Aλγεβρα A λυκείου B Τομος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Aλγεβρα A λυκείου B Τομος"

Transcript

1 Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς

2 Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα ειρά: Γενικό ύκειο, Θετικές Επιστήμες Άλγεβρα Α υκείου, Β Τόμος Παναγιώτης Γριμανέλλης Εξώφυλλο: Γεωργία αμπροπούλου τοιχειοθεσία-σελιδοποίηση: Δημήτρης Κάπος Υπεύθυνος έκδοσης: Αποστόλης Αντωνόπουλος συγγραφέα: Copyright 2012 ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ, Παναγιώτης Γριμανέλλης για την ελληνική γλώσσα σε όλο τον κόσμο ISBN: SET: Απαγορεύεται η με οποιονδήποτε τρόπο, μέσο και μέθοδο αναδημοσίευση, αναπαραγωγή, μετάφραση, διασκευή, θέση σε κυκλοφορία, παρουσίαση, διανομή και η εν γένει πάσης φύσεως χρήση και εκμετάλλευση του παρόντος έργου στο σύνολό του ή τμηματικά, καθώς και της ολικής αισθητικής εμφάνισης του βιβλίου (στοιχειοθεσίας, σελιδοποίησης κ.λπ.) και του εξωφύλλου του, σύμφωνα με τις διατάξεις της υπάρχουσας νομοθεσίας περί προστασίας πνευματικής ιδιοκτησίας και των συγγενικών δικαιωμάτων περιλαμβανομένων και των σχετικών διεθνών συμβάσεων. ωτήρος και Αλκιβιάδου 12, Τ.Κ Πειραιάς τηλ.: , fax: url:

3 ΠΑΝΑΓΙΩΤΗ ΓΡΙΜΑΝΕΗ υνεργασία: Βασιλική Γριμανέλλη Aλγ ε β ρ α A υ κ ε ί ο υ B Τό μ ο ς

4

5 την Άννα

6

7 Πρό λ ο γ ο ς Η σύνταξη του παρόντος βιβλίου υπαγορεύτηκε από την έκδοση του νέου σχολικού εγχειριδίου για το μάθημα της Άλγεβρας Α υκείου. Ανταποκρίνεται πλήρως στη δομή και τη διδακτέα ύλη του σχολικού βιβλίου και αποτελεί ένα λειτουργικό διδακτικό βοήθημα τόσο για το μαθητή όσο και για το διδάσκοντα. Η δομή κάθε ενότητας ακολουθεί την εξής μορφή: Αρχικά, γίνεται σύντομη αναφορά στο στόχο της ενότητας και, στη συνέχεια, παρουσιάζεται η αντίστοιχη θεωρία στη μεγαλύτερη δυνατή πληρότητά της και με αρκετές επισημάνσεις-σχόλια, όπου κρίνεται απαραίτητο. Ακολουθούν ασκήσεις κατανόησης βασικών εννοιών της θεωρίας (σωστού-λάθους, πολλαπλής επιλογής, συμπλήρωσης κενού, αντιστοίχισης). τη συνέχεια υπάρχουν λυμένες ασκήσεις για εμπέδωση και εξοικείωση με την ύλη της ενότητας. Για την ουσιαστική και σε βάθος κατανόηση παρατίθενται ασκήσεις αυξημένου βαθμού δυσκολίας (σύνθετες), ενώ όπου θεωρούμε αναγκαίο δίνονται μεθοδολογικά σχόλια και υπενθυμίζονται έννοιες από τη θεωρία. Η ενότητα κλείνει με τις προτεινόμενες προς επίλυση ασκήσεις κλιμακούμενης δυσκολίας, ενώ προτείνονται κριτήρια αξιολόγησης όπου θεωρείται ότι έχει ολοκληρωθεί ένας γνωστικός κύκλος. Μετά την ολοκλήρωση των ενοτήτων, ο αναγνώστης μπορεί να βρει γενικές ασκήσεις για επανάληψη που καλύπτουν όλη την ύλη της Α υκείου. το τέλος του βιβλίου υπάρχουν απαντήσεις-υποδείξεις των προτεινόμενων προς επίλυση ασκήσεων καθώς και των κριτηρίων αξιολόγησης. Θα ήθελα να ευχαριστήσω τη Γεωργία αμπροπούλου και τον Αποστόλη Αντωνόπουλο από τις Εκδόσεις Πουκαμισάς για την ολοκλήρωση του παρόντος βιβλίου. Κλείνοντας, ευχαριστώ θερμά τη Βασιλική Γριμανέλλη για τη συμμετοχή της και την πολύτιμη βοήθειά της στη συγγραφή του έργου. Παναγιώτης Γριμανέλλης

8

9 Πε ρ ι ε χ ό μ ε ν α ΑΝΙΩΕΙ 19. ΟΙ ΑΝΙΩΕΙ αx + β > 0 και αx + β < ΑΝΙΩΕΙ ME ΑΠΟΥΤΕ ΤΙΜΕ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΜΟΡΦΕ ΤΡΙΩΝΥΜΟΥ ΠΡΟΗΜΟ ΤΩΝ ΤΙΜΩΝ ΤΟΥ ΤΡΙΩΝΥΜΟΥ αx² + βx + γ, α ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΑΝΙΩΕΙ ΤΗ ΜΟΡΦΗ Α(x) Ŕ Β(x) Ŕ Ŕ Φ(x) < Α(x) > 0 και Β(x) < > ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΠΡΟΟΔΟΙ 24. ΑΚΟΟΥΘΙΕ ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΑΝΑΤΟΚΙΜΟ ΙΕ ΚΑΤΑΘΕΕΙ ΒΑΙΚΕ ΕΝΝΟΙΕ ΤΩΝ ΥΝΑΡΤΗΕΩΝ 28. Η ΕΝΝΟΙΑ ΤΗ ΥΝΑΡΤΗΗ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΚΑΡΤΕΙΑΝΕ ΥΝΤΕΤΑΓΜΕΝΕ ΑΠΟΤΑΗ ΔΥΟ ΗΜΕΙΩΝ ΓΡΑΦΙΚΗ ΠΑΡΑΤΑΗ ΥΝΑΡΤΗΗ Η ΥΝΑΡΤΗΗ f(x) = αx + β ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΚΑΤΑΚΟΡΥΦΗ ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΗ ΤΗ ΓΡΑΦΙΚΗ ΠΑΡΑΤΑΗ ΜΙΑ ΥΝΑΡΤΗΗ ΜΟΝΟΤΟΝΙΑ ΥΝΑΡΤΗΗ ΑΚΡΟΤΑΤΑ ΥΝΑΡΤΗΗ ΥΜΜΕΤΡΙΕ ΥΝΑΡΤΗΗ ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΜΕΕΤΗ ΒΑΙΚΩΝ ΥΝΑΡΤΗΕΩΝ 6. ΜΕΕΤΗ ΤΩΝ ΥΝΑΡΤΗΕΩΝ f(x) = αx 2 και f(x) = αx, α ΜΕΕΤΗ ΤΗ ΥΝΑΡΤΗΗ f(x) = α x, α ΜΕΕΤΗ ΤΗ ΥΝΑΡΤΗΗ f(x) = αx² + βx + γ, α ο ΚΡΙΤΗΡΙΟ ΑΞΙΟΟΓΗΗ ΑΚΗΕΙ ΓΙΑ ΕΠΑΝΑΗΨΗ ΑΠΑΝΤΗΕΙ-ΥΠΟΔΕΙΞΕΙ...

