8. GREDA OPTEREĆENA PODUŽNIM SILAMA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "8. GREDA OPTEREĆENA PODUŽNIM SILAMA"

Transcript

1 O V8 V9 V0 me i preime: ne br: GRED OPTEREĆEN PODUŽN SL Slika 8. N + (8.5) 8. KSJLNO NPREZNJE GREDE N (8.6) ε E γ γ N E γ, ε 0 ε ν E N ν E (8.8) Nl Δ l (a N const i const) (8.) E N( ) ( ) (8.) ( ) iferencijalna jenačina štapa pri aksijalnom napreanju : N( ) u (8.) E( ) ili Eu q ( ) (8.6) uticaj temperature u N( ) ε + αδt + αδt (8.0) E E( ) imenionisanje (8.)

2 O V8 V9 V0 me i preime: ne br: ČSTO PRVO SVJNJE GREDE Slika 8. (ose i - glavne centralne ose poprečnog preseka) (8.),,,, (8.5) ( i, ) (8.5),i i krivina (Bernoulli-Euler-ov akon) κ w ρ E const (8.9) imenionisanje,ma ma (8.55) stepen iskorišćenja preseka < (8.60)

3 O V8 V9 V0 me i preime: ne br: ČSTO KOSO SVJNJE GREDE (8.6) neutralna osa: 0 imenionisanje (8.76),ma 8.6 EKSCENTRČNO NPREZNJE GREDE Slika 8.8 N + (8.78) P e e ( + + ) (8.79) i i i i (8.80) jenačina neutralne ose + p p (8.8) jegro preseka 8.6. imenionisanje ( + ) ( ) (,ma,,ma p,ma )(8.90), (8.9)

4 O V8 V9 V0 me i preime: ne br: KSJLNO NPREZNJE GREDE KSJLNO NPREZNJE GREDE PRER PRER. Štap konstantnog poprečnog preseka sa uklještenim jenim krajem je opterećen jenako-raspoeljenim opterećenjem q () const. Oreiti funkcije N(), (), ε() i u() i nacrtati njihove ijagrame.. Orejivanje funkcije ( ) opterećenja : ( ) N a) q N ( ) ( ) ( ) q + C C N korišćenjem iferencijalne vee imeđu normalne sile i použnog Konstanta se oređuje i graničnog uslova a normalnu silu, a presek u kome je ponata vrenost presečne sile (ramatranjem samo postavke aatka), a to je presek na onjem kraju štapa: () l 0 N C q l

5 O V8 V9 V0 me i preime: ne br: ( ) ( l ) N q Ovaj ira se može i irektno oreiti i efinicije presečnih sila. Normalna sila u preseku je jenaka normalnoj komponenti reukcione reultante opterećenja sa ela ispo preseka na rastojanju (užine l ). b) Funkcija ( ) ( ) N se oređuje i iraa a normalni napon kaa u preseku postoji normalna sila: ( ) ) Funkcija ( ) c se orejuje i Hook-ovog akona a jenoaksijalno stanje napona: ε ε ( ) E ( ) ) Pomeranje u se orejuje integracijom: u q ε E ( ) ( ) + C ( l ) C + u ( ) q E C Konstanta se orejuje i uslova po pomeranju a presek u kome je pomeranje ponato na isnovu postavke aatka, a to je presek na : u () 0 0 onosno C 0 i konačno u ( ) q l E aksimalna vrenost pomeranja obija se u preseku u kome je prvi ivo pomeranja jenak nuli, a o nosno ge je - na onjem kraju štapa. ε ( ) 0 u ma u q E () l l E q

6 O V8 V9 V0 me i preime: ne br: PRER. Štap oblika konusa uklješten je jenim krajem i opterećen sopstvenom težinom. Oreiti N() i u() i nacrtati ijagrame. Dato je D 0, L i γ (apreminska težina). U ovom aatku moguće je irektno oreiti normalnu silu u nekom preseku, polaeći o pravila a se presečne sile obijaju reukovanjem svih spoljašnjih sila sa jenog o elova nosača na koje ga uočeni presek eli. Prema tome, ako posmatramo proivoljni presek na rastojanju i eo ispo tog preseka (koji je konus visine L ), težina tog ela prestavlja ukupnu spoljašnju silu koja eluje na taj eo i to už ose. H Težina konusa je G V γ γ H γ Za eo ispo preseka na rastojanju : H L Prečnik preseka na rastojanju se može iraiti i proporcije (sličnosti trouglova) D D 0 L Površina posmatranog preseka je : ( ) D D π 0 L L π D0 π L L 0 L L D0 π ge je 0 () 0

