Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων"

Transcript

1 Τιµή και απόδση µετχής Ανάλυση χαρτφυλακίυ Τιµές Απδόσεις και Κίνδυνς µετχών ιαφρπίηση κινδύνυ Χαρτφυλάκια µετχών Η απόδση µιας µετχής είναι ίση πρς τη πσστιαία διαφρά µεταξύ της αρχικής και της τελικής περιυσίας τυ κατόχυ r t : απόδση περιόδυ P t : τελική τιµή µετχής P t-1 : αρχική τιµή µετχής D t : µέρισµα περιόδυ Η απόδση της µετχής διακρίνεται σε απόδση υπεραξίας και µερισµατική απόδση Απόδση µετχής Μεταβλητότητα τιµών και απδόσεων Η απόδση είναι πραγµατπιηθείσα, αν υπλγίζεται µεταξύ τιµής αγράς και τιµής πώλησης της µετχής Η απόδση είναι λγιστική, αν τυλάχιστ µια από τις δύ τιµές δεν είναι τιµή συναλλαγής (αγράς ή πώλησης) Αν η περίδς δεν περιλαµβάνει διανµή µερίσµατς, τότε η απόδση είναι µόνν απόδση υπεραξίας Συνεδρίαση Παρασκευής 7 Μαϊυ 1999 Γενικός είκτης Τιµών Ιύνις Μάις

2 Τυχαίες τιµές και απδόσεις Οι ιστρικές απδόσεις των µετχών έχυν µεγάλη διασπρά Οι µελλντικές απδόσεις των µετχών µπρύν να πρβλεφθύν µόνν µε κάπια πιθανότητα σφάλµατς Μεταβλητότητα και ατελής πρβλεψιµότητα σηµαίνυν ότι ι τιµές και ι απδόσεις ενσωµατώνυν έναν τυχαί παράγντα δηλαδή είναι τυχαίες µεταβλητές Κατανµή πιθανότητας απδόσεων πιθανότητα µέση τιµή Οι απδόσεις έχυν µικρή διασπρά απδόσεις Η κατανµή έχει µικρή διακύµανση Η µετχή έχει χαµηλό κίνδυν Οι απδόσεις έχυν µεγάλη διασπρά Η κατανµή έχει µεγάλη διακύµανση Η µετχή έχει υψηλό κίνδυν Παράµετρι κατανµής απδόσεων Πρσδκώµενη απόδση ιακύµανση απδόσεων Τυπική απόκλιση απδόσεων Συνδιακύµανσηαπδόσεων δύ µετχών Συσχέτιση απδόσεων δύ µετχών / Κίνδυνς και διαφρπίηση Όσ µεγαλύτερς είναι κίνδυνς µιας µετχής, τόσ µεγαλύτερη πρέπει να είναι η πρσδκώµενη απόδση της µετχής, πρκειµένυ να την αγράσυµε Όµως, ένα µέρς τυ κινδύνυ µιας µεµνωµένης µετχής µπρεί να εξαλειφθεί µέσω τυ σχηµατισµύ χαρτφυλακίυπερισσότερων µετχών, δηλαδή µέσω της διαφρπίησης ΆΡΑ, διαφρπιήσιµςκίνδυνς δεν ανταµείβεται στην αγρά 2

3 Κίνδυνς και διαφρπίηση διακύµανση χαρτφυλακίυ ιαφρπιήσιµς κίνδυνς Κίνδυνς χαρτφυλακίυ Ένα ακραί παράδειγµα: ύ µετχές µε έντνες διακυµάνσεις... µπρεί να κάνυν ένα σταθερό χαρτφυλάκι! Συστηµατικός κίνδυνς αριθµός µετχών Αν µας πλήρωναν για τν συνλικό κίνδυν της κάθε µετχής, τότε θα κερδίζαµε δωρεάν απόδση συνδυάζντάς-τις σε ένα χαρτφυλάκι Η διακύµανση τυ χαρτφυλακίυ εξαρτάται λιγότερ από τη διακύµανση της απόδσης των µετχών και περισσότερ από τη συσχέτιση των απδόσεών τυς Απόδση χαρτφυλακίυ Χαρτφυλάκι (portfolio) είναι τ σύνλ των διάφρων τπθετήσεων τυ επενδυτή Απόδση ενός χαρτφυλακίυ µετχών: r pt : απόδση χαρτφυλακίυ την περίδ t x i : πσστό µετχής i στ χαρτφυλάκι r it : απόδση µετχής iτην περίδ t Η απόδση τυ χαρτφυλακίυ είναι και αυτή τυχαία µεταβλητή ως γραµµικός συνδυασµός τυχαίων µεταβλητών Παράµετρι της κατανµής απδόσεων χαρτφυλακίυ Ν µετχών Πρσδκώµενη απόδση χαρτφυλακίυ ιακύµανση απδόσεων Τυπική απόκλιση απδόσεων Συνδιακύµανση απδόσεων i και j και αν αν 3

4 Παράµετρι της κατανµής απδόσεων χαρτφυλακίυ Ν µετχών Χαρτφυλάκια µετχών N όρι N(Ν-1)/2 όρι σ 2 p : διακύµανση απόδσης χαρτφυλακίυ x i : πσστό µετχής iστ χαρτφυλάκι σ 2 i : διακύµανση απόδσης µετχής i σ ij : συνδιακύµανσηαπoδόσεων µετχής i και j Τα χαρτφυλάκια πυ µπρύν να σχηµατισθύν µε βάση τις µεµνωµένες µετχές νµάζνται εφικτά χαρτφυλάκια (feasible portfolios) Τα χαρτφυλάκια πυ έχυν αξία ίση µε την περιυσία τυ επενδυτή και ελαχιστπιύν τν κίνδυν για κάθε επίπεδ πρσδκώµενης απόδσης νµάζνται χαρτφυλάκια ελάχιστης δυνατής διακύµανσης (minimum variance portfolios MVP) µ 2 Εφικτά και MVP χαρτφυλάκια 2 µετχών µ MVP χαρτφυλάκια Α (x Α =1) όταν ι απδόσεις των µ 1 µετχών Α και Β έχυν ατελή συσχέτιση Εφικτά χαρτφυλάκια σ 1 σ 2 Β (x Β =1) σ Επιλγή χαρτφυλακίυ µετχών Τα χαρτφυλάκια MVP πυ µεγιστπιύν την πρσδκώµενη απόδση σε κάθε επίπεδ διακύµανσης νµάζνται απτελεσµατικά χαρτφυλάκια (efficient portfolios) Τoάριστ χαρτφυλάκιγια τν επενδυτή είναι εκείν τ απτελεσµατικό χαρτφυλάκι πυ τυ πρσφέρει τν πρτιµότερ συνδυασµό απόδσης κινδύνυ βρίσκεται στ σηµεί επαφής της καµπύλης των απτελεσµατικών χαρτφυλακίων µε µια καµπύλη αδιαφρίας στν χώρ (σ,µ) 4