10

11 19 ΟΙ ΑΝΙΩΕΙ αx + β > 0 και αx + β < 0 τόχος Να γνωρίζουν οι μαθητές: 99 να επιλύουν ανισώσεις της μορφής αx + β > 0 και αx + β < 0, 99 να γράφουν τις λύσεις των ανισώσεων αυτών σε μορφή διαστημάτων, 99 να βρίσκουν τις κοινές λύσεις δύο ή περισσοτέρων ανισώσεων. ΕΙΑΓΩΓΗ Κάθε ανίσωση που έχει τη μορφή αx + β > 0 ή αx + β < 0, όπου α, β είναι σταθεροί αριθμοί, ονομάζεται ανίσωση πρώτου βαθμού με άγνωστο το x. Οι τιμές του x που επαληθεύουν μια ανίσωση ονομάζονται λύσεις της ανίσωσης. Επίλυση μιας ανίσωσης είναι η διαδικασία με την οποία βρίσκουμε τις λύσεις της. ΕΠΙΥΗ ΤΗ ΑΝΙΩΗ αx + β > 0 Έχουμε: αx + β > 0 αx + β + ( β) > 0 + ( β) αx + 0 > β αx > β Διακρίνουμε τις εξής περιπτώσεις: i) Αν α > 0, τότε: αx > β αx α > β α x > β α ii) Αν α < 0, τότε: αx > β αx α < β α x < β α iii) Αν α = 0, τότε η ανίσωση γίνεται 0x > β, η οποία: αληθεύει για κάθε τιμή του x, αν είναι β > 0, ενώ είναι αδύνατη, αν είναι β 0. ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ 11

12 ΑΝΙΩΕΙ ΑΚΗΕΙ ΚΑΤΑΝΟΗΗ ΒΑΙΚΩΝ ΕΝΝΟΙΩΝ Α. ΑΚΗΕΙ ΤΟΥ ΤΥΠΟΥ «ΩΤΟ-ΑΘΟ» Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, σημειώνοντας x στην ένδειξη (ωστό) ή (άθος). 1. Η ανίσωση αx > β, με α > 0, αληθεύει για κάθε x > β α. 2. Η ανίσωση αx < β, με α < 0, αληθεύει για κάθε x > β α.. Η ανίσωση αx < 0, με α < 0, αληθεύει για κάθε x < Η ανίσωση αx 0, με α > 0, αληθεύει για κάθε x Αν α < 0, οι λύσεις της ανίσωσης αx β γράφονται υπό μορφή διαστήματος με (, β α ]. 6. Η ανίσωση 0x < 5 αληθεύει για κάθε x. 7. Η ανίσωση 0x > 4 αληθεύει για κάθε x. 8. Η ανίσωση 0x > 2 είναι αδύνατη. 9. Η ανίσωση 0x < 1 είναι αδύνατη. 10. Αν α 2 και α < 6, τότε γράφουμε 2 α < Οι ανισώσεις l < x < 5 και 1 x < 6 συναληθεύουν όταν 1 x < 5. Β. ΑΚΗΕΙ ΠΟΑΠΗ ΕΠΙΟΓΗ Να βάλετε σε κύκλο το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ο μικρότερος ακέραιος αριθμός x, για τον οποίο ισχύει 2x 8 0, είναι: Α: x = Β: x = 4 Γ: x = 4 Δ: x = 5 Ε: x = 2. Ο μικρότερος ακέραιος αριθμός x, για τον οποίο ισχύει x 5 0, είναι: Α: x = Β: x = 2 Γ: x = 1 Δ: x = 2 Ε: x =. Ο μεγαλύτερος ακέραιος αριθμός x, για τον οποίο ισχύει 4x , είναι: Α: x = 4 Β: x = 4 Γ: x = 5 Δ: x = 5 Ε: x = 12 ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ

13 19. ΟΙ ΑΝΙΩΕΙ αx + β > 0 και αx + β < 0 4. Ο μεγαλύτερος ακέραιος αριθμός x, για τον οποίο ισχύει 4x 17 0, είναι: Α: x = 5 Β: x = 4 Γ: x = Δ: x = 4 Ε: x = 5. Οι ανισώσεις 2x 0 και 2x > 2 συναληθεύουν για κάθε πραγματικό αριθμό x με: Α: x 1 Β: l < x < 1 Γ: x < 1 και x 0 Δ: 1 < x 0 Ε: 1 x < 0 ΑΚΗΕΙ ΕΜΠΕΔΩΗ 19.1 Να λύσετε τις ανισώσεις: i) 1 2x x > x ii) 2x x 1 4 > 5x iii) 6x x > 0 ύση i) Έχουμε: 1 2x x > x x 6x > 6 x (1 2x) 6x > 2(x 2) 5 2 4x 6x > 6x 4 5 4x 6x 6x > x > 11 x < Άρα η ανίσωση αληθεύει για κάθε πραγματικό αριθμό x, με x < 16 11, δηλαδή για x (, ). ii) Έχουμε: 2x x 4 1 > 5x x 12 x 4 1 > 12 5x (2x ) (x 1) > 5x + 7 8x 12 x + > 5x +7 Άρα η ανίσωση είναι αδύνατη. 8x x 5x > x > 16 Επίλυση της ανίσωσης αx > β β 99 Αν α > 0, τότε x > α. β 99 Αν α < 0, τότε x < α. 99 Αν α = 0 και β 0, η ανίσωση είναι αδύνατη. 99 Αν α = 0 και β < 0, η ανίσωση αληθεύει για κάθε τιμή του x. ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ 1