7 O V8 V9 V0 me i preime: ne br: N ( ) G( L ) ( L ) (kubna funkcija po ) 0 L L γ γ 0 Tražena funkcija a u() oređuje se slično kao u prethonom aatku, integracijom. ( ) ε ( ) C u + Potrebno je bog toga iraiti ilataciju ( ) ε : ( L ) L ε ( ) E ( ) N( ) ( ) E γ E ( L ) ( ) ( L ) + C C u γ + E Konstanta C se orejuje i uslova po pomeranju u pravcu ose štapa na kraju štapa: u () 0 0 onosno C 0 i konačno funkcija u() u γ E ( ) L. Za maksimalnu vrenost aključuje se, sličnim ramatranjem kao u prethonom aatku, a se obija u krajnjem onjem preseku (vrh konusa) a L u ma u L ( )

8 O V8 V9 V0 me i preime: ne br: PRER. Želeničke šine užine L0m postavljaju se na temperaturi t 0 C sa aorom δmm. a) Naći temperaturu t na kojoj će nestati aora. b) Ukoliko je površina šine, kakva i kolika sila bi trebalo a eluje na šinu a ukupna promena užine usle ejstva temperature i te sile bue jenaka nuli. E0GPa α t,5 0-5 / C 0 cm t t a) Promena užine šine usle agrevanja obija se kao l ε L α ( t t ) L Uslov aatka je Δl δ δ α ( t t ) L ( t t ) C t + t + 0 C δ α L Δ b) Na šinu treba a eluje použna sila pritiska P, koja aje normalnu silu N u šini i koja bi ovela o skraćenja šine jenakom iuženju usle temperature Promena užine usle sile je Δ l N ε N L L N N Δ l t Δl L ( α Δt) L E N 6 ( α Δt) 6 0 Pa E N P N 6 0 N 6 kn

9 O V8 V9 V0 me i preime: ne br: ČSTO PRVO SVJNJE GREDE ČSTO PRVO SVJNJE GREDE PRER PRER. Konolni štap trougaonog poprečnog preseka opterećen je na kraju spregom čiji momenat je 6kNm. Oreiti ma i τ ma u štapu.. Za aato opterećenje treba prvo nacrtati ijagrame presečnih sila. naliom preseka uočava se a je osa jena o glavnih osa preseka, pa obijeni momenti eluju oko glavne ose i svi preseci su iloženi čistom pravom savijanju. U slučaju štapa konstantnog preseka ovoljno je posmatrati jean, ma koji presek. O komponentalnih napona može postojati samo normalni napon, što ogovara linearnom stanju napona. Najveći normalni napon u nekoj tački pri linearnom naponskom stanju je jenak komponentalnom normalnom naponu u toj tački. Najveći normalni komponentalni naponi u preseku se javljaju u najualjenijim tačkama o neutralne ose. Najveći smičući napon ko linearnog naponskog stanja se javlja u ravnima po 5 u onosu na glavnu osu i jenak je. Za oređivanje komponentalnog normalnog napona primeniće se formule,,,, g,, g Potrebno je oreiti geometrijske karakteristike:

10 O V8 V9 V0 me i preime: ne br: cm 06.5, 8.5 cm 06.5, 0.65 cm g U ira a oređivanje napona unose se sve veličine u osnovnim jeinicama (m, m, m, m, N, Nm), tako a se napon takođe obija prvo u osnovnim jeinicama ( Pa), a atim se pretvara u pogonije jeinice (kpa, Pa). U okviru Otpornosti materijala ne treba koristiti ruge jeinice a napon, kao što su kn/cm, koje se još koriste u nekim rugim oblastima Pa,,. Pa 6 0, g.67 Pa.67 Pa 0.65, g Najveći normalni napon je jenak največem komponentalnom normalnom naponu i javlja se u tački ma,ma,g.67 Pa U okviru Otpornosti materijala ako rugačije ne bue nanačeno po maksimalnim normalnim naponom poraumevaćemo apsolutno najveći normalni napon po brojnoj vrenost - be naka (ne po algebarskoj vrenosti koja uključuje i nak i ge je + > -5 ), onosno ma ma pa se u ovom aatku obija ma. 67 Pa.67 ma,g Pa τ ma ma. Pa