5 Επιλγή χαρτφυλακίυ µετχών Ο ρθλγικός επενδυτής επιλέγει τ απτελεσµατικό χαρτφυλάκι πυ πρσφέρει την πρτιµότερη σχέση απόδσης πρς κίνδυν µ 1 Α Ε µ 2 Καµπύλη αδιαφρίας Απτελεσµατικά χαρτφυλάκια Άριστ χαρτφυλάκι Β Ανάλυση χαρτφυλακίυ Θετική ανάλυση Υπόδειγµα Απτίµησης Κεφαλαιακών Στιχείων (Capital Assets Pricing Model-ΚΑΠΕΜ ή ΥΑΚΣ) Θεωρία απτίµησης µέσω arbitrage (Arbitrage Pricing Theory - APT) εντλγική ανάλυση Κατασκευή χαρτφυλακίων Υπλγιστικές δυσκλίες και περιρισµί σ 1 σ 2 5

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής

Αγορές Χρήματος και Κεφαλαίου. Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Αγορές Χρήματος και Κεφαλαίου Ενότητα # 3: Θεωρία Χαρτοφυλακίου Διδάσκων: Σπύρος Σπύρου Τμήμα: Λογιστικής και Χρηματοοικονομικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του

Διαβάστε περισσότερα

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΔΙΟΙΚΗΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ Αθήνα, 7 Μαΐυ 2015 Α.Π:ΔΙΠΑΑΔ/ΕΠ/Φ.3/62/11867

Διαβάστε περισσότερα

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας ΣΥΣΤΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΙΟΤΗΤΑΣ EC-ASE: Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας 2 «Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας» Επικεφαλής Εταίρς:

Διαβάστε περισσότερα

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150

ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AST COMPACT 110 & 150 http://www.a-s-t.gr I OLAR NDUTRY ΕΓΧΕΙΡΙΔΙΟ ΕΓΚΑΤΑΣΤΑΣΗΣ AT COMPACT 110 & 150 1. Περιγραφή Τ σύστημα Compact με τα μντέλα πυδιαθέτυν δεξαμενή των 100 και 150 λίτρων, παράγεται από την A..T. solar industry

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίου ΘΕΜΑ: Κοινοποίηση του άρθρου 12 του Ν.2579/1998 και της /384/1998 απόφασης του Υπουργού Οικονομικών.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίου ΘΕΜΑ: Κοινοποίηση του άρθρου 12 του Ν.2579/1998 και της /384/1998 απόφασης του Υπουργού Οικονομικών. -- 275 -- * ΛΟΙΠΕΣ ΦΟΡΟΛΟΓΙΕΣ * Ν. 23 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Αθήνα 6 Μαρτίυ 1998 ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ Αριθ.Πρωτ.: 1031131/389/Δ.Τ. & Ε.Φ. ΓΕΝ.Δ/ΝΣΗ ΦΟΡΟΛΟΓΙΑΣ ΠΟΛ.: 1076 ΔΙΕΥΘΥΝΣΗ ΤΕΛΩΝ ΚΑΙ Ε.Φ. ΔΙΕΥΘΥΝΣΗ

Διαβάστε περισσότερα

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids)

ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Polaroids) ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 ΠΟΛΩΤΙΚΑ ΦΙΛΤΡΑ (Plarids) Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 69 94677 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 69 94677 4. Πόλωση

Διαβάστε περισσότερα

E.E. Παρ. ΙΙΙ(Ι) Αρ. 3570,

E.E. Παρ. ΙΙΙ(Ι) Αρ. 3570, E.E. Παρ. ΙΙΙ(Ι) Αρ. 3570, 25.1.2002 120 Κ.Δ.Π. 33/2002 Αριθμός 33 ΠΕΡΙ ΦΡΥ ΠΡΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ ΝΜΣ (ΝΜΣ 95(1) ΤΥ 2000) Ι ΠΕΡΙ ΦΡΥ ΠΡΣΤΙΘΕΜΕΝΗΣ ΑΞΙΑΣ (ΓΕΝΙΚΙ) ΚΑΝΝΙΣΜΙ ΤΥ 2001.7 ' :: ΐ:;ί ; ί "-'- [ Επίσημη

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

Οδηγίες λειτουργίας AMAZONE

Οδηγίες λειτουργίας AMAZONE Οδηγίες λειτυργίας AMAZONE Υπλγιστής χήματς AMABUS για ψεκαστικά Χειριστήρι πλλαπλών λειτυργιών AMAPILOT Χειριστήρι πλλαπλών λειτυργιών AMATRON 3 Κυτί χειρισμύ υπδιαιρέσεων πλάτυς AMACLICK MG4531 BAG0117.1

Διαβάστε περισσότερα

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίυ Θαλής 1995-1996 Κ, 3cm. Με κέντρ τ σημεί Λ τυ κύκλυ να χαράξετε δεύτερ κύκλ Λ, 3cm. Η διάκεντρς ΚΛ τέμνει τν Κ στ Α και τν Λ στ Β, αν πρεκταθεί. Να κατασκευάσετε

Διαβάστε περισσότερα

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ 1 Σ. ΘΩΜΑΔΑΚΗΣ Α. ΒΑΣΙΛΑ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ 2010 19 ΙΑΝΟΥΑΡΙΟΥ 2010 ΘΕΜΑ 1 Σε μία κεφαλαιαγρά τ επιτόκι ακίνδυνυ δανεισμύ είναι 3% σε ετήσια

Διαβάστε περισσότερα

Ειδικές εφαρμογές: Χρήση ειδικού τύπου τάπας στις ανατινάξεις σε λατομεία

Ειδικές εφαρμογές: Χρήση ειδικού τύπου τάπας στις ανατινάξεις σε λατομεία Ειδικές εφαρμγές: Χρήση ειδικύ τύπυ τάπας στις ανατινάξεις σε λατμεία Στ 4 Διεθνές Συνέδρι Explosives and Blasting της EFEE τ 2007 παρυσιάστηκαν, από τυς P. Moser, Ι. Vargek, τα απτελέσματα ενός ερευνητικύ

Διαβάστε περισσότερα

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα. 2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΑΝΑΛΥΣΗ ΕΠΕΝΔΥΣΕΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Πανεπιστημίου Αθηνών 1 Ανάλυση Επενδύσεων και Διαχείριση

Διαβάστε περισσότερα

Dimitris Balios 18/12/2012

Dimitris Balios 18/12/2012 18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή

Διαβάστε περισσότερα

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ Επιθεώρηση Κινωνικών Ερευνών, 131 Α', 2010, 33-70 Γεώργις Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΣΤΙΚΕΣ ΜΕΘΔΥΣ ΤΗ ΝΕΑ ΚΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΥ ΕΠΙΠΕΔΥ ΕΚΠΑΙΔΕΥΣΗΣ ΠΕΡΙΛΗΨΗ Τ