14 ΑΝΙΩΕΙ iii) Έχουμε: 6x x > 0 6 6x x > 0 2(6x + 1) + ( 4x) 7 > 0 12x x 7 > 0 12x 12x > x > 4 Άρα η ανίσωση αληθεύει για κάθε πραγματικό αριθμό x i) Να βρείτε τις κοινές λύσεις των ανισώσεων: 1 2 x x (1) και 2(x 2) + 2 < 7 6 x (2) ii) Να βρείτε τις κοινές ακέραιες λύσεις των ανισώσεων (1) και (2) του προηγούμενου ερωτήματος. ύση i) Επιλύουμε καθεμία από τις ανισώσεις χωριστά. Έτσι έχουμε: (1) x x x + 8 x x x 10 8 x 2 Άρα η ανίσωση (1) αληθεύει για κάθε πραγματικό αριθμό x 2. (2) 6 2(x 2) < x 12(x 2) + 4 < 7x 12x < 7x 12x 7x < x < 20 x < 20 5 x < 4 Άρα, η ανίσωση (2) αληθεύει για κάθε πραγματικό αριθμό x < 4. Επομένως, οι παραπάνω ανισώσεις συναληθεύουν για κάθε τιμή του x που ικανοποιεί συγχρόνως τις x 2 και x < 4, δηλαδή για κάθε x με 2 x < 4. x 2 4 x Εύρεση κοινών λύσεων ανισώσεων Για να βρούμε τις κοινές λύσεις δύο ή περισσότερων ανισώσεων εργαζόμαστε ως εξής: Επιλύουμε καθεμία από τις ανισώσεις χωριστά. Παριστάνουμε τις λύσεις των ανισώσεων στον άξονα των πραγματικών αριθμών και έτσι βρίσκουμε τις κοινές λύσεις των ανισώσεων. ii) όγω του προηγούμενου ερωτήματος, οι κοινές ακέραιες λύσεις των ανισώσεων (1) και (2) είναι οι αριθμοί 2 και. 14 ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ

15 19. ΟΙ ΑΝΙΩΕΙ αx + β > 0 και αx + β < 0 ΥΝΘΕΤΕ ΑΚΗΕΙ 19. Δίνεται η παράσταση Α = x 2. Να βρείτε τις τιμές του x ώστε η παράσταση Α να παίρνει: i) το πολύ την τιμή 1 ii) τουλάχιστον την τιμή 19 iii) τουλάχιστον την τιμή 7 και το πολύ την τιμή 16 ύση i) Έχουμε: Α 1 x 2 1 x x 15 x 5 Άρα, η παράσταση Α παίρνει το πολύ την τιμή 1 για κάθε πραγματικό αριθμό x, με x 5, δηλαδή για x (, 5]. ii) Έχουμε: Α 19 x 2 19 x x 21 x 7 Άρα, η παράσταση Α παίρνει τουλάχιστον την τιμή 19 για κάθε πραγματικό αριθμό x, με x 7, δηλαδή για x [7, + ). χόλιο Η έκφραση «η παράσταση Α παίρνει το πολύ την τιμή β» μαθηματικά γράφεται Α β. Η έκφραση «η παράσταση Α παίρνει τουλάχιστον την τιμή α» μαθηματικά γράφεται Α α. Η έκφραση «η παράσταση Α παίρνει τουλάχιστον την τιμή α και το πολύ την τιμή β» μαθηματικά γράφεται α Α β. iii) Έχουμε: 7 Α 16 7 x x x 18 x 6 Άρα, η παράσταση Α παίρνει τουλάχιστον την τιμή 7 και το πολύ την τιμή 16 για κάθε πραγματικό αριθμό x, με x 6, δηλαδή για x [, 6] Να βρείτε τις τιμές του λ, ώστε η μοναδική λύση της εξίσωσης 5x 2λ = 1 + (x + λ) να παίρνει τουλάχιστον την τιμή 8. ύση Επιλύουμε την εξίσωση 5x 2λ = 1 + (x + λ). Έτσι έχουμε: 5x 2λ = 1 + (x + λ) 5x 2λ = 1 + x + λ 5x x = λ + 2λ + 1 2x = 5λ + 1 x = 5λ ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ 15

16 ΑΝΙΩΕΙ 5λ + 1 Επειδή η μοναδική λύση x = 2 παίρνει τουλάχιστον την τιμή 8, έχουμε: 5λ λ λ 15 λ Άρα, η μοναδική λύση της εξίσωσης παίρνει τουλάχιστον την τιμή 8, για κάθε πραγματικό αριθμό λ, με λ, δηλαδή για λ [, + ) Να βρείτε τις τιμές του λ, ώστε η μοναδική λύση της εξίσωσης (x + 1) λ = 5 να περιέχεται στο διάστημα [ 1, 2). ύση Έχουμε: (x + 1) λ = 5 x + λ = 5 x = λ + 5 x = λ + 2 x = λ + 2 λ + 2 Επειδή η λύση x = περιέχεται στο διάστημα [ 1, 2), έχουμε: 1 λ + 2 < 2 1 λ + 2 < 2 λ + 2 < 6 2 λ < λ < 4 Άρα, η μοναδική λύση της εξίσωσης περιέχεται στο διάστημα [ 1, 2) για κάθε πραγματικό αριθμό λ, με 5 λ < 4, δηλαδή για λ [ 5, 4) Να λύσετε την ανίσωση λ(x 2) < λ. ύση Έχουμε: λ (x 2) < λ λx 2λ < λ λx < λ + (1) Διακρίνουμε τις εξής περιπτώσεις: Αν λ > 0, τότε: (1) x < λ + λ Άρα, η ανίσωση αληθεύει για κάθε πραγματικό αριθμό x, με x < λ + λ Αν λ < 0, τότε: (1) x > λ + λ Άρα, η ανίσωση αληθεύει για κάθε πραγματικό αριθμό x, με x > λ + λ Αν λ = 0, τότε: (1) 0x < που αληθεύει για κάθε πραγματικό αριθμό x. 16 ΕΚΔΟΕΙ ΠΟΥΚΑΜΙΑ

