax + Bu Έστω συνεχές σύστημα 4 5 3 u3 y [ ] x. [ β] Ποιες είναι οι ιδιοτιμές του πίνακα Α; 5 Με το ακόλουθο partinioning του πίνακα A οι ιδιοτιμές του είναι 4 5 eig(a) eig(

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;)

Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Εισαγωγή στην Επιστήμη του Ηλεκτρολόγου Μηχανικού (και στην Τεχνολογία Υπολογιστών;) Τι είναι αυτό; 1. Διαλέξεις; 2. Σεμινάριο; 3. Μάθημα; 4. Αλλο; Θεωρία Συστημάτων, Θεωρία Αποφάσεων και (αυτόματος) Έλεγχος

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Παρεμβολή και Παρεκβολή Εισαγωγή Ορισμός 6.1 Αν έχουμε στη διάθεσή μας τιμές μιας συνάρτησης

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα

Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παραδείγματα Ιδιοτιμές Ιδιοδιανύσματα Παράδειγμα Να βρείτε τις ιδιοτιμές και τα αντίστοιχα ιδιοδιανύσματα του πίνακα A 4. Επίσης να προσδιοριστούν οι ιδιοχώροι και οι γεωμετρικές πολλαπλότητες των ιδιοτιμών.

Διαβάστε περισσότερα

y 1 (x) f(x) W (y 1, y 2 )(x) dx,

y 1 (x) f(x) W (y 1, y 2 )(x) dx, Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 07/1/017 Μέρος 1ο: Μη Ομογενείς Γραμμικές Διαφορικές Εξισώσεις Δεύτερης Τάξης Θεωρούμε τη γραμμική μή-ομογενή διαφορική εξίσωση y + p(x) y + q(x) y = f(x), x

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επικ Καθ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX

ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον

Διαβάστε περισσότερα

Το μοντέλο Perceptron

Το μοντέλο Perceptron Το μοντέλο Perceptron Αποτελείται από έναν μόνο νευρώνα McCulloch-Pitts w j x x 1, x2,..., w x T 1 1 x 2 w 2 Σ u x n f(u) Άνυσμα Εισόδου s i x j x n w n -θ w w 1, w2,..., w n T Άνυσμα Βαρών 1 Το μοντέλο

Διαβάστε περισσότερα

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων»

x k Ax k Bu k y k Cx k Du k «άνυσµα καταστάσεων» «άνυσµα εισόδων» ΠΕΡΙΓΡΑΦΗ ΣΥΣΤΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΤΟΝ ΧΩΡΟ ΤΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Μία άλλη περιγραφή συστηµάτων διακριτού χρόνου είναι η περιγραφή µέσω των εξισώσεων του «χώρου των καταστάσεων» (state space represetatios)

Διαβάστε περισσότερα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα

Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα Ειδικά Θέματα Συνορθώσεων & Εφαρμογές 8 ο εξάμηνο, Ακαδημαϊκό έτος 216-217 Μέθοδος αιχμηρής εκτίμησης σε ασταθή γραμμικά μοντέλα (Ridge regression) Χριστόφορος Κωτσάκης Τμήμα Αγρονόμων Τοπογράφων Μηχανικών

Διαβάστε περισσότερα

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο ΓΕΝΙΚΑ ΠΕΡΙ ΑΝΙΣΩΣΕΩΝ Έστω f σύνολο Α, g Α ΒΑΘΜΟΥ είναι δύο παραστάσεις μιας μεταβλητής πού παίρνει τιμές στο Ανίσωση με έναν άγνωστο λέγεται κάθε σχέση της μορφής f f g g ή, η οποία αληθεύει για ορισμένες

Διαβάστε περισσότερα

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14

Λ. Ζαχείλας. Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας. Οικονομική Δυναμική 29/6/14 1 Λ. Ζαχείλας Επίκουρος Καθηγητής Εφαρμοσμένων Μαθηματικών Τμήμα Οικονομικών Επιστημών Πανεπιστήμιο Θεσσαλίας Οικονομική Δυναμική Κατηγορίες f.p. σε γραμμικά διαφορικά συστήματα 1 ης τάξης Έστω το γενικό

Διαβάστε περισσότερα

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ.

ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΡΟΜΠΟΤΙΚΟΥ ΒΡΑΧΙΟΝΑ ΜΕ ΕΞΑΣΦΑΛΙΣΗ ΠΡΟΚΑΘΟΡΙΣΜΕΝΗΣ ΕΠΙΔΟΣΗΣ ΣΤΟ ΣΦΑΛΜΑ ΠΑΡΑΚΟΛΟΥΘΗΣΗΣ ΤΡΟΧΙΑΣ ΣΤΙΣ ΑΡΘΡΩΣΕΙΣ. Όλγα Ζωίδη, Ζωή Δουλγέρη Εργαστήριο Αυτοματοποίησης και Ρομποτικής Τμήμα

Διαβάστε περισσότερα

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON

3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPTRON 3. O ΑΛΓΟΡΙΘΜΟΣ ΤΟΥ PERCEPRON 3. ΕΙΣΑΓΩΓΗ: Το Perceptron είναι η απλούστερη μορφή Νευρωνικού δικτύου, το οποίο χρησιμοποιείται για την ταξινόμηση ενός ειδικού τύπου προτύπων, που είναι γραμμικά διαχωριζόμενα.

Διαβάστε περισσότερα

Έλεγχος «Ελάχιστης Ενέργειας»

Έλεγχος «Ελάχιστης Ενέργειας» Έλεγχος «Ελάχιστης Ενέργειας» Σε πολλές εφαρµογές, τόσο της αεροδιαστηµικής όσο και άλλων µορφών της τεχνολογίας µεταφορών κλπ, η βελτιστοποίηση επικεντρώνεται στο ζήτηµα της ενέργειας κατά την επίτευξη

Διαβάστε περισσότερα

HMY 220: Σήματα και Συστήματα Ι

HMY 220: Σήματα και Συστήματα Ι HMY 220: Σήματα και Συστήματα Ι Διδάσκων: Γεώργιος Μήτσης, Λέκτορας, Τμήμα ΗΜΜΥ Γραφείο: 401 Πράσινο Άλσος Ώρες γραφείου: Οποτεδήποτε (κατόπιν επικοινωνίας) Ηλ. Ταχ.: : gmitsis@ucy.ac.cy Ιωάννης Τζιώρτζης

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://)

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών (http://) Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (http://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγη

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής

ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης. Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ Χώρος Κατάστασης Εµµανουήλ Ζ. Ψαράκης Πολυτεχνική Σχολή Τµήµα Μηχανικών Η/Υ & Πληροφορικής Από τις Καταστατικές Εξισώσεις στη Συνάρτηση Μεταφοράς bx x y bx I X b I Y Καταστατικές

Διαβάστε περισσότερα

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου

Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραφική Λύση & Πρότυπη Μορφή Μαθηματικού Μοντέλου Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Προϋποθέσεις Εφαρμογής

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων

Διαβάστε περισσότερα

Μοντελοποίηση προβληµάτων

Μοντελοποίηση προβληµάτων Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Σχεδιασµός Αλγορίθµων Ακέραιος προγραµµατισµός Αποδοτικοί Αλγόριθµοι Μη Αποδοτικοί Αλγόριθµοι Θεωρία γράφων

Διαβάστε περισσότερα

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange

f f 2 0 B f f 0 1 B 10.3 Ακρότατα υπό συνθήκες Πολλαπλασιαστές του Lagrange Μέγιστα και ελάχιστα 39 f f B f f yx y x xy Οι ιδιοτιμές του πίνακα Β είναι λ =-, λ =- και οι δυο αρνητικές, άρα το κρίσιμο σημείο (,) είναι σημείο τοπικού μεγίστου. Εφαρμογή 6: Στο παράδειγμα 3 ο αντίστοιχος

Διαβάστε περισσότερα

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2

Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 2 Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 2 Πάτρα 2008 Εμπειρικός προσδιορισμός συνάρτησης μεταφοράς

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί Χώροι Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: Διανυσματικοί Χώροι α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Αναγνώριση Διεργασίας - Προσαρμοστικός Έλεγχος (Process Identification) Αλαφοδήμος Κωνσταντίνος

Διαβάστε περισσότερα

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι:

Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση. μέχρι και τη χρονική στιγμή k. Η εκτίμηση είναι: 1 2. ΦΙΛΤΡΟ KALMAN 2.1.ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟ ΦΙΛΤΡΟ KALMAN Το πρόβλημα του φιλτραρίσματος είναι να υπολογιστεί η βέλτιστη εκτίμηση (φιλτράρισμα) x( k / k ) της κατάστασης τη χρονική στιγμή δεδομένου του

Διαβάστε περισσότερα

α) f(x(t), y(t)) = 0,

α) f(x(t), y(t)) = 0, Ρητές καμπύλες Μια επίπεδη αλγεβρική καμπύλη V (f) είναι το σύνολο όλων των σημείων του επιπέδου K 2 που μηδενίζουν κάποιο συγκεκριμένο ανάγωγο πολυώνυμο f K[x, y], δηλαδή V (f) = {(x 0, y 0 ) K 2 f(x

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΗΣ ΣΧΕΔΙΑΣΗΣ & ΠΑΡΑΓΩΓΗΣ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ ΑΣΚΗΣΕΙΣ ΠΡΑΞΗΣ Αν Καθ: Δ ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Καθ Εφαρμ: Σ ΒΑΣΙΛΕΙΑΔΟΥ Συστήματα

Διαβάστε περισσότερα

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20

Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων 1 / 20 Σημειώσεις διαλέξεων: Βελτιστοποίηση πολυδιάστατων συνεχών συναρτήσεων Ισαάκ Η Λαγαρής 1 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιον Ιωαννίνων 1 Με υλικό από το υπό προετοιμασία βιβλίο των: Βόγκλη,

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x)

Μηχανική ΙI. Μετασχηματισμοί Legendre. διπλανό σχήμα ότι η αντίστροφη συνάρτηση dg. λέγεται μετασχηματισμός Legendre της f (x) Τμήμα Π Ιωάννου & Θ Αποστολάτου 7/5/000 Μηχανική ΙI Μετασχηματισμοί Legendre Έστω μια πραγματική συνάρτηση f (x) Ορίζουμε την παράγωγο συνάρτηση df (x) της f (x) : ( x) (η γραφική της παράσταση δίνεται

Διαβάστε περισσότερα

Κεφάλαιο 4 Διανυσματικοί Χώροι

Κεφάλαιο 4 Διανυσματικοί Χώροι Κεφάλαιο Διανυσματικοί χώροι - Βασικοί ορισμοί και ιδιότητες Θεωρούμε τρία διαφορετικά σύνολα: α) Το σύνολο διανυσμάτων (πινάκων με μία στήλη) με στοιχεία το οποίο συμβολίζουμε με Σε αυτό το σύνολο γνωρίζουμε

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ

ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΛΕΓΧΟΣ ΠΑΡΑΓΩΓΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ Ενότητα: Προσαρμοστικός και Συμπερασματικός Έλεγχος Αλαφοδήμος Κωνσταντίνος Τμήμα Μηχανικών Αυτοματισμού

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Ερωτήσεις για το μάθημα Μη Γραμμικά ΣΑΕ και Εφαρμογές: 10, 11, 15, 16, 17,18

Ερωτήσεις για το μάθημα Μη Γραμμικά ΣΑΕ και Εφαρμογές: 10, 11, 15, 16, 17,18 ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Διευθυντής Γ.Π. Παπαβασιλόπουλος Τίτλος Άσκησης: Sampling, Quantization, Jitter noise, Chaos Επιμέλεια: Ι. Κορδώνης Υ.Δ., Dr Ε. Σαρρή Ερωτήσεις για το μάθημα Προχωρημένες

Διαβάστε περισσότερα

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ

TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ TO ΠΡΟΒΛΗΜΑ ΤΗΣ ΤΟΠΟΘΕΤΗΣΗΣ ΠΟΛΩΝ ΜE ΑΝΑΤΡΟΦΟΔΟΤΗΣΗ ΤΩΝ ΜΕΤΑΒΛΗΤΩΝ ΚΑΤΑΣΤΑΣΗΣ. ΕΙΣΑΓΩΓΗ Ας θεωρήσουμε το σύστημα ανοικτού βρόχου που περιγράφεται από τις εξισώσεις κατάστασης (.) και (.2): x Ax+ Bu (.)