11 O V8 V9 V0 me i preime: ne br: PRER. Prosta grea B opterećena je prema skici. a) Proveriti stanje napona u preseku - (imeđu koncentrisanih sila) b) Ojačati presek -, ukoliko je,ma > o, simetrično lamelama ebljine cm, tako a,ma o pa. Dijagrami 6 9 cm ma cm 90 6, ma ± ± Pa ± 7.6 > 58 o Pošto je > potrebno je ojačati presek na traženi način.,ma o

12 O V8 V9 V0 me i preime: ne br: ' ' b b ' b Postavlja se uslov < Pa,ma o o 90, ma < 0 ( b) b b cm usvaja se b cm 7. 7 (ibor vrenosti b se vrši aokruživanjem na veću vrenost, jer u suprotnom bi se obio otporni moment o ahtevanog, a napon o ovoljenog. Zaokruživanje se vrši u avisnosti o materijala, naprimer a čelik obično na, a beton obično na ) U okviru Otpornosti materijala pri aokruživanju važno je a se vii glavno pravilo. Provera napona: stvarna vrenost otpornog momenta : ' b cm Pa stv,ma. 898 Pa Dobijena stvarna vrenost normalnog napona je manja o ovoljene i ovoljno bliska njoj, što je i cilj pri imenionisanju.

13 O V8 V9 V0 me i preime: ne br: PRER. Nosač BC leži u ravni i opterećen je u preseku C spregom ξ 60kNm prema skici. Dimenionisati nosač tako a τ ma u nosaču a presek - ne pređe ovoljenu vrenost τ 80Pa. Dijagrami presečnih sila Na elu - postoji samo. Pošto je osa iloženi čistom pravom savijanju oko te ose. jena o glavnih osa svi preseci na ovom elu su t [ ] ( ) 65 t 65 t t ξ,ma

14 O V8 V9 V0 me i preime: ne br: a linearno stanje napona τ ma ma ξ,ma Uslov aatka je τ ma τ o pa treba a bue τ ma τ o, pot.75 0 τ o >., pot ( 75 0 ) t.75 0 t cm usvaja se t.55 cm Provera napona : Stvarna vrenost otpornog momenta : i stvarna vrenost smičućeg napona:, stv cm τ stv Pa 7. 0 Pa Pa < Pa

15 O V8 V9 V0 me i preime: ne br: ČSTO KOSO SVJNJE GREDE ČSTO KOSO SVJNJE GREDE PRER PRER. Nosač B je iložen savijanju spregovima, prema skici. Oreiti ma i τ ma u nosaču, ako je poprečni presek oblika -. Usle aatog opterećenja treba prvo treba nacrtati ijagrame presečnih sila. Pri crtanju momenta savijanja ijagrami se mogu nacrtati u onosu na aate ose. Prema tome a ati slučaj moguće je nacrtati ijagram savijanja u onosu na osu. Dobija se konstantan moment savijanja už nosača : knm. Kaa se nakon oređivanja ijagrama presečnih sila prelai na analiu napona u slučaju kaa postoji moment savijanja, kao u ovom aatku, prvo što treba konstatovati je a li je to slučaj pravog ili kosog savijanja (be obira a li je to slučaj čistog ili savijanja silama). Za to je potrebno oreiti ge se nalae glavne centralne ose inercije preseka, ili bar uočiti a li su aate ose inercije glavne ose. U atom slučaju ovoljno je uočiti a ate ose nisu glavne ose inercije (bilo na osnovu iskustva i prethono urađenih aataka ili i ponate činjenice a a ovako postavljene ose pravouglog trougla postoji centrifugalni moment inercije što nači a ate ose nisu glavne ose). To nači a se rai o kosom savijanju i a sleeće treba oreiti vrenosti glavnih momenata inercije i položaj glavnih centralnih osa inercije, onosno oreiti potrebne geometrijske karakteristike a analiu kosog savijanja i nastaviti rešavanje prema ahtevima aatka u sistemu glavnih osa inercije. Pošto se traže vrenosti ma i τ ma, a i u slučaju kosog savijanja jeini komponentalni napon je, pa što se tiče aljeg rešavanja aatka slei slično ramatranje kao u primeru poglavlja o čistom pravom savijanju. Geometrijske karakteristike: cm 5 cm 6 5 cm