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 02/02/2017 ΜΟΝΟ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ , (1) R1 R 2.0 V IN R 1 R 2 B R L 1 L ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ ΔΙΔΑΣΚΩΝ: Λ ΜΠΙΣΔΟΥΝΗΣ ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: //7 ΘΕΜΑ ( μνάδες) Οι τιμές των αντιστάσεων και τυ κυκλώματς τυ

Διαβάστε περισσότερα

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ

Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ Θεωρία Χαρτοφυλακίου ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ by Dr. Stergios Athianos 1- ΟΡΙΣΜΟΣ ΤΗΣ ΕΠΕΝΔΥΣΗΣ Τοποθέτηση συγκεκριμένου ποσού με στόχο να αποκομίσει ο επενδυτής μελλοντικές αποδόσεις οι οποίες θα τον αποζημιώσουν

Διαβάστε περισσότερα

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη Μελέτη Σκπιμότητας «Δημιυργίας βάσης δεδμένων για την παρακλύθηση της σταδιδρμίας των απφίτων τυ τμήματς και τη συνεχή χαρτγράφηση της αγράς εργασίας» για τ Τμήμα Πληρφρικής με Εφαρμγές στη Βιιατρική,

Διαβάστε περισσότερα

220 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (Βόλος)

220 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (Βόλος) 220 Ηλεκτρλόγων ηχανικών και ηχανικών Υπλγιστών (Βόλς) http://www.inf.uth.gr/ Γενικά Τ Πρπτυχιακό Πρόγραμμα Σπυδών (Π.Π.Σ.) τυ Τμήματς έχει σχεδιαστεί, έτσι ώστε να παρέχει γνώσεις σε όλ τ φάσμα των τεχνλγιών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8 1.1 Πρόλγς...8 1.2 Η έννια και η σημασία της χρηματικνμικής ανάλυσης... 9 1.2.1 Ο ρόλς τυ Χρηματικνμικύ Υπεύθυνυ... 11 ΚΕΦΑΛΑΙΟ 2: ΤΟ ΕΛΛΗΝΙΚΟ ΣΥΣΤΗΜΑ ΥΓΕΙΑΣ ΚΑΙ Ο

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = =

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρµόζουµε τις ιδιότητες των ορίων. Ουσιαστικά κάνουµε αντικατάσταση. lim 3x 4x+ 8 = = = ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ Να βρείτε τα παρακάτω όρια: α ( 4 8) + 6 + 8 Απλές περιπτώσεις Εφαρµόζυµε τις ιδιότητες των ρίων Ουσιαστικά κάνυµε αντικατάσταση α 4+ 8 = 4 + 8= + 4+ 8= 9 8 8 = = 4 + 6 = + 6= Αν f( )

Διαβάστε περισσότερα

Σύγχρονες Μορφές Χρηματοδότησης

Σύγχρονες Μορφές Χρηματοδότησης Σύγχρονες Μορφές Χρηματοδότησης Ενότητα 13: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΩΝ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο

Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Χρηματοοικονομικά Παράγωγα και Χρηματιστήριο Ενότητα 3: ΑΣΚΗΣΕΙΣ ΠΡΑΞΕΙΣ ΜΕ ΤΟ ΣΥΝΕΤΛΕΣΤΗ BETA Κυριαζόπουλος Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς.

ΑΠΑΝΤΉΣΕΙΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2009 Επιμέλεια: Νεκτάριος Πρωτοπαπάς. ΑΑΝΤΉΣΕΙΣ ΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤAΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 009 Επιμέλεια: Νεκτάρις ρωτπαπάς 1. Σωστή απάντηση είναι η γ. ΘΕΜΑ 1. Σωστή απάντηση είναι η α. Σχόλι: Σε μια απλή αρμνική

Διαβάστε περισσότερα

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι:

Άσκηση 1: Λύση: Για το άθροισμα ισχύει: κι επειδή οι μέσες τιμές των Χ και Υ είναι 0: Έτσι η διασπορά της Ζ=Χ+Υ είναι: Άσκηση 1: Δύο τυχαίες μεταβλητές Χ και Υ έχουν στατιστικές μέσες τιμές 0 και διασπορές 25 και 36 αντίστοιχα. Ο συντελεστής συσχέτισης των 2 τυχαίων μεταβλητών είναι 0.4. Να υπολογισθούν η διασπορά του

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ

ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΑΘΗΜΑ: ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΔΙΔΑΣΚΩΝ: ΓΕΩΡΓΙΟΣ ΛΕΛΕΔΑΚΗΣ Άσκηση : ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ: ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΗ Α ΜΕΤΟΧΗ Β Απόδοση Πιθανότητα Απόδοση Πιθανότητα -0,0 0,50-0,0 0,50 0,50

Διαβάστε περισσότερα

P6_TA-PROV(2007)0010 Ολοκληρωμένη προσέγγιση της ισότητας γυναικών και ανδρών στο πλαίσιο των εργασιών των επιτροπών

P6_TA-PROV(2007)0010 Ολοκληρωμένη προσέγγιση της ισότητας γυναικών και ανδρών στο πλαίσιο των εργασιών των επιτροπών P6_TA-PROV(2007)0010 Ολκληρωμένη πρσέγγιση της ισότητας γυναικών και ανδρών στ πλαίσι των εργασιών των επιτρπών Ψήφισμα τυ Ευρωπαϊκύ Κινβυλίυ σχετικά με την λκληρωμένη πρσέγγιση της ισότητας γυναικών και

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 23ης ΙΟΥΝΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 23ης ΙΟΥΝΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ. ΜΕΡΟΣ Ι Κανονιστικές Διοικητικές Πράξεις Κ.Δ.Π. 164/2000 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3414 της 23ης ΙΟΥΝΙΟΥ 2000 ΑΙΟΙΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΟΣ Ι Καννιστικές Διικητικές Πράξεις Αριθμός 164 Οι περί Εξωδίκυ Ρυθμίσεως Αδικημάτων

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΑΠΟΤΕΛΕΣΜΑΤΙΚΟΤΗΤΑ ΑΜΟΙΒΑΙΩΝ ΚΕΦΑΛΑΙΩΝ ΜΕ ΤΟΝ ΔΙΑΦΟΡΟΠΟΙΟΥΜΕΝΟ ΔΕΙΚΤΗ ΤΟΥ SHARPE» ΕΠΙΜΕΛΕΙΑ: Καπέλλα

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ 22/06/2012 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ /6/ ΘΕΜΑ (3 μνάδες) (α) Η αντίσταση ενός D λευκόχρυσυ μετρήθηκε στη θερμκρασία πήξης τυ νερύ και βρέθηκε 8 Ω, ενώ στη συνέχεια μετρήθηκε σε θερμκρασία θ και βρέθηκε 448 Ω Να