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΠΛΑΤΩΝΟΣ ΠΡΩΤΑΓΟΡΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Κάθε γνήσιο αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Εκπαιδευση Σχολικά βοηθήματα (για το Λύκειο) Πλάτωνος Πρωταγόρας Γ Λυκείου Θεωρητική Κατεύθυνση

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ Κοίταξε τις µεθόδους, τις λυµένες ασκήσεις και τις ασκήσεις προς λύση των ενοτήτων 6, 7 του βοηθήµατος Μεθοδολογία Άλγεβρας και Στοιχείων Πιθανοτήτων Α Γενικού Λυκείου των Ευσταθίου Μ. και Πρωτοπαπά Ελ.

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες)

Θέματα. Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Θέματα Θέμα 1 Α. Να αποδείξετε ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, ισχύει P(A-B)=P(A)-P( A B) (10 μονάδες) Β. Είναι Σωστή ή Λάθος καθεμιά από τις παρακάτω προτάσεις ; Θέμα α. Αν x

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) 5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Φυσική Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ

Διαβάστε περισσότερα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα

Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα ΦΥΣΙΚΗ Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο Θετικές Επιστήμες Φυσική Γ Λυκείου Θετική Τεχνολογική Κατεύθυνση Αναστασία Αγιαννιωτάκη Μάρκος Άρχων Υπεύθυνος Έκδοσης: Θεόδωρος

Διαβάστε περισσότερα

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ

ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ ΝΕΟΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ Α ΓΥΜΝΑΣΙΟΥ Κάθε αντίτυπο φέρει την υπογραφή της συγγραφέα Σειρά: Γυμνάσιο Θεωρητικές Επιστήμες Νεοελληνική γλώσσα, Α Γυμνασίου Μαρία Συνοδινού Βαλλιάνου Επιμέλεια κειμένου: Κυριάκος

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες)

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου. Θέματα. A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) Θέμα 1 Θέματα A. Να διατυπώσετε τον ορισμό μιας γνησίως αύξουσας συνάρτησης. (5 μονάδες) B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) τις παρακάτω προτάσεις: i) Ο βαθμός του υπολοίπου της διαίρεσης P(x)

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις

Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις 2 ΕΡΩΤΗΣΕΙΙΣ ΘΕΩΡΙΙΑΣ ΑΠΟ ΤΗΝ ΥΛΗ ΤΗΣ Β ΤΑΞΗΣ ΜΕΡΟΣ Α -- ΑΛΓΕΒΡΑ Κεφάλαιο 1 o Εξισώσεις - Ανισώσεις Α. 1 1 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ

ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΙΧΑΗΛ Π. ΜΙΧΑΗΛ ΠΡΟΧΩΡΗΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θεσσαλονίκη 2011 Copyright

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη

Διαβάστε περισσότερα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1, Σε ένα τμήμα της Α Λυκείου κάποιοι μαθητές παρακολουθούν μαθήματα Αγγλικών και κάποιοι Γαλλικών. Η πιθανότητα ένας μαθητής να μην παρακολουθεί Γαλλικά είναι 0,8. Η πιθανότητα ένας μαθητής να παρακολουθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ 3 Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΠΑΡΑΔΕΙΓΜΑΤΑ η Κατηγορία : Ο Κύκλος και τα στοιχεία

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ

ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΑΞΙΟΛΟΓΗΣΗ ΤΟΥ ΜΑΘΗΤΗ ΓΕΝΙΚΑ Βασικός στόχος είναι η ανατροφοδότηση της εκπαιδευτικής διαδικασίας και ο εντοπισμός των μαθησιακών ελλείψεων με σκοπό τη βελτίωση της παρεχόμενης σχολικής εκπαίδευσης. Ειδικότερα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2 ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ Έστω βασικό σύνολο Ω = {, 4, 5, 8, 0} και τα υποσύνολα του Ω, Α = {, 5, 0}, Β = {4, 8, 0} i) Να παραστήσετε με διάγραμμα Venn τα παραπάνω σύνολα ii) Να περιγράψετε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες

ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ. Οι αριθμοί πέρα απ τους κανόνες ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΑΚΗΣ Οι αριθμοί πέρα απ τους κανόνες Οι αριθμοί πέρα απ τους κανόνες Γιάννης Καραγιαννάκης Copyright Γιάννης Καραγιαννάκης Eκδότης: Διερευνητική Μάθηση, Αθήνα 2012 Επιμέλεια: Γιάννης Καραγιαννάκης

Διαβάστε περισσότερα

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού»

«Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» «Η μικρή ιστορία μιας βιώσιμης Ελληνικής επιχείρησης: μια προσέγγιση της ανίσωσης 2 ου βαθμού» Ματοσσιάν Αλμπέρ-Ντικράν 1, Κουτσκουδής Παναγιώτης 2 1 Καθηγητής Μαθηματικών, Πρότυπο Πειραματικό Γενικό Λύκειο

Διαβάστε περισσότερα

23 2011 ΘΕΜΑ Α A1. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ και x 0 ένα εσωτερικό σημείο του Δ. Αν η f παρουσιάζει τοπικό ακρότατο στο x 0 και είναι παραγωγίσιμη στο σημείο αυτό, να αποδείξετε ότι:

Διαβάστε περισσότερα

ΜΑΝΟΣ ΒΑΣΙΛΕΙΟΥ. β τόμος. αρχές. οικονομικής. θεωρίας Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ

ΜΑΝΟΣ ΒΑΣΙΛΕΙΟΥ. β τόμος. αρχές. οικονομικής. θεωρίας Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ ΜΑΝΟΣ ΒΑΣΙΛΕΙΟΥ β τόμος αρχές οικονομικής θεωρίας Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΕΠΙΛΟΓΗΣ Κάθε αντίτυπο φέρει την υπογραφή του συγγραφέα Σειρά: Γενικό Λύκειο - Οικονομικές Επιστήμες Αρχές Οικονομικής Θεωρίας, Γ Λυκείου,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. D x D / h x D δηλαδή. ισχύει για x 1, e ln x 1 e. e ln x e ln x e ln x e ln x 1 e ln x 1 f x f x Λύση (ΘΕΜΑ ο ) Γ. Έστω οι συναρτήσεις : h ln με D 0, h f με D, h h h με 3 0, 0, ln h h D D / h D δηλαδή h3 h h ή D 0, h h h με 4 f,, h 3 D D / h D δηλαδή h4 h h ή D, Έτσι η εξίσωση h ln h f h 4 ισχύει

Διαβάστε περισσότερα

ProapaitoÔmenec gn seic.