16 O V8 V9 V0 me i preime: ne br: ( u slučaju trougaonog preseka uvek posebnu pažnju treba voiti o naku centrifugalnog momenta inercija prema pravilu atom u poglavlju o momentima inercije - u ovom slučaju nak je + ),, ζ ± ± cm ζ 80. cm tg α ζ > ili < tg α sin < 0 cos > 0 α V kvarantu α arctg 5 ( ) ( ) 6. Kaa je oređen položaj glavnih centralnih osa inercije treba oreiti projekcije vektora momenta na te ose. Ove se uočava ugao θ 80 α u aljoj irai aatka biće potrebne vrenost sinusa i kosinusa uglova θ i ϕ cosθ sinθ cosϕ sinθ Pomoću ugla θ se oređuju brojne vrenosti (apsolutne vrenosti) projekcija momenta glavne ose inercije: na

17 O V8 V9 V0 me i preime: ne br: θ ζ θ Oave je moguće nastaviti ili a) unošenjem ovih iraa u ponati ira a normalni napon u slučaju kosog savijanja (ge će alje ostati a figuriše ili b) aljim sračunavanjem konačnih vrenosti i i njihovim unošenjem ponati ira a normalni napon u slučaju kosog savijanja. ζ (a) U ovom aatku biće primenjen prvi način. ( Použnu osu moguće je ostaviti onačenu kao ili upotrebiti onaku ξ ) U ovoj formuli sem postojećih nakova u formuli nak imaju momenti i koorinate. U prvom koraku unosimo samo momente. Konvencija o naku momenata koja se upotreblljava sa ovom formulom je a ako su vektori momenta usmereni u poitivnim smerovima koorinatnih osa ona je njihov nak +. Uvođenjem naka je cosθ sinθ ζ Unošenjem ovih iraa u (a) obija se θ θ cos sin ζ ili cosθ sinθ ζ + ζ ζ (b) Sleeće treba oreiti položaj neutralne ose i uslova 0 onosno cosθ sinθ ζ + 0 ζ oakle je ζ unošenjem prethono sračunatih vrenosti obija se ζ Ovo je jenačina prave linije koja. Jena tačka na toj liniji je prema tome, a ruga se orejuje aavanjem pogone vrenost a i sračunavanjem ogovarajuće vrenosti ζ i obijene jenačine. (Druga mogućnost je a se ume u obir a je to oblik jenačine prave osa - ( )i a se i α Slei crtanje neutralne ose. ζ tg α, ge je α ugao nagiba prave prema prvoj o tg orei α i nacrta prava pomoću tog ugla)

18 O V8 V9 V0 me i preime: ne br: Da bi oreili, ma treba uočiti najalje tačke o neutralne ose. U ovom aatku su to tačke i B. Dalje treba sračunati koorinate ovih tačaka u sistemu ζ i ponatih vrenosti kooorinata tih tačaka u sistemu korišćenjem iraa a transformaciju koorinata pri rotaciji koorinatnog sistema a aati ugao (u ovom aatku a ugao ϕ ) cosϕ + sinϕ ζ sinϕ + cosϕ ( ; 6) B ; 8 ( ) : ζ cm 6.7 cm B: B B cosϕ + B sinϕ ζ sinϕ + cosϕ B B B ( ) + ( 8) cm ( ) + ( 8) ( ) cm Saa su ponate sve vrenosti koje se pojavljuju u irau (b) a i unošenjem tih vrenost u ira (b) primenjen na tačke i B obijaju se normalni naponi u tim tačkama:, ( 0 ) +.89 Pa,B ( ). 89 Pa τ ma,ma,.89 Pa ma ma, ma, τ ma, Pa

19 O V8 V9 V0 me i preime: ne br: PRER. Nosač poprečnog preseka prikaanog na skici opterećen je na koso savijanje. Ravan ejstva momenta sa osom grai ugao φ5, 0kNm. Oreiti rastojanje a imeđu [ profila tako a, ma bue jenako ovoljenom naponu 0Pa. Prema postavci aatka i obliku efinisanog preseka aključuje se a se rai o kosom savijanju. Potrebno je iraiti geometrijske karakteristike u funkciji ponatih i traženih imenija: 0 cm + F a a Pretpostavljamo mogući položaj neutralne ose i na osnovu njega aključujemo o mogučim tačkama u kojima bi se mogao javiti maksimalni napon. Za pretpostavljeni položaj neutralne ose maksimalni normalni napon će se javiti u tački ( a +.5 ; 7 ) Uslov aatka je sinϕ, ( onosno cosϕ + ) 0 0 ( + ) 0 0