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ

ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΓΝΩΡΙΣΜΑΤΑ ΤΗΣ ΧΡΟΝΙΚΗΣ ΑΠΟΚΡΙΣΗΣ ΣΕ ΕΙΣΟΔΟ ΜΟΝΑΔΙΑΙΑΣ ΒΑΘΜΙΔΑΣ ΧΡΟΝΙΚΗ ΑΠΟΚΡΙΣΗ ΣΥΝΑΡΤΗΣΕΙ ΤΩΝ ΠΟΛΩΝ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΕΞΟΔΟΥ Y(s) 1 Πόλος στην αρχή των αξόνων: 2 Πόλος στον αρνητικό πραγματικό ημιάξονα: 3 Πόλος στον θετικό πραγματικό ημιάξονα: 4 Συζυγείς πόλοι πάνω

Διαβάστε περισσότερα

Εισαγωγή στην Αριθμητική Ανάλυση

Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στην Αριθμητική Ανάλυση Εισαγωγή στη MATLAB ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΑΚΡΙΒΗΣ ΒΟΗΘΟΙ: ΔΗΜΗΤΡΙΑΔΗΣ ΣΩΚΡΑΤΗΣ, ΣΚΟΡΔΑ ΕΛΕΝΗ E-MAIL: SDIMITRIADIS@CS.UOI.GR, ESKORDA@CS.UOI.GR Τι είναι Matlab Είναι ένα περιβάλλον

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Ιδιοτιμές - Ιδιοδιανύσματα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Χαρακτηριστικά Ποσά Τετράγωνου Πίνακα (Ιδιοτιμές Ιδιοδιανύσματα)

Διαβάστε περισσότερα

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών

HMY 799 1: Αναγνώριση. συστημάτων. Διαλέξεις 6 7. Συνάφεια (συνέχεια) Μη παραμετρική αναγνώριση γραμμικών HMY 799 1: Αναγνώριση Συστημάτων Διαλέξεις 6 7 Συνάφεια (συνέχεια Συστήματα πολλαπλών εισόδων Μη παραμετρική αναγνώριση γραμμικών συστημάτων Εκτίμηση άσματος Ισχύος Περιοδόγραμμα, Bartlett/Welch, Παραμετρική

Διαβάστε περισσότερα

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11. Ελεγξιμότητα (μέρος 2ο) Νίκος Καραμπετάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών

Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Συστήματα Αυτομάτου Ελέγχου & Ρυθμίσεως Μηχανών Κων/νος Ι. Κυριακόπουλος Καθηγητής ΕΜΠ (hhp://users.ntua.gr/kkyria/) Kostas J. Kyriakopoulos - Σ.Α.Ε. ΙΙ 1 Δομή της Ύλης του Μαθήματος Εισαγωγή στο Χώρο

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX

ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX ΚΕΦΑΛΑΙΟ 3 ΕΝΑΣ ΔΙΚΡΙΤΗΡΙΟΣ ΑΛΓΟΡΙΘΜΟΣ SIMPLEX 3.1 Εισαγωγή Ο αλγόριθμος Simplex θεωρείται πλέον ως ένας κλασικός αλγόριθμος για την επίλυση γραμμικών προβλημάτων. Η πρακτική αποτελεσματικότητά του έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017

ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017 Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί

Διαβάστε περισσότερα

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy

Kεφάλαιο 4. Συστήματα διαφορικών εξισώσεων. F : : F = F r, όπου r xy 4 Εισαγωγή Kεφάλαιο 4 Συστήματα διαφορικών εξισώσεων Εστω διανυσματικό πεδίο F : : F = Fr, όπου r x, και είναι η ταχύτητα στο σημείο πχ ενός ρευστού στο επίπεδο Εστω ότι ψάχνουμε τις τροχιές κίνησης των

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015

Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 2015 Λύσεις θεμάτων εξεταστικής περιόδου Ιανουαρίου Φεβρουαρίου 205 ΘΕΜΑ Ο (2,0 μονάδες) Ο ηλεκτρικός θερμοσίφωνας χρησιμοποιείται για τη θέρμανση νερού σε μια προκαθορισμένη επιθυμητή θερμοκρασία (θερμοκρασία

Διαβάστε περισσότερα