ProapaitoÔmenec gn seic. ProapaitoÔmeec g seic. Α. Το σύνολο των πραγματικών αριθμών R και οι αλγεβρικές ιδιότητες των τεσσάρων πράξεων στο R. Το σύνολο των φυσικών αριθμών N = {1,, 3,... }. Προσέξτε: μερικά βιβλία (τα βιβλία

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ.

ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. ΑΛΓΕΒΡΑ Α και Β ΛΥΚΕΙΟΥ για τις παν.εξετ. των ΕΠΑ.Λ. Μια συνοπτική παρουσίαση της Άλγεβρας, για όσους θέλουν να προετοιμαστούν για τις Πανελλαδικές Εξετάσεις των ΕΠΑ.Λ. Για απορίες στο www.commonmaths.weebly.com

Διαβάστε περισσότερα

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B

Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B 151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.

Διαβάστε περισσότερα

ΚΑΡΚΙΝΟΣ ΤΟΥ ΛΑΡΥΓΓΑ

ΚΑΡΚΙΝΟΣ ΤΟΥ ΛΑΡΥΓΓΑ ΚΩΝΣΤΑΝΤΙΝΟΣ ΒΛΑΧΤΣΗΣ ΙΑΤΡΟΣ ΩΤΟΡΙΝΟΛΑΡΥΓΓΟΛΟΓΟΣ Ι ΑΚΤΟΡΑΣ ΑΡΙΣΤΟΤΕΛΕΙΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΘΕΣΣΑΛΟΝΙΚΗΣ ΚΑΡΚΙΝΟΣ ΤΟΥ ΛΑΡΥΓΓΑ ΟΓΚΟΓΕΝΕΣΗ ΚΑΙ ΣΥΓΧΡΟΝΟΙ ΜΟΡΙΑΚΟΙ ΠΡΟΓΝΩΣΤΙΚΟΙ ΕΙΚΤΕΣ ΘΕΣΣΑΛΟΝΙΚΗ 2006 3 Κωνσταντίνος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν Η f είναι συνεχής στο Δ και f = για κάθε εσωτερικό σημείο του Δ τότε να αποδείξετε

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

Σταύρος Σ. Λίτσας. Μ α θ η μ α τ ι κ ό ς. Μιγαδικοί αριθμοί. ΞΑΝΘΗ Αύγουστος 2013 ΝΗΠΙΑΓΩΓΕΙΟ ΔΗΜΟΤΙΚΟ ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ

Σταύρος Σ. Λίτσας. Μ α θ η μ α τ ι κ ό ς. Μιγαδικοί αριθμοί. ΞΑΝΘΗ Αύγουστος 2013 ΝΗΠΙΑΓΩΓΕΙΟ ΔΗΜΟΤΙΚΟ ΓΥΜΝΑΣΙΟ ΛΥΚΕΙΟ Σταύρος Σ Λίτσας Μ α θ η μ α τ ι κ ό ς Μιγαδικοί αριθμοί i =- ΞΑΝΘΗ Αύγουστος 0 C:\Users\Stavros\Desktop\ΜΙΓΑΔΙΚΟΙ internet\00 0 ΜΙΓΑΔΙΚΟΙ για internet Αdoc 7/07/ διάχυση της γνώσης Vincent Van Gogh Στη

Διαβάστε περισσότερα

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ)

Ελευθέριος Πρωτοπαπάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Ελευθέρις Πρωταάς ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΛΙΓΟ ΠΡΙΝ ΤΙΣ ΕΞΕΤΑΣΕΙΣ (ΘΕΜΑΤΑ ΤΕΛΕΥΤΑΙΑΣ ΕΠΑΝΑΛΗΨΗΣ) Να βρείτε την τιµή των αραστάσεων: o o συν 90 + ηµ 0 -σφ75 α) A =, ηµ o o 0 + συν 80

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ

ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΚΕΕΠΕ ΤΟΜΕΑΣ ΙΙ.2.Α ΤΟΜΕΑΣ ΕΚΠΑΙΔΕΥΣΗΣ «ΤΟ ΣΥΓΧΡΟΝΟ ΣΧΟΛΕΙΟ» Δημητρίου Γ. Κούρτη ΜΕΛΕΤΗ ΑΝΑΒΑΘΜΙΣΗΣ ΤΟΥ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΕΡΓΟΥ ΒΑΣΙΚΟΙ ΣΥΝΤΕΛΕΣΤΕΣ ΠΟΙΟΤΙΚΗΣ ΑΝΑΒΑΘΜΙΣΗΣ ΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΙΛΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( ))

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να εξετάσετε αν ισχύουν οι υποθέσεις του Θ.Μ.Τ. για την συνάρτηση στο διάστημα [ 1,1] τέτοιο, ώστε: C στο σημείο (,f( )) ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 6: ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ (Θ.Μ.Τ.) [Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ

Διαβάστε περισσότερα

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ

Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την 1 η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Αναλυτικά Λυμένες Βασικές Ασκήσεις κατάλληλες για την η επανάληψη στα Μαθηματικά Κατεύθυνσης της Β ΛΥΚΕΙΟΥ Κάνε τα πράγματα με μεγαλοπρέπεια, σωστά και με στυλ. ΦΡΕΝΤ ΑΣΤΕΡ Θέμα Σε ένα σύστημα αξόνων οι

Διαβάστε περισσότερα

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ

ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ 1. ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στόχος Να γνωρίζουν οι μαθητές: να αξιοποιούν το σύμβολο της συνεπαγωγής και της ισοδυναμίας να αξιοποιούν τους συνδέσμους «ή», «και» ΕΙΣΑΓΩΓΗ Η συννενόηση μεταξύ των ανθρώπων

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β.

ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ. a β a β. ΕΙΣΑΓΩΓΙΚΟ ΚΕΦΑΛΑΙΟ Ε.1 ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Στη παράγραφο αυτή θα γνωρίσουμε μερικές βασικές έννοιες της Λογικής, τις οποίες θα χρησιμοποιήσουμε στη συνέχεια, όπου αυτό κρίνεται αναγκαίο, για τη σαφέστερη

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΜΑΘΗΜΑ 14 1.3 ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΜΑΘΗΜΑ 4. ΜΟΝΟΤΟΝΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ Μονοτονία συνάρτησης Ακρότατα συνάρτησης Θεωρία Σχόλια Μέθοδοι Ασκήσεις ΘΕΩΡΙΑ. Ορισµός Συνάρτηση f λέγεται γνησίως αύξουσα σε διάστηµα, όταν για οποιαδήποτε,

Διαβάστε περισσότερα

Ιωάννινα: 18 Μαΐου 2015 Αριθμ. Πρωτ: 274

Ιωάννινα: 18 Μαΐου 2015 Αριθμ. Πρωτ: 274 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ, ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ------ ΠΕΡ/KH Δ/ΝΣΗ Α/ΘΜΙΑΣ & Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΗΠΕΙΡΟΥ ΓΡΑΦΕΙΟ ΣΧΟΛ.ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΙΩΑΝΝΙΝΩΝ ----- Ταχ. Δ/νση: Λουκή

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ . ΜΙΓΑΔΙΚΟΙ - ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 α. Να βρείτε τον γεωμετρικό τόπο των εικόνων του. β. Αν Re ( ) 0, τότε: 4 i. Να αποδείξετε ότι ο μιγαδικός w = + είναι πραγματικός και ισχύει 4 w 4. ii. Να βρείτε τον

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

Γενικά Μαθηματικά (Φυλλάδιο 1 ο )

Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ Γενικά Μαθηματικά (Φυλλάδιο 1 ο ) Επιμέλεια Φυλλαδίου : Δρ. Σ. Σκλάβος Περιλαμβάνει: ΚΕΦΑΛΑΙΟ 1: ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ ΚΕΦΑΛΑΙΟ : ΠΑΡΑΓΩΓΙΣΗ ΣΥΝΑΡΤΗΣΕΩΝ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου

Διαβάστε περισσότερα

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01

Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών. Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Πρότυπο Πειραματικό Γυμνάσιο Πανεπιστημίου Πατρών Αθανασία Μπαλωμένου ΠΕ03 Βασιλική Ρήγα ΠΕ03 Λαμπρινή Βουτσινά ΠΕ04.01 Τα ερωτήματα που προκύπτουν από την εισαγωγή της Φυσικής στην Α γυμνασίου είναι :

Διαβάστε περισσότερα

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ο δείγμα ΘΕΜΑ ο Α. Έστω μία συνάρτηση f συνεχής σε ένα διάστημα α,β. Αν G είναι μία παράγουσα της f στο α,β τότε να αποδείξετε ότι

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι

ΣΥΝΑΡΤΗΣΕΙΣ. H Εννοια του διανυσματος. Σ υ ν ο λ α - Ο ρ ι σ μ ο ι ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν ο λ α - Ο ρ ι σ μ ο ι Συνολο λεγεται καθε συλλογη 3. Να δειχτει αντικειμενων, οτι α + 0 που προερχονται 0α. Ποτε ισχυει απ την το εμπειρια ισον; μας η τη διανοηση 3 3. μας, Aν α, ειναι

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

Σχεδίαση με Η/Υ. Το AutoCAD στην πράξη ΔΑΥΙΔ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΝΘΥΜΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Διδάκτορας Μηχανολόγος Μηχανικός

Σχεδίαση με Η/Υ. Το AutoCAD στην πράξη ΔΑΥΙΔ ΚΩΝΣΤΑΝΤΙΝΟΣ ΑΝΘΥΜΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ. Διδάκτορας Μηχανολόγος Μηχανικός Σχεδίαση με Η/Υ Το AutoCAD στην πράξη ΔΑΥΙΔ ΚΩΝΣΤΑΝΤΙΝΟΣ Διδάκτορας Μηχανολόγος Μηχανικός ΑΝΘΥΜΙΔΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ Διδάκτορας Μηχανολόγος Μηχανικός 0_CONT_ (AutoCAD).indd iii τίτλος: ΣΧΕΔΙΑΣΗ ΜΕ Η/Υ: ΤΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f για κάθε εσωτερικό σημείο

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

Συναρτήσεις Όρια Συνέχεια

Συναρτήσεις Όρια Συνέχεια Κωνσταντίνος Παπασταματίου Μαθηματικά Γ Λυκείου Κατεύθυνσης Συναρτήσεις Όρια Συνέχεια Συνοπτική Θεωρία Μεθοδολογίες Λυμένα Παραδείγματα Επιμέλεια: Μαθηματικός Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ. Καρτάλη 8 (με

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι

Διαβάστε περισσότερα

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος

Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα. Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Η διδακτική αξιοποίηση της Ιστορίας των Μαθηματικών ως μεταπτυχιακό μάθημα Γιάννης Θωμαΐδης Δρ. Μαθηματικών Σχολικός Σύμβουλος Διαπανεπιστημιακό Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών ΔΙΔΑΚΤΙΚΗ ΚΑΙ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α Α Πότε λέμε ότι η συνάρτηση είναι παραγωγίσιμη στο σημείο 0 του πεδίου ορισμού της; Α Αν οι συναρτήσεις και g είναι παραγωγίσιμες στο

Διαβάστε περισσότερα

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ

II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ ΓΙΑ ΚΑΘΗΓΗΤΕΣ ΜΑΘΗΜΑΤΙΚΩΝ II. ΣΥΝΑΡΤΗΣΕΙΣ ΟΡΙΑ ΣΥΝΕΧΕΙΑ Δημήτρης Μπουνάκης Σχ. Σύμβουλος Μαθηματικών dimitrmp@sch.gr Ηράκλειο, Οκτώβριος 010 ΘΕΜΑ: «ΔΙΔΑΚΤΙΚΟ