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι

Είναι φ =180 ο 120 ο = 60 ο άρα ω = 50 ο + 60 ο = 110 ο. ˆ ΑΓ, να υπολογίσετε την γωνία φ. ˆ ΑΓ = 110 ο άρα ω =70 ο, οπότε. Είναι 4.6 4.8 σκήσεις σχλικύ βιβλίυ σελίδας 87 88 ρωτήσεις Κατανόησης. Να υπλγίσετε την γωνία ω στ παρακάτω σχήµα πάντηση ω ίναι φ =8 = 6 άρα ω = 5 + 6 = 5 φ. ν = και x διχτόµς της γωνίας πάντηση ω φ ω 55 x

Διαβάστε περισσότερα

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο). 1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της

Διαβάστε περισσότερα

Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΤΗΣΙΑ ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΟΥΝΙΟΥ 2015

Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΤΗΣΙΑ ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΟΥΝΙΟΥ 2015 Η ΚΑΘΗΜΕΡΙΝΗ ΑΕ ΕΤΗΣΙΑ ΤΑΚΤΙΚΗ ΓΕΝΙΚΗ ΣΥΝΕΛΕΥΣΗ ΤΗΣ 9 ης ΙΟΥΝΙΟΥ 2015 Σχέδια Απφάσεων επί θεμάτων της ημερήσιας διάταξης της Ετήσιας Τακτικής Γενικής Συνέλευσης για τ 2015 ΘΕΜΑ 1 : Υπβλή πρς έγκριση των

Διαβάστε περισσότερα

Η σειρά Polaris σας προσφέρει ένα ζεστό σπίτι ακόμη και στις πιο ακραίες κλιματολογικές συνθήκες

Η σειρά Polaris σας προσφέρει ένα ζεστό σπίτι ακόμη και στις πιο ακραίες κλιματολογικές συνθήκες Η σειρά Polaris σας πρσφέρει ένα ζεστό σπίτι ακόμη και στις πι ακραίες κλιματλγικές συνθήκες Οι αντλίες θερμότητας αέρα νερύ της σειράς Polaris απτελεί σημεί αναφράς στην παγκόσμια αγρά αντλιών θερμότητας.

Διαβάστε περισσότερα

] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c.

] ) = ([f(x) ] 2 ) + (g (x) 2 = 2f(x) f (x) + 2 g (x) g (x) = 2f(x) g (x) + 2 g (x) [ f(x)] = 2f(x) g (x) 2 g (x) f(x) = 0. Άρα φ(x) = c. 1.6 Ασκήσεις σχλικύ βιβλίυ σελίδας 56 58 A Οµάδας 1. Αν για τις συναρτήσεις f, g ισχύυν : f () = g() και g () = f() για κάθε R, να αδείξετε ότι η συνάρτηση φ() = [f() ] + [g () ] είναι σταθερή. Στ διάστηµα

Διαβάστε περισσότερα

ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΙΝ ΥΝΟΥ β ΚΑΙ ΥΝΑΜΙΚΕΣ «NEGLECTED» ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑΣ

ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΙΝ ΥΝΟΥ β ΚΑΙ ΥΝΑΜΙΚΕΣ «NEGLECTED» ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΠΜΣ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΚΙΝ ΥΝΟΥ β ΚΑΙ ΥΝΑΜΙΚΕΣ «NEGLECTED» ΜΗ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΚΥΡΤΣΟΥ ΑΙΚΑΤΕΡΙΝΗ ΕΠΙΜΕΛΕΙΑ: ΑΠΟΣΤΟΛΙ ΗΣ ΓΕΩΡΓΙΟΣ

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT THERM LEV Τεχνικό εγχειρίδι Χαλύβδινς λέβητας βιμάζας σειρά BMT ΨΣας ευχαριστύμε για την επιστσύνη πυ δείχνετε στα πριόντα μας. ΨΓια την απτελεσματική χρήση τυ λέβητα βιμάζας σειράς ΒΜΤ σας συνιστύμε να

Διαβάστε περισσότερα

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ

ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Εισαγωγή Ρεύµατα βρόχων ΜΕΘΟ ΟΣ ΡΕΥΜΑΤΩΝ ΒΡΟΧΩΝ Η µέθδς ρευµάτων βρόχων για την επίλυση κυκλωµάτων (ή δικτύων) είναι υσιαστικά εφαρµγή τυ νόµυ τάσεων τυ Kirchhff µε κατάλληλη εκλγή κλειστών βρόχων ρεύµατς.

Διαβάστε περισσότερα

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31

Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ31 Άσκηση η 2 η Εργασία ΔEO3 Ακολουθούν ενδεικτικές ασκήσεις που αφορούν τη δεύτερη εργασία της ενότητας ΔΕΟ3 Η επιχείρηση Α εκδίδει σήμερα ομολογία ονομαστικής αξίας.000 με ετήσιο επιτόκιο έκδοσης 7%. Το

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Π E Ρ IEXOMENA Πρόλογος... xiii ΜΕΡΟΣ ΠΡΩΤΟ ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΣΤΑΤΙΣΤΙΚΩΝ Ε ΟΜΕΝΩΝ 1.1 Εισαγωγή... 3 1.2 Ορισµός και αντικείµενο της στατιστικής... 3

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014

ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: 13/02/2014 ΛΥΣΕΙΣ ΕΞΕΤΑΣΗΣ ΣΤΟ ΜΑΘΗΜΑ «ΤΕΧΝΟΛΟΓΙΑ ΜΕΤΡΗΣΕΩΝ» ΗΜΕΡΟΜΗΝΙΑ: // ΘΕΜΑ ( μνάδες) T κύκλωμα τυ παρακάτω σχήματς λαμβάνει ως εισόδυς τις εξόδυς των αισθητήρων Α και Β. Η έξδς τυ αισθητήρα Α είναι ημιτνικό

Διαβάστε περισσότερα

Γενικές κατευθυντήριες γραμμές για τον προϋπολογισμό Τμήμα ΙΙΙ

Γενικές κατευθυντήριες γραμμές για τον προϋπολογισμό Τμήμα ΙΙΙ P7_TA-PROV(2014)0247 Γενικές κατευθυντήριες γραμμές για τν πρϋπλγισμό 2015 - Τμήμα ΙΙΙ Ψήφισμα τυ Ευρωπαϊκύ Κινβυλίυ της 13ης Μαρτίυ 2014 σχετικά με τις γενικές κατευθυντήριες γραμμές για την κατάρτιση