20 O V8 V9 V0 me i preime: ne br: a +, a ( ). 0 8 a a a a a a Rešavanjem ove kvaratne jenačine obija se a cm a cm usvajamo a 8.65 cm (ruga vrenost nema geometrijskog smisla u onosu na formulaciju aatka i efinisano rastojanje a ) Oređujemo stvarne vrenosti geometrijskih karakteristika,stv cm,stv + F a cm Nalaimo stvarni položaj neutralne ose Crtamo neutralnu osu i uočavamo a je tačka stvarno najualjenija tačka o neutralne ose Oređujemo koorinate tačke : ( ; ) i sračunavamo napon u toj tački,,stv 0 0 ( ) 9. Pa τ 9 0 Pa,,stv., ma ma,, Pa

21 O V8 V9 V0 me i preime: ne br: PRER. Grea pravougaonog poprečnog preseka onosa stranica b/h5/7 iložena je napreanju na čisto koso savijanje momentom savijanja 60kNm u ravni ejstva momenta koja sa osom aklapa ugao φ0. Dimenionisati greu tako a ma bue jenako ovoljenom naponu Pa. Pošto je položaj vektora momenta prema koorinatnim osama isti kao u prethonom aatku može se iskoristiti ira a neutralnu osu iveen u prethonom aatku ako nisu ponate pojeinačne vrenosti b i h, pošto je aat onos b/h može se oreiti konačna jenačina neutralne ose. ctgϕ b 7 ( ) ( ) -. h 5 Uočava se najalja tačka i a nju postavlja uslov aatka koristeći ira a komponentalni normalni napon i prethonog aatka sin0 cos0,ma, ( + ) ( + ) ( + ) bh b h 7 9 ( + ) 5h 5h kaa ubacimo onos rešava se po neponatoj imeniji h h 7 9 ( + ) b 5 h 7

22 O V8 V9 V0 me i preime: ne br: h m 6 0 usvajamo h cm b cm Provera napona: 7 9 ( + ) 69 Pa Pa 5h 5h ma, stv. PRER. Konolni štap čiji je poprečni presek o L/ kvarat stranice a0cm, a na L/ trougao stranice a0cm, prema skici, opterećen je na kraju momentom savijanja 0kNm. Oreiti maksimalne vrenosti napona i τ a oba poprečna preseka. Crta se ijagram momenta savijanja usle aatog opterećenja. Uočava se a je na elu - osa glavna osa i a je presek - iložen čistom pravom savijanju, a a na elu - osa nije glavna osa i a je ovaj presek iložen čistom kosom savijanju. Deo - cm 0 0,ma 7. 5 Pa 6 0 τ,ma ma,, 69. 6Pa

23 O V8 V9 V0 me i preime: ne br: Deo - Osa simetrije je jena o glavnih centralnih osa inercije. Druga je upravna na nju i prolai kro težište preseka. Za usvojene smerove glavnih osa i prema konvenciji o naku momenata komponente momenta savijanja u onosu na glavne ose su: ζ omenti inercije 6666 cm cm Unošenjem ovih vrenosti u ira a normalni napon ζ ζ ζ obija se / / ζ + i uslova 0 ζ obija se jenačina neutralne ose ζ ζ Najveći napon se obija u tačkam i B, ζ 0 Pa Pa ζ,b ζ B B 8 ζ ma 0 Pa τ ma ma 5 Pa

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I

4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I 4. PREDAVANJE ČISTO PRAVO SAVIJANJE OTPORNOST MATERIJALA I Čisto pravo savijanje Pod čistim savijanjem grede podrazumeva se naprezanje pri kome su sve komponente unutrašnjih sila jednake nuli, osim momenta

Διαβάστε περισσότερα

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I

5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I 5. PREDAVANJE ČISTO KOSO SAVIJANJE EKCENTRIČNO NAPREZANJE OTPORNOST MATERIJALA I ČISTO KOSO SAVIJANJE Pod pravim savijanjem podrazumeva se slučaj kada se ravan savijanja poklapa sa jednom od glavnih ravni