Διαβάστε περισσότερα

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ

t, όπου t Ζ. , t Ζ. ΕΦΑΡΜΟΓΕΣ 4 ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Επίλυση Γραμμικής Διοφαντικής Εξίσωσης Έστω η εξίσωση x y, όπου,, ακέραιοι με και Αν αναζητούμε ακέραιες λύσεις της εξίσωσης αυτής, ηλαή ζεύγη ακεραίων

Διαβάστε περισσότερα

ISBN: 978-618-5093-18-1

ISBN: 978-618-5093-18-1 ΤΟ ΜΑΤΙ ΤΟΥ ΤΑΥΡΟΥ Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται από τις διατάξεις της ελληνικής νομοθεσίας (Ν 2121/1993 όπως έχει τροποποιηθεί και ισχύει σήμερα) και από τις διεθνείς συμβάσεις περί

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ. Σαράντος Καπιδάκης

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ. Σαράντος Καπιδάκης ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ Σαράντος Καπιδάκης 0_CONT_Ω.indd iii τίτλος: ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΨΗΦΙΑΚΕΣ ΒΙΒΛΙΟΘΗΚΕΣ συγγραφέας: Καπιδάκης Σαράντος 2014 Εκδόσεις Δίσιγμα Για την ελληνική γλώσσα σε όλον τον

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΑ. Óõíåéñìüò ΑΠΑΝΤΗΣΕΙΣ Επαναληπτικά Θέµατα ΟΕΦΕ 011 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 ο α. I. Σχολικό βιβλίο σελ. 41. ΙΙ. Σχολικό βιβλίο σελ. 89. β. Σχολικό βιβλίο σελ. 71. γ. Σχολικό βιβλίο σελ.60. δ. Σ, Λ,

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ

ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ. της f : A. Rούτε εύκολη είναι ούτε πάντοτε δυνατή. Για τις συναρτήσεις f (x) = x ηµ x και ΜΕΘΟ ΟΛΟΓΙΑ ΕΥΡΕΣΗ ΣΥΝΟΛΟΥ ΤΙΜΩΝ ΣΥΝΑΡΤΗΣΗΣ Έστω fµια συνάρτηση µε πεδίο ορισµού το Α. Το σύνολο των τιµών της είναι f( A) { R = υπάρχει (τουλάχιστον) ένα A : f () = }. Ο προσδιορισµός του συνόλου τιµών f( A) της

Διαβάστε περισσότερα

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ Η ΑΕΠΠ IN A GLANCE! Κατανομή μονάδων: 40 μονάδες το 1 ο Θέμα, από 20 τα υπόλοιπα τρία. Μην χαίρεστε όμως γιατί η «καθαρή» θεωρία περιορίζεται συνήθως- σε 5 ερωτήσεις σωστού ή λάθους και σε 1-2 ερωτήσεις

Διαβάστε περισσότερα

Θέµατα: «Βιβλία Γλώσσας Α, Β, Γ ηµοτικού», «Μαθηµατικά Α, Β ηµοτικού»

Θέµατα: «Βιβλία Γλώσσας Α, Β, Γ ηµοτικού», «Μαθηµατικά Α, Β ηµοτικού» 1 ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΤΜΗΜΑ ΠΡΩΤΟΒΑΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ Για την ενηµέρωση των υποψηφίων συγγραφέων εγχειριδίων Γλώσσας και Μαθηµατικών, κοινοποιούµε απάντηση σε σχετικό ερωτηµατολόγιο που µας είχαν υποβάλει

Διαβάστε περισσότερα

Τι πρέπει να γνωρίζω για το μάθημα Γενική Χημεία; Η πυξίδα μου

Τι πρέπει να γνωρίζω για το μάθημα Γενική Χημεία; Η πυξίδα μου Τι πρέπει να γνωρίζω για το μάθημα Γενική Χημεία; Η πυξίδα μου 1. Ποιος είναι ο διδάσκων; 2. Τι είναι η Γενική Χημεία; 3. Πού γίνεται το μάθημα; 4. Ποιες ημέρες της εβδομάδας έχω Γενική Χημεία; 5. Τι φέρνω

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 4 ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Έστω μια συνάρτηση f ορισμένη σε ένα διάστημα Δ. Αν η f είναι συνεχής στο Δ και f ()= για κάθε εσωτερικό σημείο του Δ, τότε

Διαβάστε περισσότερα

e-mail@p-theodoropoulos.gr

e-mail@p-theodoropoulos.gr Ασκήσεις Μαθηµατικών Κατεύθυνσης Γ Λυκείου Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος Μαθηµατικών e-mail@p-theodoropoulos.gr Στην εργασία αυτή ξεχωρίζουµε και µελετάµε µερικές περιπτώσεις ασκήσεων

Διαβάστε περισσότερα

Αρχαία Ελληνική Γλώσσα και Γραμματεία. Από το βιβλίο «Αρχαίοι Έλληνες Ιστοριογράφοι Α Λυκείου» του ΟΕΔΒ:

Αρχαία Ελληνική Γλώσσα και Γραμματεία. Από το βιβλίο «Αρχαίοι Έλληνες Ιστοριογράφοι Α Λυκείου» του ΟΕΔΒ: Α Λυκείου Αρχαία Ελληνική Γλώσσα και Γραμματεία Από το βιβλίο «Αρχαίοι Έλληνες Ιστοριογράφοι Α Λυκείου» του ΟΕΔΒ: Α. Ξενοφῶντος Ἑλληνικά Βιβλίο 2 1. Κεφ. 1, παράγραφοι 16 29, σελ. 46 49 2. Κεφ. 2, παράγραφοι

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0

ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)<0 Τότε υπάρχει ένα τουλάχιστον χ 0 ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ-ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ BOLZANO..Αν μια συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α,β].και f(α).f(β)

Διαβάστε περισσότερα

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι,

ΘΕΜΑ : «ιδακτικό υλικό Μαθηµατικών Γ Γυµνασίου» Aγαπητοί συνάδελφοι, ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ /ΝΣΗ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΚΡΗΤΗΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ.Ε. Ν. ΗΡΑΚΛΕΙΟΥ ηµήτριος Μπουνάκης Σχολικός Σύµβουλος Μαθηµατικών

Διαβάστε περισσότερα

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι.