Διαβάστε περισσότερα

ΠΕΡΙΛΗΠΤΙΚΗ ΕΝΗΜΕΡΩΣΗ

ΠΕΡΙΛΗΠΤΙΚΗ ΕΝΗΜΕΡΩΣΗ ΠΕΡΙΛΗΠΤΙΚΗ ΕΝΗΜΕΡΩΣΗ ΠΡΟΣ ΤΕΕ ΑΠΟ ΣΩΤ. ΜΠΑΡΣΑΚΗ Κατόπιν εγκρίσεως της Δ.Ε. τυ ΤΕΕ και ως εκπρόσωπς τυ Πανελλήνιυ Συλλόγυ Διπλωματύχων Μηχ/γων - Ηλ/γων μετέβη στην Ιταλία και συγκεκριμένα στη πόλη V Αςιιΐΐα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΕΙΣΑΓΩΓΗ

ΚΕΦΑΛΑΙΟ 1 Ο ΕΙΣΑΓΩΓΗ ΚΕΦΑΛΑΙΟ 1 Ο ΕΙΣΑΓΩΓΗ ΕΙΣΑΓΩΓΗ Είναι γνωστό ότι κατά τα αρχικά στάδια της επενδυτικής δραστηριότητας και πολύ πριν από την ανάπτυξη της χρηματοοικονομικής επιστήμης και διαχείρισης, το επενδυτικό κοινό

Διαβάστε περισσότερα

ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ

ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ & ΤΡΑΠΕΖΙΚΗΣ ΔΙΟΙΚΗΤΙΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΓΙΑ ΣΤΕΛΕΧΗ ΔΙΕΘΝΗΣ ΔΙΑΦΟΡΟΠΟΙΗΣΗ ΜΕ ΕΤΑΙΡΙΕΣ ΜΕΓΑΛΗΣ ΚΑΙ ΜΙΚΡΗΣ ΧΡΗΜΑΤΙΣΤΗΡΙΑΚΗΣ ΑΞΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

Διαβάστε περισσότερα

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία

ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ. Διπλωματική Εργασία ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Διπλωματική Εργασία ΣΥΓΚΡΙΣΗ ΜΕΤΑΞΥ ΤΟΥ CAPM ΚΑΙ ΤΟΥ ΠΟΛΥΜΕΤΑΒΛΗΤΟΥ ΥΠΟΔΕΙΓΜΑΤΟΣ: Η ΠΕΡΙΠΤΩΣΗ

Διαβάστε περισσότερα

Ο ΤΑΜΕΙΑΚΟΣ ΚΥΚΛΟΣ ΣΑΝ ΜΕΓΕΘΟΣ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΟΤΗΤΑΣ: ΕΜΠΕΙΡΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΤΑΙΡΙΩΝ ΣΤΟ Χ.Α.Α.

Ο ΤΑΜΕΙΑΚΟΣ ΚΥΚΛΟΣ ΣΑΝ ΜΕΓΕΘΟΣ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΟΤΗΤΑΣ: ΕΜΠΕΙΡΙΚΗ ΜΕΛΕΤΗ ΤΩΝ ΕΙΣΗΓΜΕΝΩΝ ΕΤΑΙΡΙΩΝ ΣΤΟ Χ.Α.Α. ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚ ΠΡΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΥΔΩΝ ΣΤΗ ΔΙΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Διπλωματική Εργασία: ΤΑΜΕΙΑΚΣ ΚΥΚΛΣ ΣΑΝ ΜΕΓΕΘΣ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΤΗΤΑΣ: ΕΜΠΕΙΡΙΚΗ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία»

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία» ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ Πργράμματς Μεταπτυχιακών Σπυδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχλγία της Υγείας» και στη «Σχλική Ψυχλγία» Α. ΓΕΝΙΚΑ ΑΡΘΡΑ Άρθρ 1 Αντικείμεν-Σκπί 1. Αντικείμεν τυ Πργράμματς

Διαβάστε περισσότερα

Συμβολή των φυσικοχημικών μεθόδων ανάλυσης στη μελέτη 13 εικόνων του Βυζαντινού Μουσείου

Συμβολή των φυσικοχημικών μεθόδων ανάλυσης στη μελέτη 13 εικόνων του Βυζαντινού Μουσείου Συμβλή των φυσικχημικών μεθόδων ανάλυσης στη μελέτη 13 εικόνων τυ Βυζαντινύ Μυσείυ Νανώ ΧΑΤΖΔΑΚ, J. PHILLIPON, P. AUSSET, ωάννης ΧΡΥΣΥΛΑΚΣ, Αθηνά ΑΛΕΞΠΥΛΥ Δελτίν XAE 13 (1985-1986), Περίδς Δ'. Στη μνήμη

Διαβάστε περισσότερα

Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ

Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ 7 ΠΡΟΓΡΑΜΜΑ Πρόγραμμα Ο ΠΛAΙΣΙΟ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΝΑΠΤΥΞΗΣ (2007-2013) ΣΩΤΗΡΗΣ ΞΥΔΗΣ: Σύμβυλς μεταφράς τεχνλγίας, ΔIKTYOY ΠΡΑΞΗ Α ΜΕΡΟΣ: ΤΟ ΔΙΚΤΥΟ ΠΡΑΞΗ Τ Δίκτυ ΠΡΑΞΗ απτελεί μια στρατηγική συμμαχία τυ Συνδέσμυ

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 0 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α. Αν οι συναρτήσεις f, g είναι παραγωγίσιµες στο, να αποδείξετε ότι (f() + g ()) f () + g (),. Μονάδες 7 Α. Σε ένα πείραµα µε ισοπίθανα

Διαβάστε περισσότερα

Υπόθεση της Αποτελεσματικής Αγοράς

Υπόθεση της Αποτελεσματικής Αγοράς Υπόθεση της Αποτελεσματικής Αγοράς Η Υπόθεση της Αποτελεσματικής Αγοράς (Efficient Market Hypothesis- EMH) Μια αγορά λέγεται αποτελεσματική όταν στην εμφάνιση μιας νέας πληροφορίας οι τιμές των αξιογράφων

Διαβάστε περισσότερα

TηλερυθΒιστης 1000 W 036 71

TηλερυθΒιστης 1000 W 036 71 TηλερυθΒιστης 1000 W 036 71 Xαρακτηριστικά Τάση 100-240 V~ Συντητα 50-60 Hz 2 x 1,5 mm 2 ή 1 x 2,5 mm 2 (*) γκς 6 Βνάδες ΣυΒΒρωση IEC 60669-2-1 0 C έως + 45 C Απαγρεύεται η ανάβειη ρτίων τύπυ έως. 110

Διαβάστε περισσότερα

«ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ.»

«ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ.» ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕΔΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΣΠΟΥΔΩΝ ΑΙΑ ΤΜΗΜΑ ΤΙΚΟ ΠΕΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΕΠΙΣΤΗΜΗ «ΤΟ ΦΑΙΝΟΜΕΝΟ ΤΟΥ ΙΑΝΟΥΑΡΙΟΥ ΣΤΟ ΕΛΛΗΝΙΚΟ ΧΡΗΜΑΤΙΣΤΗΡΙΟ.» ΕΓΠΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ:

Διαβάστε περισσότερα

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ «Δημιυργία λκληρωμένων αρχείων μετεωρλγικών δεδμένων από μετρήσεις Συνπτικών Μετεωρλγικών Σταθμών στν ελληνικό χώρ με τη χρήση Τεχνητών

Διαβάστε περισσότερα

44.5kN (111.25kN) 14.6kN/m (36.5kN/m) 0.65m. Σχήµα Γεωµετρικά δεδοµένα, δεδοµένα φόρτισης και διακριτοποίησης της δοκού του παραδείγµατος 2γ.

44.5kN (111.25kN) 14.6kN/m (36.5kN/m) 0.65m. Σχήµα Γεωµετρικά δεδοµένα, δεδοµένα φόρτισης και διακριτοποίησης της δοκού του παραδείγµατος 2γ. ΕΦΑΛΑΙΟ 5: Αριθµητικές Εφαρµγές 293 5.3.2.3. Παράδειγµα 2γ: κός µε σύνθετη φόρτιση Πρόκειται για τ παράδειγµα των Harr et al. (1969), τ πί επιλύθηκε αρχικά µε τ πρσµίωµα τυ αλλά και µεταγενέστερα τόσ µε

Διαβάστε περισσότερα

1. Να υπολογίσεις το εμβαδόν κυκλικού δίσκου που είναι περιγεγραμμένος. Στο διπλανό σχήμα, να υπολογίσεις το μήκος και το. εμβαδόν του κύκλου.

1. Να υπολογίσεις το εμβαδόν κυκλικού δίσκου που είναι περιγεγραμμένος. Στο διπλανό σχήμα, να υπολογίσεις το μήκος και το. εμβαδόν του κύκλου. Δ 1. Να υπλγίσεις τ εμβαδόν κυκλικύ δίσκυ πυ είναι περιγεγραμμένς σε τετράγων πλευράς α = 6 cm Α Α 8cm. 6cm Στ διπλανό σχήμα, να υπλγίσεις τ μήκς και τ Β Γ εμβαδόν τυ κύκλυ. Ο Β Γ 3. Λυγίζυμε ένα σύρμα

Διαβάστε περισσότερα

και τον καθορισµό των όρων διενέργειας του πρόχειρου διαγωνισµού.

και τον καθορισµό των όρων διενέργειας του πρόχειρου διαγωνισµού. Α Α: Β4Θ0ΩΕΤ-ΥΨΞ Α Π Ο Σ Π Α Σ Μ Α από τ πρακτικό της αριθ. 20/2012 τακτικής συνεδρίασης της Οικνµικής Επιτρπής ήµυ Κατερίνης. Αριθµός απόφασης 280/2012 ΠΕΡΙΛΗΨΗ: Έγκριση τεχνικών πρδιαγραφών και καθρισµός

Διαβάστε περισσότερα

Ανισότητες - Ανισώσεις µε έναν άγνωστο

Ανισότητες - Ανισώσεις µε έναν άγνωστο Ανισόττες - Ανισώσεις µε έναν άγνωστ Έναςαριθµςαλγεται ό έ µεγαλύτερςενςαριθµ ό ύβ όταν διαφράτυς α βεναι ί θετικός αριθµός. λαδήισχει ύ α> β α β> Έναςαριθµςαλγεται ό έ µικρότερςενόςαριθµύβ όταν διαφράτυς

Διαβάστε περισσότερα

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ

ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ ΔΙΟΙΚΗΣΗ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΚΤΙΚΗ Δημήτριος Βασιλείου Καθηγητής Ελληνικού Ανοικτού Πανεπιστημίου Νικόλαος Ηρειώτης Αναπληρωτής Καθηγητής Εθνικού & Καποδιστριακού Πανεπιστημίου Αθηνών 1 Χρηματοοικονομική Διοίκηση Θεωρία και Πρακτική Δημήτριος

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

ΜΑΘΗΜΑ 22 1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΙΑ ΜΑΘΗΜΑ.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Ορισµός της συνέχειας Πράξεις µε συνεχείς συναρτήσεις Συνέχεια συνάρτησης σε διάστηµα Θεωρία Ασκήσεις. Ορισµός Συνάρτηση f λέγεται συνεχής σε σηµεί όταν f () = f ( ).

Διαβάστε περισσότερα

ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ

ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ ΔΙΕΘΝΕΙΣ ΕΠΕΝΔΥΣΕΙΣ ΚΑΙ ΔΙΕΘΝΕΣ ΕΜΠΟΡΙΟ Ενότητα 9: Διεθνείς Επενδύσεις Χαρτοφυλακίου ΙΙ Μιχαλόπουλος Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104

ΘΕΜΑ 3 Επομένως τα μερίσματα για τα έτη 2015 και 2016 είναι 0, 08 0,104 ΘΕΜΑ 3 ΙΑ) Η οικονομική αξία της μετοχής BC θα υπολογιστεί από το συνδυασμό των υποδειγμάτων α) D D προεξόφλησης IV για τα πρώτα έτη 05 και 06 και β) σταθερής k k αύξησης μερισμάτων D IV (τυπολόγιο σελ.

Διαβάστε περισσότερα

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος.

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος. ΚΕΦΑΛΑΙΟ 4 Ο ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΟΥ ΚΛΑΣΣΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ. Η ΜΕΘΟ ΟΣ ΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Εκτίµηση των Παραµέτρων τυ Υπδείγµατς. Στατιστικί Έλεγχι Αναλύσεις. Πρλέψεις. Ελαχιστπίηση

Διαβάστε περισσότερα

Παράρτημα A Πρωτόκολλο δειγματοληψίας φυτοπροστατευτικών προϊόντων

Παράρτημα A Πρωτόκολλο δειγματοληψίας φυτοπροστατευτικών προϊόντων Παράρτημα A Πρωτόκλλ δειγματληψίας φυτπρστατευτικών πρϊόντων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΑΠΟΣΤΕΛΛΟΥΣΑ ΑΡΧΗ ΠΡΩΤΟΚΟΛΛΟ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ ΦΥΤΟΠΡΟΣΤΑΤΕΥΤΙΚΟΥ ΠΡΟΪΟΝΤΟΣ Αριθμός δείγματς... Σήμερα... /... /... καί ώρα...