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

20 mm. 70 mm i 1 C=C 1. i mm

20 mm. 70 mm i 1 C=C 1. i mm MMENT NERJE ZDTK. Za površinu prema datoj slici odrediti: a centralne težišne momente inercije, b položaj glavnih, centralnih osa inercije, c glavne, centralne momente inercije, d glavne, centralne poluprečnike

Διαβάστε περισσότερα

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje

Osnovne vrste naprezanja: Aksijalno naprezanje Smicanje Uvijanje. Savijanje. Izvijanje Osnovne vrste napreanja: ksijalno napreanje Smicanje Uvijanje Savijanje Ivijanje 1 SVIJNJE GREDE SI Greda je opterećena na desnom kraju silom paralelno jednoj od glavnih centralnih osa inercije (y osi).

Διαβάστε περισσότερα

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet

Univerzitet u Beogradu 20. januar Elektrotehnički fakultet Univerzitet u eograu. januar 1. Elektrotehnički fakultet EHNIK 1. Telekomunikacioni kabl je potrebno zategnuti između ve vertikalne konzole (stuba) koje su ubetonirane u sreišta krovova ve susene zgrae,

Διαβάστε περισσότερα

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama.

Savijanje nosaa. Savijanje ravnog štapa prizmatinog poprenog presjeka. a)isto savijanje. b) Savijanje silama. b) Savijanje silama. Štap optereen na savijanje naivamo nosa ili grea. Savijanje nosaa a) Napreanja ( i τ) b) Deformacije progib (w) Os štapa se ko savijanja akrivljuje to je elastina ili progibna linija nosaa. Savijanje ravnog

Διαβάστε περισσότερα

Konvencija o znacima za opterećenja grede

Konvencija o znacima za opterećenja grede Konvencija o znacima za opterećenja grede Levo od preseka Desno od preseka Savijanje Čisto savijanje (spregovima) Osnovne jednačine savijanja Savijanje silama Dimenzionisanje nosača izloženih savijanju

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Računarska grafika. Transformacije u 3D i projekcije

Računarska grafika. Transformacije u 3D i projekcije Računarska grafika Transformacije u 3D i projekcije I ove se pretpostavlja konvencija pokretne virtuelne kamere Postoji formalna sličnost sa transformacijama u 2D grafici: oaje se jean član jenačina (a

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

ISPIT GRUPA A - RJEŠENJA

ISPIT GRUPA A - RJEŠENJA Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga AB oslonjena je na dva čelična štapa u A i B i opterećena trouglastim opterećenjem, kao na slici desno. Ako su oba štapa iste dužine L,

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

SILE U PRESEKU GREDNOG NOSAČA

SILE U PRESEKU GREDNOG NOSAČA SIE U PRESEKU GREDNOG NOSAČA DEFINICIJE SIA U PRESECIMA Projektovanje bilo kog konstruktivnog elemenata podrazumeva određivanje unutrašnjih sila u tom elementu da bi se obezbedilo da materijal od koga

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

, 81, 5?J,. 1o~",mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pt"en:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M.

, 81, 5?J,. 1o~,mlt. [ BO'?o~ ~Iel7L1 povr.sil?lj pten:nt7 cf~ ~ <;). So. r~ ~ I~ + 2 JA = (;82,67'11:/'+2-[ 4'33.10'+ 7M. J r_jl v. el7l1 povr.sl?lj pt"en:nt7 cf \ L.sj,,;, ocredz' 3 Q),sof'stvene f1?(j'me")7e?j1erc!je b) po{o!.aj 'i1m/' ce/y11ra.[,p! (j'j,a 1lerc!/e

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

Totalni napon u tački preseka. Normalni i tangencijalni napon.

Totalni napon u tački preseka. Normalni i tangencijalni napon. Totalni napon u tački preseka. Normalni i tangencijalni napon. Zamislimo da je opterećeno elastično telo nekom proizvoljnom ravni presečeno na dva dela. Odbačeni desni deo tela, na posmatrani levi, na

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJA BETONSKIH KONSTRUKCIJA PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET ODREĐIVANJE MOMENTA LOMA - PRAVOUGAONI PRESEK Moment loma za pravougaoni presek prikazan na skici odrediti za slučajeve:. kada

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7.