Το σύνολο Z των Ακεραίων : Z = {... 2, 1, 0, 1, 2, 3,... } Να σηµειώσουµε ότι οι φυσικοί αριθµοί είναι και ακέραιοι. 1 E. ΣΥΝΟΛΑ ΘΕΩΡΙΑ 1. Ορισµός του συνόλου Σύνολο λέγεται κάθε συλλογή πραγµατικών ή φανταστικών αντικειµένων, που είναι καλά ορισµένα και διακρίνονται το ένα από το άλλο. Τα παραπάνω αντικείµενα λέγονται

Διαβάστε περισσότερα

Μεγιστοποίηση μέσα από το τριώνυμο

Μεγιστοποίηση μέσα από το τριώνυμο Μεγιστοποίηση μέσα από το τριώνυμο Μια από τις πιο όμορφες εφαρμογές του τριωνύμου στη φυσική είναι η μεγιστοποίηση κάποιου μεγέθους μέσα από αυτό. Η ιδέα απλή και βασίζεται στη λογική επίλυσης του παρακάτω

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ YΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ & ΘΡΗΣΚΕΥΜΑΤΩΝ ΚΕΝΤΡΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΕΡΕΥΝΑΣ ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΜΑΘΗΤΩΝ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΑΘΗΝΑ 1998 Ομάδα Σύνταξης Συντονιστές: Κοθάλη - Κολοκούρη Ευπραξία, Σχολική Σύμβουλος

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Περιγραφή Μαθήματος. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Περιγραφή Μαθήματος. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Περιγραφή Μαθήματος Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Αντικείμενο Μαθήματος Η εκμάθηση των βασικών αρχών λειτουργίας και

Διαβάστε περισσότερα

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της

Ερωτήσεις ανάπτυξης. α) να βρείτε το σηµείο x 0. β) να αποδείξετε ότι η κλίση της εφαπτοµένης της Ερωτήσεις ανάπτυξης. ** Η συνάρτηση είναι παραγωγίσιµη στο R και η ευθεία (ε) είναι εφαπτοµένη της C στο σηµείο (0, (0)). Μετακινούµε τη C παράλληλα προς τους άξονες, όπως φαίνεται στο σχήµα, και ονοµάζουµε

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΩΝ & ΣΤΕΛΕΧΩΝ ΣΤΗ ΔΙΑΔΙΚΤΥΑΚΗ ΜΑΘΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΩΝ & ΣΤΕΛΕΧΩΝ ΣΤΗ ΔΙΑΔΙΚΤΥΑΚΗ ΜΑΘΗΣΗ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ 1 ΠΡΟΓΡΑΜΜΑ ΕΞ ΑΠΟΣΤΑΣΕΩΣ ΕΚΠΑΙΔΕΥΣΗΣ ΕΚΠΑΙΔΕΥΤΩΝ ΚΑΙ ΣΤΕΛΕΧΩΝ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΣΥΓΓΡΑΦΗ: Παναγιώτης Σωτηρόπουλος ΕΠΙΜΕΛΕΙΑ: Μαρία Περιστέρη ΕΠΙΣΤΗΜΟΝΙΚΟΣ ΥΠΕΥΘΥΝΟΣ: Θανάσης Καραλής

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0

ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 ΑΣΚΗΣΕΙΣ ΠΙΘΑΝΟΤΗΤΩΝ του Παν. Λ. Θεοδωρόπουλου 0 Η Θεωρία Πιθανοτήτων είναι ένας σχετικά νέος κλάδος των Μαθηματικών, ο οποίος παρουσιάζει πολλά ιδιαίτερα χαρακτηριστικά στοιχεία. Επειδή η ιδιαιτερότητα

Διαβάστε περισσότερα

Χρήστος Στασινός. ουλεύοντας με τη. Microsoft Access ΑΘΗΝΑ

Χρήστος Στασινός. ουλεύοντας με τη. Microsoft Access ΑΘΗΝΑ Χρήστος Στασινός ουλεύοντας με τη Microsoft Access ΑΘΗΝΑ Κάθε γνήσιο αντίγραφο έχει την υπογραφή του συγγραφέα Έκδοση 1η, Copyright 1998 Έκδοση 2η, Copyright 2007 ISBN: 978-960-8105-97-3 ΕΚΔΟΣΕΙΣ ΝΕΩΝ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: «Οδηγίες για τον τρόπο αξιολόγησης μαθημάτων για το σχ. έτος 2014-2015»

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: «Οδηγίες για τον τρόπο αξιολόγησης μαθημάτων για το σχ. έτος 2014-2015» ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Α Βαθμός

Διαβάστε περισσότερα

Μαθήματα Νεοελληνικής Γλώσσας

Μαθήματα Νεοελληνικής Γλώσσας ΓΙΑΝΝΗΣ Ι. ΠΑΣΣΑΣ Μαθήματα Νεοελληνικής Γλώσσας Τεύχος Β (για τη Β Λυκείου) ΕΚΔΟΣΕΙΣ ΠΑΣΣΑΣ Το παρόν έργο πνευματικής ιδιοκτησίας προστατεύεται κατά τις διατάξεις της ελληνικής νομοθεσίας (Ν. 2121/1993,

Διαβάστε περισσότερα

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης

Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε

Διαβάστε περισσότερα

ΑΡΙΣΤΟΤΕΛΗΣ ΠΟΛΙΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΑΡΙΣΤΟΤΕΛΗΣ ΠΟΛΙΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΡΙΣΤΟΤΕΛΗΣ ΠΟΛΙΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΗΤΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Σειρά: Γενικό Λύκειο, Θεωρητικές Επιστήμες Αριστοτέλης, Πολιτικὰ, Γ Λυκείου, Θεωρητική Κατεύθυνση Παναγιώτης Τζιτζικάκης Επιμέλεια κειμένου-διόρθωση:

Διαβάστε περισσότερα