Διαβάστε περισσότερα

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ 1 ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Στην «Μεγάλη Πραγματεία» τυ Κμφύκιυ αναφέρεται: «Στ Yi 1 υπάρχει τ tài jí 太 極. Τ tài jí 太 極 γεννά τις 2 πρωταρχικές ενέργειες ή πλικότητες τ liang yi 兩 儀 ή αλλιώς yīn yáng» και

Διαβάστε περισσότερα

az AMATRON 3 Εγχειρίδιο λειτουργίας Τερματικό χειρισμού

az AMATRON 3 Εγχειρίδιο λειτουργίας Τερματικό χειρισμού Εγχειρίδι λειτυργίας az AMATRON 3 Τερματικό χειρισμύ MG4822 BAG0094.6 02.15 Printed in Germany el Διαβάστε και τηρήστε τ παρόν εγχειρίδι λειτυργίας πριν θέσετε τη μηχανή για πρώτη φρά σε λειτυργία! Φυλάξτε

Διαβάστε περισσότερα

1. Το Διάταγμα αυτό θα αναφέρεται ως το περί Ελέγχου της Ρύπανσης των Συνοπτικός

1. Το Διάταγμα αυτό θα αναφέρεται ως το περί Ελέγχου της Ρύπανσης των Συνοπτικός Ε.Ε. Παρ. III(I) 69 Κ.Δ.Π. 10/001 Αρ. 464,1.1.001 Αριθμός 10 ΠΕΙ ΕΛΕΓΧΥ ΤΗΣ ΥΠΑΝΣΗΣ ΤΩΝ ΝΕΩΝ ΝΜΣ (ΝΜΙ 69 ΤΥ 1991 ΚΑΙ 76(1) ΤΥ 199) Διάταγμα με βάση τ άρθρ Υπυργός Γεργίας, Φυσικών Πόρν και Περιβάλλντς,

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

(β) Έντυπο για δαπάνες για έργα υποδομής εκτός κατοικημένων περιοπαράρτημα

(β) Έντυπο για δαπάνες για έργα υποδομής εκτός κατοικημένων περιοπαράρτημα Ε.Ε. Πρ. III(I) 3894 Κ.Δ.Π. 413/2001 Αρ. 3545,16.11.2001 Αριθμός 413 ι περί Λγιστικής Διχείρισης Δπνών γι Έργ Υπδμής στν Τμέ τν Μετφρών Κννισμί τυ 2001, ι πίι εκδόθηκν πό τ Υπυργικό Συμβύλι δυνάμει τν

Διαβάστε περισσότερα

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t). Kεφ. ΣYΣTHMATA ME ΠOΛΛOYΣ BAΘMOYΣ EΛEYΘEPIAΣ (part, pages - Θεωρύμε ένα σύστημα με N βαθμύς ελευθερίας, τ πί θα περιγράφεται από N συντεταγμένες (t, (t,..., N (t. Oι εξισώσεις κίνησης τυ συστήματς θα έχυν

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1 Να γράψετε στ τετράδιό σας τν αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα τ γράμμα πυ αντιστιχεί στη σωστή απάντηση. 1. Αν δείκτης διάθλασης ενός πτικύ υλικύ μέσυ είναι n= 4 3 ακτινβλία

Διαβάστε περισσότερα

Στα παρακάτω σχήµατα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων. Να βρείτε τα σηµεία στα οποία αυτές δεν είναι συνεχείς. 2 3,5 1 O. x 2.

Στα παρακάτω σχήµατα δίνονται οι γραφικές παραστάσεις δύο συναρτήσεων. Να βρείτε τα σηµεία στα οποία αυτές δεν είναι συνεχείς. 2 3,5 1 O. x 2. .8 Ασκήσεις σχλικύ βιβλίυ σελίδας 97 0 A µάδας. Στα αρακάτω σχήµατα δίννται ι γραφικές αραστάσεις δύ συναρτήσεων. Να βρείτε τα σηµεία στα ία αυτές δεν είναι συνεχείς. 3 3,5 3 - εν είναι συνεχής στ αφύ

Διαβάστε περισσότερα

Στατιστική Ι-Μέτρα Διασποράς

Στατιστική Ι-Μέτρα Διασποράς Στατιστική Ι- Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 8 Οκτωβρίου 2016 Περιγραφή 1 Περιγραφή 1 Περιγραφή Η αποτελεί μέτρο διασποράς των τιμών μιας

Διαβάστε περισσότερα

ΚΑΝΟΝΙΣΜΟΣ ΑΔΡΕΥΣΗΣ Άρθρο 1ο Άρθρο 2ο Άρθρο 3ο Άρθρο 4ο

ΚΑΝΟΝΙΣΜΟΣ ΑΔΡΕΥΣΗΣ Άρθρο 1ο Άρθρο 2ο  Άρθρο 3ο Άρθρο 4ο P Οκτωβρίυ ΚΑΝΟΝΙΣΜΟΣ ΑΔΡΕΥΣΗΣ Με την 153/29-4-2009 Καννιστική Απόφασή τυ τ Δημτικό Συμβύλι τυ Δήμυ μας ενέκρινε τν ΚΑΝΟΝΙΣΜΟ ΑΡΔΕΥΣΗΣ ΤΟΥ ΔΗΜΟΥ ΕΜΜΑΝΟΥΗΛ ΠΑΠΠΑ πίς έχει ως εξής : Άρθρ 1P Ο παρών καννισμός

Διαβάστε περισσότερα

Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1)

Στατιστική ΙΙ-Διαστήματα Εμπιστοσύνης Ι (εκδ. 1.1) Στατιστική ΙΙ- Ι (εκδ. 1.1) Γεώργιος Κ. Τσιώτας Τμήμα Οικονομικών Επιστημών Σχολή Κοινωνικών Επιστημών Πανεπιστήμιο Κρήτης 17 Ιουλίου 2013 Περιγραφή 1 Δ.Ε.γιατονμέσο µ Δ.Ε. για την αναλογία Τί είναι τα

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 17ης ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΪΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ της 17ης ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΪΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Κ.Δ.Π. 717/2004 ΠΑΡΑΡΤΗΜΑ ΤΡΙΤΟ ΤΗΣ ΕΠΙΣΗΜΗΣ ΕΦΗΜΕΡΙΔΑΣ ΤΗΣ ΔΗΜΟΚΡΑΤΙΑΣ Αρ. 3901 της 17ης ΣΕΠΤΕΜΒΡΙΟΥ 2004 ΑΙΟΪΚΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΜΕΡΟΣ Ι Καννιστικές Διικητικές Πράξεις Αριθμός 717 Ο ΠΕΡΙ ΚΤΗΝΙΑΤΡΙΚΩΝ ΕΛΕΓΧΩΝ

Διαβάστε περισσότερα

Ατομική μονάδα πετρελαίου συμπύκνωσης (Condensing Technology)

Ατομική μονάδα πετρελαίου συμπύκνωσης (Condensing Technology) Ατμική μνάδα πετρελαίυ συμπύκνωσης (ondensing Technology) Πλενεκτήματα: Πρϊόν κατάλληλ για ενεργειακή αναβάθμιση κατικίας με βάση την τεχνλγία συμπύκνωσης καυσαερίων Ενσωματωμένς δευτεργενής εναλλάκτης

Διαβάστε περισσότερα

"εγκατάσταση" σημαίνει τις εγκαταστάσεις σφαγείων χοίρων όπου σφάζονται πάνω από 200 χοίροι τη βδομάδα, κατά μέσο όρο, σε ετήσια βάση

εγκατάσταση σημαίνει τις εγκαταστάσεις σφαγείων χοίρων όπου σφάζονται πάνω από 200 χοίροι τη βδομάδα, κατά μέσο όρο, σε ετήσια βάση Ε.Ε. Παρ. III(I) 2054 Κ.Δ.Π. 227/2002 Αρ. 601,10.5.2002 Αριθμός 227 ι περί Ταξινόμησης των Σφαγίων των Χνδρών Βειδών, Χίρων και Πρβατειδών και Αναφράς των Τιμών Αντών (Σφάγια Χίρων) Καννισμί τυ 2002, ι

Διαβάστε περισσότερα

Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Τ.Ε.Ι. ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ & ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΣΤΑΥΡΟΣ ΗΛΙΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ ΠΑΤΡΙΚΙΟΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΑΝΑΛΥΣΗ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΧΑΡΤΟΦΥΛΑΚΙΟΥ ΜΕΤΟΧΩΝ ΓΙΑ ΕΝΑ ΜΗΝΑ» ΕΠΙΒΛΕΠΟΥΣΑ

Διαβάστε περισσότερα

Ατομική μονάδα πετρελαίου συμπύκνωσης (Condensing Technology)

Ατομική μονάδα πετρελαίου συμπύκνωσης (Condensing Technology) Ατμική μνάδα πετρελαίυ συμπύκνωσης (ondensing Technology) Πλενεκτήματα: Πρϊόν κατάλληλ για ενεργειακή αναβάθμιση κατικίας με βάση την τεχνλγία συμπύκνωσης καυσαερίων Ενσωματωμένς δευτεργενής εναλλάκτης

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ονοματεπώνυμο φοιτητή. Γεώργιος Καπώλης (ΜΧΑΝ 1021)

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ονοματεπώνυμο φοιτητή. Γεώργιος Καπώλης (ΜΧΑΝ 1021) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Σχέση μεταξύ αναμενόμενης απόδοσης μετοχών, χρηματιστηριακής αξίας και δείκτη P/E Ονοματεπώνυμο φοιτητή (ΜΧΑΝ 1021) Επιβλέπων Καθηγητής: Γεώργιος Διακογιάννης Επιτροπή: Εμμανουήλ Τσιριτάκης

Διαβάστε περισσότερα

ΝΕΑ ΜΕΓΕΘΗ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΟΤΗΤΑΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ "

ΝΕΑ ΜΕΓΕΘΗ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΟΤΗΤΑΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΝΕΠΙΣΤΗΜΙ ΜΑΚΕΔΝΙΑΣ ΙΚΝΜΙΚΩΝ ΚΑΙ ΚΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜ Η Μ ΑΤΊΚ ΠΡΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΥΔΩΝ ΣΤΗ ΔΙΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΘΕΜΑ ΔΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΝΕΑ ΜΕΓΕΘΗ ΜΕΤΡΗΣΗΣ ΤΗΣ ΡΕΥΣΤΤΗΤΑΣ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ

Διαβάστε περισσότερα

Ραδάμανθυς Τσότσος. 1. Εισαγωγή. 2. Χρονική αξία του Χρήματος. 3. Βασικές στατιστικές έννοιες. 4. Βασικές έννοιες απόδοσης. 5.

Ραδάμανθυς Τσότσος. 1. Εισαγωγή. 2. Χρονική αξία του Χρήματος. 3. Βασικές στατιστικές έννοιες. 4. Βασικές έννοιες απόδοσης. 5. 1. Εισαγωγή. Χρονική αξία του Χρήματος 3. Βασικές στατιστικές έννοιες 4. Βασικές έννοιες απόδοσης Ραδάμανθυς Τσότσος 5. Ανάλυση κινδύνων 6. Θεωρία χαρτοφυλακίου 7. Σχέση κινδύνου απόδοσης: CAPM/SML 8.

Διαβάστε περισσότερα

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ

ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΤΕΙ ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΧΑΡΤΟΦΥΛΑΚΙΑ ΕΠΕΝΔΥΣΕΩΝ, ΜΟΝΤΕΛΑ, ΤΟ ΡΙΣΚΟ ΚΑΙ Η ΒΕΛΤΙΣΤΗ ΕΠΙΛΟΓΗ ΤΟΥΣ Δημήτριος Παπαευαγγέλου Επιβλέπων:

Διαβάστε περισσότερα

Η ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ

Η ΕΚΤΙΜΗΣΗ ΤΟΥ ΒΗΤΑ ΤΩΝ ΜΕΤΟΧΩΝ ΜΕΣΩ ΕΝΟΣ ΥΠΟΔΕΙΓΜΑΤΟΣ ΜΕ ΔΙΑΧΡΟΝΙΚΑ ΜΕΤΑΒΑΛΛΟΜΕΝΟΥΣ ΣΥΝΤΕΛΕΣΤΕΣ ΠΕΡΙΕΧΟΜΕΝΑ 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 1 1.1 ΕΙΣΑΓΩΓΗ...2 1.2 ΣΚΟΠΟΙ ΚΑΙ ΧΡΗΣΙΜΟΤΗΤΑ ΤΗΣ ΕΡΓΑΣΙΑΣ...6 1.3 ΠΕΡΙΟΡΙΣΜΟΙ ΤΗΣ ΕΡΓΑΣΙΑΣ...9 1.4 ΣΥΝΤΟΜΗ ΕΠΙΣΚΟΠΗΣΗ ΥΠΟΛΟΙΠΩΝ ΚΕΦΑΛΑΙΩΝ...9 ΚΕΦΑΛΑΙΟ 2 2.1 ΘΕΩΡΙΑ ΧΑΡΤΟΦΥΛΑΚΙΟΥ...11

Διαβάστε περισσότερα

Θεώρηµα ( ) x x. f (x)

Θεώρηµα ( ) x x. f (x) Η ΣΥΝΡΤΗΣΗ f() = α + ΓΩΝΙ ΕΥΘΕΙΣ ΜΕ ΤΝ ΞΝ Η ΣΥΝΡΤΗΣΗ f() = α + Έστ ( ) µία υθία στ καρτσιανό πίπδ η πία τέµνι τν άξνα στ σηµί A. Γνία της υθίας ( ) µ τν άξνα λέγται η γνία πυ διαγράφι η ηµιυθία, αν στραφί

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ Έννιες πυ πρέπει να γνωρίζετε: Α θερμδυναμικός νόμς ενθαλπία θερμχωρητικότητα Θέμα ασκήσεως. Πρσδιρισμός θερμχωρητικότητας θερμιδμέτρυ. Πρσδιρισμός θερμότητς

Διαβάστε περισσότερα