GRAĐEVINSKI FAKULTET U BEOGRADU pismeni ispit ODSEK ZA KONSTRUKCIJE TEORIJA BETONSKIH KONSTRUKCIJA. grupa A. p=60 kn/m. 7. ODSEK ZA KONSTRUKCIJE 28.01.2015. grupa A g=50 kn/m p=60 kn/m 60 45 15 75 MB 35, RA 400/500 7.5 m 5 m 25 1.1 Odrediti potrebnu površinu armature u karakterističnim presecima (preseci na mestima maksimalnih

Διαβάστε περισσότερα

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu:

Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: Refleksija S φ u odnosu na pravu kroz koordinatni početak Ako prava q prolazi kroz koordinatni početak i gradi ugao φ [0, π) sa x osom tada je refleksija S φ u odnosu na tu pravu: ( ) ( ) ( ) x cos 2φ

Διαβάστε περισσότερα

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A

Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.

Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11. Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina

OTPORNOST MATERIJALA. Geometrijske karakteristike ravnih površina OTPORNOST MTERJL Geometrijske karakteristike ravnih površina GEOMETRJSKE KRKTERSTKE RVNH POVRŠN POVRŠN POPREČNOG PRESEK STTČK MOMENT POPREČNOG PRESEK MOMENT NERJE POPREČNOG PRESEK GEOMETRJSKE KRKTERSTKE

Διαβάστε περισσότερα

Matematka 1 Zadaci za drugi kolokvijum

Matematka 1 Zadaci za drugi kolokvijum Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi

Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja. Osnovni pojmovi Osnovni pojmovi, spoljašnje i unutrašnje sile, definicije napona i deformacije, vrste naprezanja Osnovni pojmovi Kruto telo Rastojanje ma koje tačke je stalno, ne menja se, telo se ne deformiše predmet

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1

PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 PRIMJERI TEST PITANJA iz OTPORNOSTI MATERIJALA I 1 Napomene: Pitanja služe kao priprema za izradu testova iz Otpornosti Materijala I, koji se polažu parcijalno i integralno. Testovi su koncipirani kao

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA

ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA ČVRSTOĆA 13. GEOMETRIJSKE KARAKTERISTIKE RAVNIH PRESJEKA ŠTAPA STATIČKI MOMENTI I MOMENTI INERCIJE RAVNIH PLOHA Kao što pri aksijalnom opterećenju štapa apsolutna vrijednost naprezanja zavisi, između ostalog,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole

Izvođenje diferencijalne jednačine elastične linije elastična linija kod proste grede elastična linija kod konzole Izvođenje diferencijalne jednačine elastične linije Elastična linija, čija je jednačina y(z), je krivolinijski oblik ose nosača izazvan opterećenjem. Koordinatni sistem ćemo uvek uzimati tako da je koordinatni

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš

O trouglu. mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu mr Radmila Krstić, asistent Prirodno-matematički fakultet, Niš O trouglu 2 O TROUGLU Trougao je nezaobilazna tema kako osnovne tako i srednje škole. O trouglu se skoro sve zna. Navodimo te činjenice.

Διαβάστε περισσότερα

Geometrija (I smer) deo 2: Afine transformacije

Geometrija (I smer) deo 2: Afine transformacije Geometrija (I smer) deo 2: Afine transformacije Srdjan Vukmirović Matematički fakultet, Beograd septembar 2013. Transformacije koordinata tačaka Transformacije koordinata tačaka Pretpostavimo da za bazne

Διαβάστε περισσότερα

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09

Prof. dr. sc. Vedrana Kozulić TEHNIČKA MEHANIKA 2 Predavanja Akad. god. 2008/09 Prof. dr. sc. Vedrana Koulić EHNČK EHNK Predavanja kad. god. 008/09 OPORNOS ERJL Otpornost materijala je grana tehničke mehanike koja proučava probleme čvrstoće, krutosti i stabilnosti pojedinih dijelova

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola.

KVADRATNA FUNKCIJA. Kvadratna funkcija je oblika: Kriva u ravni koja predstavlja grafik funkcije y = ax + bx + c. je parabola. KVADRATNA FUNKCIJA Kvadratna funkcija je oblika: = a + b + c Gde je R, a 0 i a, b i c su realni brojevi. Kriva u ravni koja predstavlja grafik funkcije = a + b + c je parabola. Najpre ćemo naučiti kako

Διαβάστε περισσότερα

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON

AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON AKSIJALNO NAPREZANJE LINEARNO STANJE NAPREZANJA HUKOV ZAKON Gredni nosač može biti spoljnim silama napregnut na razne načine, pa tako postoji aksijalno naprezanje, čisto savijanje, savijanje silama, torzija,

Διαβάστε περισσότερα

OTPORNOST MATERIJALA industrijsko inženjerstvo. Dimenzionisanje lakih vratila opterećenih na uvijanje. Sizing light shafts loaded in twist

OTPORNOST MATERIJALA industrijsko inženjerstvo. Dimenzionisanje lakih vratila opterećenih na uvijanje. Sizing light shafts loaded in twist OTPORNOST MATERIJALA industrijsko inženjerstvo decembar, 2012. Dimenzionisanje lakih vratila opterećenih na uvijanje Sizing light shafts loaded in twist Milan Georgiev, student Visoke tehničke škole strukovnih

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar

OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar OTPORNOST MATERIJALA 2 Osnovne akademske studije, III semestar Prof dr Stanko Br i email: stanko@np.ac.rs Departman za Tehni ke nauke Drºavni Univerzitet u Novom Pazaru 2015/16 Sadrºaj 1 Sloºeno naprezanje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi

r i Projekcije vektora položaja r i su odgovarajuće koordinate tačke xi Središte sistema materijalnih tačaka. Neka je proivoljni sistem sačinjen od konačnog broja materijalnih tačaka čija međusobna rastojanja mogu biti i promenljiva. Svaka materijalna tačka sistema ima svoju

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

2. deo ZADACI. Hidrostatika

2. deo ZADACI. Hidrostatika 2. deo ZADACI 1 Hidrostatika Zadatak 1.1. Plovak, koji se sastoji od valjka (prečnika d V = 0.10 m i visine h V = 0.10 m) i cevčice (prečnika d C = 0.02 m i visine h C =1.00 m), nalazi se u vodi gustine

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Glava 3 INSTRUMENTACIONI POJAČAVAČI

Glava 3 INSTRUMENTACIONI POJAČAVAČI ioje Đurić - Osnoi analogne elektronike Glaa 3 NSTUMENTACON POJAČAVAČ ETF u eogru - Osek za elektroniku 3 nstrumentacioni pojačaači 33 X G Slika 3 A 3 Na ulaz instrumentacionog pojačaača sa slike 3 ooi

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012

MATERIJAL ZA VEŽBE. Nastavnik: prof. dr Nataša Sladoje-Matić. Asistent: dr Tibor Lukić. Godina: 2012 MATERIJAL ZA VEŽBE Predmet: MATEMATIČKA ANALIZA Nastavnik: prof. dr Nataša Sladoje-Matić Asistent: dr Tibor Lukić Godina: 202 . Odrediti domen funkcije f ako je a) f(x) = x2 + x x(x 2) b) f(x) = sin(ln(x

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku.

VEKTOR MOMENTA SILE ZA TAČKU. Vektor momenta sile, koja dejstvuje na neku tačku tela, za. proizvoljno izabranu tačku. VEKTOR OENT SILE Z TČKU Vekto momenta sile, koja dejstvuje na neku tačku tela, za poizvoljno izabanu tačku pedstavlja meu obtnog dejstva sile u odnosu na tu poizvoljno izabanu tačku. Ovde je tačka momentna

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Polarne, cilindrične, sferne koordinate. 3D Math Primer for Graphics & Game Development

Polarne, cilindrične, sferne koordinate. 3D Math Primer for Graphics & Game Development Polarne, cilindrične, sferne koordinate 3D Math Primer for Graphics & Game Development Polarni koordinatni sistem 2D polarni koordinatni sistem ima koordinatni početak (pol), koji predstavlja centar koordinatnog

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Snage u kolima naizmjenične struje

Snage u kolima naizmjenične struje Snage u kolima naizmjenične struje U naizmjeničnim kolima struje i naponi su vremenski promjenljive veličine pa će i snaga koja se isporučuje potrošaču biti vremenski promjenljiva Ta snaga naziva se trenutna

Διαβάστε περισσότερα

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD

SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJEK ZAVRŠNI RAD Osijek, 15. rujan 2015. Marija Vidović SVEUČILIŠTE JOSIPA JURJA STROSSMAYERA U OSIJEKU GRAĐEVINSKI FAKULTET OSIJE

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα