ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι."

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΑΣΚΗΣΕΙΣ - ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΒΑΣΙΚΗ ΑΣΚΗΣΗ ΟΙΚΟΝΟΜΕΤΡΙΑΣ Ι. ΙΚΑΙΟΣ ΤΣΕΡΚΕΖΟΣ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

2 . ΒΑΣΙΚΗ ΑΣΚΗΣΗ. Έχετε στην διάθεση σας ( Πίνακας ) στιχεία από ένα Πληθυσµό 5 Νικκυριών για δύ από τις ασικότερες Μακρ-Οικνµικές µεταλητές: την Κατανάλωση και τ ιαθέσιµ Ιδιωτικό Εισόδηµα. Επιπλέν στν Πίνακα δίδεται ένα δείγµα 5 Νικκυριών από αυτόν τν Πληθυσµό. ΠΙΝΑΚΑΣ. Στιχεία για την κατανάλωση και τ εισόδηµα ενός πληθυσµύ. j Πηγή: Στιχεία Εξµιωµένα σε Η/Υ. ΠΙΝΑΚΑΣ. ΕΙΓΜΑ ΣΤΟΙΧΕΙΩΝ ΓΙΑ ΤΗΝ ΚΑΤΑΝΑΛΩΣΗ ΚΑΙ ΤΟ ΕΙΣΟ ΗΜΑ ΕΝΟΣ ΠΛΗΘΥΣΜΟΥ. j Έτς Πηγή: Στιχεία τυ Πίνακα. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

3 Να σχηµατπιήσετε τ σχήµα αλληλεξαρτήσεων µεταξύ αυτών των µεταλητών στ πλαίσι της ριακής ρπής πρς κατανάλωση. Απάντηση. Στ Σχεδιάγραµµα παρυσιάζυµε γραφικά την εξέλιξη της Κατανάλωσης (Υ) και τυ ιαθεσίµυ Εισδήµατς (Χ) X Y Σχεδιάγραµµα. ιαχρνική παρυσίαση της Κατανάλωσης(Υ) και τυ ιαθεσίµυ Εισδήµατς(Χ). 3 Y Σχεδιάγραµµα. Γραφική παρυσίαση της Κατανάλωσης(Υ) και τυ ιαθεσίµυ Εισδήµατς(Χ). X ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 3

4 Με άση τα Σχεδιαγράµµατα και, αλλά και την γνώση µας από την ικνµική θεωρία ι δυνατές εξειδικεύσεις της σχέσης αλληλεξάρτησης µεταξύ των µεταλητών C και ( Έχυµε αντικαταστήσει τ Υ µε τ C και τ Χ µε τ ) θα µπρύσαν να είναι: C () () Σχεδιάγραµµα (3). υνατές (στατικές) αλληλεξαρτήσεις µεταξύ της Κατανάλωσης και τυ ιαθεσίµυ Ιδιωτικύ Εισδήµατς. όπυ C : Ιδιωτική Κατανάλωση : ιαθέσιµ Εισόδηµα Ειδικότερα η επίδραση C κατανάλωση θα µπρύσε να είναι: πυ εκφράζει την ριακή ρπή πρς. Σταθερή επίδραση (Σταθερή Οριακή Ρπή πρς Κατανάλωση), σε σχέση µε τν χρόν. C f ( ) (Συνάρτηση τυ χρόνυ) C Σχεδιάγραµµα 4. Σταθερή επίδραση τυ ιαθέσιµυ Εισδήµατς στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης. Για την έννια της ριακής ρπής πρς κατανάλωση λέπε πιδήπτε εισαγωγικό εγχειρίδι ΜακρΟικνµικής ή εισαγωγικής Οικνµικής. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 4

5 Η παραπάνω υπόθεση, υφίσταται έντνες κριτικές, δεδµένυ ότι η ριακή ρπή πρς κατανάλωση διαφρπιείται διαχρνικά. Συνήθως µεταάλλεται µε την πάρδ τυ χρόν ( ).. Σταθερή Επίδραση ανεξάρτητα τυ ύψυς τυ ιαθέσιµυ Εισδήµατς. C, 45 (ύψς τυ εισδήµατς) C ( ιαθέσιµ Εισόδηµα) Σχεδιάγραµµα 5. Σταθερή Επίδραση τυ ιαθέσιµυ Εισδήµατς στην διαµόρφωση των τιµών της Ιδιωτικής Κατανάλωσης. Μη Σταθερή Επίδραση. Και η παραπάνω υπόθεση είναι υπό ικνµικό έλεγχ, δεδµένυ ότι είναι γνωστό ότι τ ύψς της κατανάλωσης εξαρτάται και από τ επίπεδ τυ διαθέσιµυ εισδήµατς µας ( ). Εν πρκειµένυ θα µπρύσε η ριακή ρπή πρς κατανάλωση να είναι ανάλγη τυ ιαθέσιµυ Εισδήµατς. ηλαδή, θα µπρύσε η ριακή ρπή πρς κατανάλωση να ακλυθύσε ένα σχήµα όπως αυτό πυ παρυσιάζεται στ Σχεδιάγραµµα (3.6). C Οριακή Ρπή πρς Κατανάλωση. ιαθέσιµ Εισόδηµα Σχεδιάγραµµα 6. Γραφική παρυσίαση της σχέσης της ριακής ρπής πρς Κατανάλωση σε σχέση µε τ ύψς τυ ιαθεσίµυ Εισδήµατς. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 5

6 Αλγερικά αυτό σηµαίνει ότι: C dc ϕ( ) d Με άση τ Σχεδιάγραµµα (6) η ριακή ρπή πρς κατανάλωση εξαρτάται από τ ύψς τυ ιαθέσιµυ Εισδήµατς. Θα µπρύσαµε επίσης να συµπληρώσυµε ότι όσ αυξάνει τ ιαθέσιµ Εισόδηµα, µειώνεται η ριακή ρπή πρς κατανάλωση, η πία τείνει να σταθερπιηθεί σε κάπι επίπεδ. Επιπλέν θα µπρύσαµε να δεχθύµε ότι η µεταλή πυ επέρχεται στην Κατανάλωση από µία µεταλή ( ) τυ ιαθέσιµυ Εισδήµατς, δεν είναι ανεξάρτητη από τ ύψς της Κατανάλωσης. Τέλς θα µπρύσαµε να δεχθύµε ότι η µεταλή στην Κατανάλωση ( C ) από µία µεταλή ( ) τυ ιαθέσιµυ Εισδήµατς, θα µπρύσε να είναι συνάρτηση και τυ επιπέδυ της Κατανάλωσης και τυ Εισδήµατς τυ ιαθέσιµυ Εισδήµατς. Γενικά. Η εξειδίκευση της σχέσης αλληλεξάρτησης της Κατανάλωσης µε τ ιαθέσιµ Εισόδηµα θα µπρύσε να γίνει µε άση τις εξής δυνατές εξειδικεύσεις:. (Σταθερή Επίδραση) C f (,, C ). (Επίδραση ως συνάρτηση τυ χρόνυ) C, f ( ) 3. (Επίδραση ως Συνάρτηση τυ ιαθέσιµυ Εισδήµατς) C f ( 4. (Επίδραση ως Συνάρτηση τυ ύψυς της Κατανάλωσης) C f ( C ) ) 5. (Επίδραση ως Συνάρτηση τυ ιαθέσιµυ Εισδήµατς, και τυ ύψυς της Κατανάλωσης). C f ( C, ) ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 6

7 6. (Επίδραση ως Συνάρτηση τυ ιαθέσιµυ Εισδήµατς, τυ ύψυς της Κατανάλωσης και της τεχνλγικής πρόδυ ). C f ( C,, ) Τέλς στ Σχεδιάγραµµα 7 παρυσιάζυµε γραφικά την σχέση της ριακής πρς κατανάλωση σε σχέση µε τ ύψς τυ ιαθεσίµυ Εισδήµατς και τυ Χρόνυ. Είναι εµφανής η διαφρπίηση της ριακής ρπής πρς κατανάλωσης σε σχέση µε τ ύψς τυ ιαθεσίµυ Εισδήµατς. Επιπλέν είναι ακόµη εµφανέστατη η σύγκλιση της ριακής ρπής πρς κατανάλωση σε κάπι επίπεδ σε σχέση µε τν χρόν. Εισόδηµα Χρόνς Σχεδιάγραµµα 7. Γραφική παρυσίαση της εξέλιξης της σχέσης Κατανάλωσης και ιαθεσίµυ Εισδήµατς σε σχέση µε τ επίπεδ τυ εισδήµατς και σε σχέση µε τν χρόν. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 7

8 Να γίνει Μαθηµατική Εξειδίκευση τυ Σχήµατς πυ θα επιλέξετε.. Γραµµικότητα ή µη Γραµµικότητα (Lineari, on Lineari). Πρσθετικότητα... (Addiivi) 3. Οµιγένια (Homogenei ) Εφόσν έχυµε υπθέσει ότι ι επιδράσεις της µεταλητής είναι γραµµική (σταθερή), µπρύµε να πρσεγγίσυµε αλγερικά την µρφή την σχέση (.) ως εξής: * ( ;, ) f (.) o Χρησιµπιύµε τα ανάπτυγµα µιας σειράς Talor, και γύρω από µια τιµή της * µεταλητής, έστω πότε η (.) γράφεται ως εξής: f f o, (.) o o ( ;, ) f ( ; ) + ( ) o Επειδή έχυµε υπθέσει σταθερές επιδράσεις της µρφής: f (.3) αν τις αντικαταστήσυµε στην (.) λαµάνυµε, o ( ) L f + (.4) o o ( ) + L f o (.5) 443 (Σταθερός Όρς) (.6) + Εάν f ( ), µία µη γραµµική συνάρτηση δύ µεταλητών και, µπρεί τότε να πρσεγγισθεί µε µία ανάπτυγµα µιας σειράς Talor γύρω από δύ τιµές. και. ως εξής: f, f, f, f,,, +, +, +, + ( ) ( ) ( ) ( ) + f,,, ( ) + ( )( ) + L,,,, f,,, ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 8

9 Να γίνει η Στατιστική Εξειδίκευση τυ Σχήµατς πυ θα επιλέξετε. 4. Παλινδρόµηση στν Πληθυσµό. 5. Παλινδρόµηση στ είγµα. Βλέπε Σηµειώσεις Μαθήµατς. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 9

10 Να εκτιµηθύν µε κάπια µέθδ εκτίµησης και να ερµηνευθύν ι παράµετρι τυ υπδείγµατς τελικά εξειδικεύσατε: Η Επαναληπτική (Γραφική) Μέθδς των Ελαχίστων Τετραγώνων στ Γραµµικό Υπόδειγµα. + + ε () Οι εκτιµήσεις των και των παραµέτρων και τυ υπδείγµατς () µε την επαναληπτική µέθδ των ελαχίστων τετραγώνων θα πρέλθυν από την διαδικασία ελαχιστπίησης: Min j j Min j j Min e j Min j, j,, j, ηλαδή για διαφρετικές τιµές των παραµέτρων () θα υπλγίζυµε τ : ϕ, () και τυ υπδείγµατς Min j j Min j j (3), j, j και θα επιλέξυµε εκείν τν συνδυασµό των παραµέτρων και πυ ελαχιστπιεί τ άθρισµα (3). Στ Σχεδιάγραµµα παρυσιάζυµε γραφικά αυτή την επαναληπτική διαδικασία ενώ στν Πίνακα παρυσιάζυµε περιληπτικά τυς αριθµητικύς υπλγισµύς. Min, j j j Σχεδιάγραµµα. Γραφική παρυσίαση της εξέλιξης τυ διαφρετικές τιµές των παραµέτρων Min, j και τυ υπδείγµατς j j για ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

11 ΠΙΝΑΚΑΣ. Απτελέσµατα Επαναληπτικής ιαδικασίας Min, j j j 45,6,4 7,6 3,9 3,5,7,7 85,5,7 4,,9,7 6 8,3,8 89,8 3,4 4,8 3,9,5,8 4,8 4,,85,8 4,,8,8 4,3,85,8 4,4,8 4,5,5,9,6 46,,9 3,,35 4, 8,5, 4,5 5,55, 5, 6,5,,5 35,55 3,4 795,8 3,, 74,4 5,,5 339,5 5,8 5,5 5649,5 6,,4 548,5 6, Πηγή : Εκτιµήσεις µας. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

12 Αλγερική Πρσέγγιση της Μεθόδυ των Ελαχίστων Τετραγώνων στ Γραµµικό Υπόδειγµα. Αν και + + ε είναι ι ( γραµµικών ) ελαχίστων τετραγώνων εκτιµητές παραµέτρων και αντιστίχως, τότε ι θεωρητικές τιµές της πρκύψυν από την σχέση j + ; j ( 3.8) j, θα ενώ ι ανάλγες εκτιµήσεις τυ διαταρακτικύ όρυ ε θα είναι e ˆ όπυ: ( 3.9) Οι εκτιµήτριες συναρτήσεις των και µε την µέθδ των ελαχίστων τετραγώνων θα πρέλθυν από την διαδικασία ελαχιστπίησης. Min Min j j Min e j j, j, Min j j, j,, ϕ Ικανή συνθήκη για την ελαχιστπίηση της συνάρτησης είναι µηδενισµός των πρώτων παραγώγων : ϕ, ως πρς και dϕ, d dϕ, d ( 3.) (Καννικές Εξισώσεις) ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

13 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 3 Πρώτη Καννική Εξίσωση :, d d d d ϕ ( ) d d d d ( ) ( ) ( ) ( ) ( ) f nf f n n ` ` ` ` ` + + () + + ( ) Ν K Ν + ( ). 3 εύτερη Καννική Εξίσωση ( ), d d d d ϕ ( ) ( ) ( ) ( ) ( ) f nf f n n ` ` ` ` ` + + ( ) db d d d + ( ).3 3 Τ σύστηµα των εξισώσεων (3.) και (3.3) είναι τ σύστηµα των καννικών εξισώσεων, από την λύση τυ πίυ θα πρκύψυν ι ελαχίστων τετραγώνων εκτιµήτριες συναρτήσεις.

14 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 4 ( ).4 3 Οι εκτιµήτριες συναρτήσεις των και θα πρκύψυν ως εξής ( ).5 3 Στ Παραρτηµα παρυσιάζυµε αναλυτικά τν υπλγισµό τυ αντίστρφυ της µήτρας της σχέσης (3.5). ( ).6 3 Αντικαθιστώντας την (3.6) στην (3.5) λαµάνυµε ( ) ( ) ( ).7 3 Απδεικνύεται ότι ι ελαχίστων τετραγώνων εκτιµητές είναι, ) ( ( ).8 3 µ µ

15 Υπλγισµός των παραµέτρων τυ Υπδείγµατς. µ µ ( ) Με άση τα στιχεία τυ Πίνακα ι ανάλγες εκτιµήσεις των παραµέτρων θα είναι: ˆ ()( 5. 94) ( 3 )(. 45) 47 35, ( ) ˆ 9- (,8) 6 9 4,8 4, ( ) ( ) µ µ χ Άρα η γραµµή παλινδρόµησης στ δείγµα θα είναι: 4, +, 8 j j Σχεδιάγραµµα. Τυπικό απτέλεσµα απλής παλινδρόµησης από τ λγισµικό EVIEWS. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 5

16 Οι Θεωρητικές τιµές θα είναι: ˆ ( 6) 4, + 4,8 9 ( ) 4, +,6 5, 8 () 5 4, + 4 8, () 9 4, + 7,, 4 4, +,8 4, +,8 ˆ 4, +,8 4, +,8 4, +,8 4, +,8 ˆ3 3 ˆ 4 4, +,8 4 4, +,8 ˆ 5 4, +,8 5 4, +,8 8 4, + 6,4 (), 6 Οι εκτιµήσεις τυ διαταρακτικύ όρυ είναι u ˆ ˆ u ˆ ˆ u ˆ ,8, 8 8,, ˆ3 3 3 u ˆ ˆ 4 4 4,4 u ˆ ˆ 5 5 5,6,6,6 uˆ ˆ,,3 5. Σχεδιάγραµµα. Αριθµητική παρυσίαση θεωρητικών και πραγµατικών τιµών της Κατανάλωσης. Στ Σχεδιάγραµµα παρυσιάζυµε τις Πραγµατικές, τις Θεωρητικές τιµές και τις ανάλγες εκτιµήσεις των τιµών τυ ιαταρακτικύ Όρυ. Θεωρητικές και Πραγµατικές Τιµές ^ 9 5,8 8,,4,6 ^ ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 6

17 Σχεδιάγραµµα. Γραφική παρυσίαση θεωρητικών και πραγµατικών τιµών της Κατανάλωσης. Σχεδιάγραµµα. Γραφική παρυσίαση θεωρητικών και πραγµατικών τιµών της Κατανάλωσης µε άση τ λγισµικό EVIEWS. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 7

18 Να απδειχθύν αλγερικά και αριθµητικά ι Ιδιότητες της Γραµµής Παλινδρόµησης. Απάντηση. Οι απδείξεις αλγερικά δίδνται στις σηµειώσεις τυ µαθήµατς και την ιλιγραφία πυ έχει δθεί. Οι αριθµητικές απδείξεις δίδνται στν Πίνακα. ˆ 6 Με άσει επίσης τις άλλες τρεις ιδιότητες απδεικνύεται ότι : Απδεικνύεται u +, + (,) + (, )+ (,6 ) ˆ (λεπε 7 στήλη) ˆ u ˆ ˆ u ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 8

19 Τ ΠΙΝΑΚΑΣ () () (3) (4) (5) (6) (7) (8) (9) Χ ŷ û - ( - ) ,8, , -, ,4, ,6 -,6 ΑΘΡΟΙΣΜΑ ŷ 4 û ΤΑ 5 Τ ŷ () () û u u u u ,4,,4, ,4 -,,4,, ,36,6,36 -,, ,6,36,6,44 ΑΘΡΟΙΣΜΑ ΤΑ 44. u.8 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 9

20 ΝΑ ΥΠΟΛΟΓΙΣΘΕΊ Ο ΣΥΝΤΕΛΕΣΤΗΣ ΠΡΟΣ ΙΟΡΙΣΜΟΥ R Απάντηση. Γνωρίζυµε ότι συντελεστή πρσδιρισµύ δίδεται από την σχέση: R u ( ) Γνωρίζυµε ότι σ ( µ ) µ T µ 9 5 σ T T µ 45 5 άρα ( ) 4 5 Άρα ( ) 4,5 Επιπλέν (,) + (,) + (,6) + (, ) u ˆ + 6 () ,4+,4+,36+,36,8,8 Άρα Συντελεστής Πρσδιρισµύ R,4, 96 R, 96 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

21 ΝΑ ΓΙΝΕΙ Η ΕΚΤΙΜΗΣΗ ΤΗΣ ΙΑΚΥΜΑΝΣΗΣ ΤΟΥ ΙΑΤΑΡΑΚΤΙΚΟΥ ΟΡΟΥ. Γνωρίζυµε ότι µια αµερόληπτς εκτίµηση της ιακύµανσης τυ ιαταρακτικύ όρυ δίδεται από την σχέση: s u,8 T T,8 5,8,6 3 Άρα η τυπική της απόκλιση θα είναι : s s,6,563 Λαµάνντας τις εκτιµήσεις της διακυµάνσεις τυ αˆ και ˆ s s s. α T ( ) s. ( ) Για να υπλγίσυµε τις παραπάνω σχέσεις χρειαζόµεθα: ( ) γνωρίζυµε ότι σ ( ) µ άρα. ( 6) T T 5 µ T 3 5 Άρα ( ) 6 ( ) T *6 5*6 3 T Άρα ( ) 3 6 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

22 Και επειδή συνήθως χρειαζόµαστε την τπική απόκλιση των εκτιµήσεων και s s T. ( ), ,56 5,56,8 ( ), 65 s,65 s s T. ( ),56 3,56.,33 (,56 )(.,8), 948 s,948 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ

23 Να δηµιυργήσετε τα διαστήµατα εµπιστσύνης για τις παραµέτρυς και Γνωρίζυµε ότι τα διαστήµατα εµπιστσύνης για τις παραµέτρυς τα και ασίζνται στις σχέσεις:. s. s ω + ω ω. s + ω. s Συνήθως χρησιµπιύµε ω5%,5 και πρσπαθύµε να εκτπίσυµε ένα διάστηµα εµπιστσύνης µέσα στ πί θα ευρίσκνται ι παράµετρι και σε ένα διάστηµα εµπιστσύνης -ω-,5,95 ή 95% Επειδή 4,,8 s s, ω µε Τ-5-3 αθµύς ελευθερίας ( )( ) 3, 8 3.,5 Άρα τ διαστήµατα εµπιστσύνης για την παράµετρ θα είναι:. s +. s ω ω ή 4.-3,8.(,65) 4, + 3,8(,65) ή 4,,95 4, +,95,5 6,5 Και τ αντίστιχ διάστηµα εµπιστσύνης για τ θα είναι: ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 3

24 ω. s + ω. s ( 3,8 )(.,95),8 ( 3,8)(,95),8 +,8,99,8 +,99,5,99 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 4

25 Να γίνει ό έλεγχς υπθέσεων για τις παραµέτρυς και µε την -Saisic Ο έλεγχς της υπόθεσης χ µέσω της + χ + u µπρεί να γίνει ελέγχντας: H : H : έναντι της εναλλακτικής H : H : Υπλγίζυµε τις : S S 8.48 Απρρίπτυµε την υπόθεση Η Ο αν ω ΤΝ, 3,.5 ω 3,.5 ΤΝ, Και επειδή ι παραπάνω εκτιµήσεις είναι µεγαλύτερες από την ανάλγη τιµή της -saisic (η τιµή αυτή είναι 3,8) απρρίπτυµε την υπόθεση Η Ο. ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 5

26 Να γίνει ό έλεγχς υπθέσεων για τις παραµέτρυς και µε την F-Saisic(Κατανµή F). O έλεγχς των υπθέσεων: H H : : έναντι της εναλλακτικής H H : : µπρεί να γίνει µε την στατιστική F υπλγίζντας την σχέση: F u /( K ) F, K Με άση τα στιχεία τυ Πίνακα, πρκύπτει ότι: F /(5) ,7 Επειδή η τιµή F είναι πλύ µεγαλύτερη από την τιµή της F-κατανµής σε επίπεδ σηµαντικότητας ω.5 και µε,3 αθµύς ελευθερίας ( F F 6),απρρίπτυµε την υπόθεση Η.,5,3 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 6

27 Να δηµιυργηθύν τα διαστήµατα εµπιστσύνης για τις Πρσδκώµενες Μεταλητές. Τά διαστήµατα εµπιστσύνης δίδνται από τις σχέσεις: ( ). s E +. s s ω, ΤΝ s T, ΤΝ + _ _ ω _ Επειδή: 3 χ 6 T 5 s.564 ω,3.5,3 3.8 κατά τα διαστήµατα εµπιστσύνης για των πρσδιρισµένη τιµή της είναι: 6 6 για s,564. +,564*,447, πότε τ ανάλγ διάστηµα εµπιστσύνης για Άρα ( ). s E +. s ω, ΤΝ 9 E + ή 8,6 E ( ) 9 9, 73 επιπλέν για 5,37 E 5,8 6, ω, ΤΝ,73485 ( ) 9, ( ) 3 7,5 E ( 3 ) 8, 8, 87 E 4 4,5 ( ),5, 9 5 9,75 E ( 5 ),6, 44 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 7

28 πρκύπτυν ι πρσδκώµενες τιµές της µεταλητής Κατανάλωση ι πίες είναι ι εξής: Όρια Τιµών Της Κατανάλωσης (Ανω) Τιµές Της Κατανάλωσης Όρια Τιµών Της Κατανάλωσης (Κάτω) Η γραφική παρυσίαση των πρσδκώµενων τιµών της Κατανάλωσης δίδνται στ Σχεδιάγραµµα. Σχεδιάγραµµα. Πρσδκώµενες τιµές της Κατανάλωσης ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 8

29 ΠΡΟΒΛΕΨΕΙΣ. Σηµειακές Πρλέψεις. Αν υπθέσυµε ότι ι τιµές τυ ιαθεσίµυ Εισδήµατς τ και τ είναι τότε ι σηµειακές πρλέψεις της Κατανάλωσης θα είναι : * * * *9.4 ιαστήµατα εµπιστσύνης για πρλέψεις. H ιακύµανση τυ Σφάλµατς Πρόλεψης δίδεται από την σχέση: s + + T f su ( χ f χ ) χ ( χ ) ενώ τ (-ω)% διάστηµα εµπιστσύνης για την Κατανάλωση δίδεται από την σχέση: f f ( f ) + ω s f. s. ω, ΤΝ f, ΤΝ Εκτιµάµε την διακύµανση τυ Σφάλµατς Πρόλεψης: Για f 6 6 ( χ χ ) 3 f s su + + T,64 f ( χ f χ ) χ ( χ ) 36,6 + +,6*( +, +,) 5 3 S f S f, ,8 3,8*, ,8 + 3,8*,789936,8 6,3 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 9

30 ΕΞΕΙ ΙΚΕΥΣΗ ΕΝΟΣ ΟΙΚΟΝΟΜΕΤΡΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ 3

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος.

Ελαχιστοποίηση του Μέσου Τετραγωνικού Σφάλµατος για διαφορετικές τιµές των Παραµέτρων του Κλασσικού Γραµµικού Υποδείγµατος. ΚΕΦΑΛΑΙΟ 4 Ο ΜΕΘΟ ΟΙ ΕΚΤΙΜΗΣΗΣ ΤΩΝ ΠΑΡΑΜΕΤΡΩΝ ΤΟΥ ΚΛΑΣΣΙΚΟΥ ΓΡΑΜΜΙΚΟΥ ΥΠΟ ΕΙΓΜΑΤΟΣ. Η ΜΕΘΟ ΟΣ ΤΩΝ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ. Εκτίµηση των Παραµέτρων τυ Υπδείγµατς. Στατιστικί Έλεγχι Αναλύσεις. Πρλέψεις. Ελαχιστπίηση

Διαβάστε περισσότερα

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας.

Σκοπός του κεφαλαίου είναι η κατανόηση των βασικών στοιχείων μιας στατιστικής έρευνας. Α ΚΕΦΑΛΑΙΟ 2 ΣΤΑΤΙΣΤΙΚΗ Σκπός Σκπός τυ κεφαλαίυ είναι η κατανόηση των βασικών στιχείων μιας στατιστικής έρευνας. Πρσδκώμενα απτελέσματα Όταν θα έχετε λκληρώσει τη μελέτη αυτύ τυ κεφαλαίυ θα πρέπει να μπρείτε:

Διαβάστε περισσότερα

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ

Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ Παγκόσμι χωριό γνώσης ΕΝΟΤΗΤΑ 3 Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΚΑΝΟΝΕΣ ΠΑΡΑΓΩΓΙΣΗΣ ΡΥΘΜΟΙ ΜΕΤΑΒΟΛΗΣ 3 ΜΑΘΗΜΑ Σκπός Σκπός της ενότητας είναι ρισμός της παραγώγυ και τυ ρυθμύ μεταβλής καθώς και

Διαβάστε περισσότερα

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ

Exουμε βρεί την εξίσωση κύματος: λν = υ, όπου υ = Τ /μ στη περίπτωση της χορδής. Οπότε. υ ν = = λ Kεφ. (part, pages - Σχέση διασπράς Exυμε βρεί την εξίσωση κύματς: λν = υ, όπυ υ = Τ /μ στη περίπτωση της χρδς. Οπότε υ ν = = λ ω = Τ /μ Τ /μ λ k H σχέση αυτ πυ συνδέει την γωνιακ συχνότητα ω με τν κυματαριθμό

Διαβάστε περισσότερα

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος.

ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. :\Documens and Seings\kpig\Deskop\basikh askhsh aaaa.doc ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ. Οικονομετρία ΙΙ. Διδάσκων Τσερκέζος Δικαίος. ΒΑΣΙΚΗ ΕΦΑΡΜΟΓΗ ΣΤΗΝ ΕΞΕΙΔΙΚΕΥΣΗ-ΕΚΤΙΜΗΣΗ-ΑΝΑΛΥΣΗ- ΠΡΟΒΛΕΨΗ- ΣΕΝΑΡΙΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟ

Διαβάστε περισσότερα

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο).

(Ανάλογα εργαζόµαστε και για να αποδείξουµε ότι δύο γωνίες έχουν κοινή διχοτόµο ή δύο τόξα κοινό µέσο). 1 ΑΣΚΗΣΕΙΣ ΑΠΟ ΕΙΞΗΣ ΣΤΗ ΓΕΩΜΕΤΡΙΑ (η τεχνική τυ αρκεί να απδείξυµε ότι... ) Παναγιώτης Λ. Θεδωρόπυλς Σχλικός Σύµβυλς κλάδυ ΠΕ03 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις αυτές γράφτηκαν µε σκπό να βηθήσυν τυς µαθητές της

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ

ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ θ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΕΙΤΟΝΑ ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ & ΤΕΧΝΟΛΟΓΙΑΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ &ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤ/ΝΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΜΕΛΕΤΗ ΤΗΣ ΕΞΑΝΑΓΚΑΣΜΕΝΗΣ ΤΑΛΑΝΤΩΣΗΣ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΟΣ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ

Διαβάστε περισσότερα

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών:

Ατομικάενεργειακάδιαγράμματα: Θεώρημα μεταβολών: Προσέγγιση Born- Openheimer: Θεωρία μοριακών τροχιακών: τμικάενεργειακάδιαγράμματα: Χωρικές διαστάσεις ενεργειακές απστάσεις χρνική κλίμακα Καταστάσεις ydg Θεώρημα μεταβλών: Εφαρμγή σε πρόβλημα της ατμικής Πρσέγγιση on- Opnhm: Εφαρμγή στ Η Θεωρία μριακών τρχιακών:

Διαβάστε περισσότερα

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ

ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ ΜΙΑ ΚΡΟΥΣΗ ΣΤΟΙΧΕΙΩΔΩΝ ΣΩΜΑΤΙΔΙΩΝ Σωµάτι α (πυρήνας 4 He ) µε µάζα m a και φρτί q a =e και πυρήνας ασβεστίυ 40 Ca 0 µε µάζα mπυρ = 10m a και φρτί Q = 0 e πυρ, βρίσκνται αρχικά σε πλύ µεγάλη απόσταση µεταξύ

Διαβάστε περισσότερα

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2. ΟΡΙΟ & ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ 2.1. ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 5 Ο ΜΑΘΗΜΑ 2.1.1. Τ σύνλ των πραγματικών αριθμών Τ σύνλ των πραγματικών αριθμών, είναι γνωστό και με τα στιχεία τυ δυλέψαμε όλες τις πρηγύμενες τάζεις.

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09

ΤΕΙ ΠΕΙΡΑΙΑ. Συστήµατα Αυτοµάτου Ελέγχου ΙΙ. Ασκήσεις Πράξης. . Καλλιγερόπουλος Σ. Βασιλειάδου. Χειµερινό εξάµηνο 2008/09 ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτµατισµύ Συστήµατα Αυτµάτυ Ελέγχυ ΙΙ Ασκήσεις Πράξης. Καλλιγερόπυλς Σ. Βασιλειάδυ Χειµερινό εξάµην 8/9 Ασκήσεις Μόνιµα Σφάλµατα & Κριτήρια ευστάθειας Άσκηση.. ίνεται σύστηµα µε συνάρτηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7. ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ 7 ΚΕΦΑΛΑΙΟ 1: Εισαγωγικές Έννοιες 13 1.1. Εισαγωγή 13 1.2. Μοντέλο ή Υπόδειγμα 13 1.3. Η Ανάλυση Παλινδρόμησης 16 1.4. Το γραμμικό μοντέλο Παλινδρόμησης 17 1.5. Πρακτική χρησιμότητα

Διαβάστε περισσότερα

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1

V=αβγ (1) µ το πλάτος της δεξαµενής, β= 1 ΕΠΙΛΥΣΗ ΤΥΠΩΝ Στην ενότητα αυτή, πιστεύω να καταλάβετε ότι τα Μαθηµατικά έγιναν και αναπτύχθηκαν για να αντιµετωπίζυν καθηµερινά πρβλήµατα. εν χρειάζνται όµως πλλά λόγια, ας πρχωρήσυµε σε παραδείγµατα.

Διαβάστε περισσότερα

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 )

Άσκηση Οικονομετρίας ΙΙ. . (Υποδείγματα με Διαχρονικά Κατανεμημένες Επιδράσεις 1 ) Άσκηση Οικονομετρίας ΙΙ.. (Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις ) Περιεχόμενα. Γενικά. Οικονομετρικά Υποδείγματα με ιαχρονικά Κατανεμημένες Επιδράσεις. Η Αντίδραση της Μέσης Τιμής της Αμόλυβδης

Διαβάστε περισσότερα

Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις.

Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. C:\Documens nd Seings\kpig\Deskop\-------- ------G---- ----S 6.doc Υποδείγματα με Πολυωνυμικά Κατανεμημένες Χρονικές Επιδράσεις. Στα υποδείγματα με πολυωνυμικά κατανεμημένες διαχρονικές επιδράσεις υποθέτουμε

Διαβάστε περισσότερα

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΙΙ Καθηγητές: Δ. ΚΑΛΛΙΓΕΡΟΠΟΥΛΟΣ & Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Επιστημνικός Συνεργάτης: Σ. ΒΑΣΙΛΕΙΑΔΟΥ

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων

Τιµή και απόδοση µετοχής. Ανάλυση χαρτοφυλακίου. Απόδοση µετοχής. Μεταβλητότητα τιµών και αποδόσεων Τιµή και απόδση µετχής Ανάλυση χαρτφυλακίυ Τιµές Απδόσεις και Κίνδυνς µετχών ιαφρπίηση κινδύνυ Χαρτφυλάκια µετχών Η απόδση µιας µετχής είναι ίση πρς τη πσστιαία διαφρά µεταξύ της αρχικής και της τελικής

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ. 2.4: Ρυθμός Μεταβολής του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 4: ΡΥΘΜΟΣ ΜΕΤΑΒΟΛΗΣ [Κεφ..4: Ρυθμός Μεταβλής τυ σχλικύ βιβλίυ]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα 1. Δίνεται η συνάρτηση f() = 3 3. α) Να βρεθεί ρυθμός μεταβλής της

Διαβάστε περισσότερα

ροή ιόντων και µορίων

ροή ιόντων και µορίων ρή ιόντων και µρίων Θεωρύµε ένα διάλυµα µίας υσίας Α. Αν εξαιτίας της ύπαρξης διαφρών συγκέντρωσης ή ηλεκτρικύ πεδίυ όλες ι ντότητες (µόρια ή ιόντα) της υσίας Α κινύνται µέσα σ αυτό µε την ίδια ριακή ταχύτητα

Διαβάστε περισσότερα

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t).

Θεωρούμε ένα σύστημα με N βαθμούς ελευθερίας, το οποίο θα περιγράφεται από N συντεταγμένες ψ 1 (t), ψ 2 (t),..., ψ N (t). Kεφ. ΣYΣTHMATA ME ΠOΛΛOYΣ BAΘMOYΣ EΛEYΘEPIAΣ (part, pages - Θεωρύμε ένα σύστημα με N βαθμύς ελευθερίας, τ πί θα περιγράφεται από N συντεταγμένες (t, (t,..., N (t. Oι εξισώσεις κίνησης τυ συστήματς θα έχυν

Διαβάστε περισσότερα

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση:

Κ. Μέτρηση Κύκλου. Παράρτημα. Ι13. Αν σε ένα τρίγωνο ΑΒΓ ισχύει η σχέση: Ι12. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση ημ 3 Β ημ 2 ΑημΒ ημ 2 ΑημΓ ημ 3 Γ, να απδείξετε ότι Βˆ Γˆ 120. Ι13. Αν σε ένα τρίγων ΑΒΓ ισχύει η σχέση: 1 1 2 1, να α β α β γ α β γ β γ 2 απδείξετε ότι 4συν Β

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693 946778 ΜΕΘΟΔΟΣ ΕΙΔΩΛΩΝ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ Συγγραφή Επιμέλεια: Παναγιώτης Φ. Μίρας ΣΟΛΩΜΟΥ 9 - ΑΘΗΝΑ 693 946778 ΦΡΟΝΤΙΣΤΗΡΙΑΚΑ ΜΑΘΗΜΑΤΑ ΦΥΣΙΚΗΣ Π.Φ. ΜΟΙΡΑ 693

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo

ΜΑΘΗΜΑ 16 1.4 1.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ xo ΜΑΘΗΜΑ 6.4.5 ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ R Η έννια τυ ρίυ Όρι ταυττικής σταθερής συνάρτησης Ι ΙΟΤΗΤΕΣ ΤΩΝ ΟΡΙΩΝ Όρι και διάταξη Όρια και πράξεις Κριτήρι παρεµβλής Τριγωνµετρικά όρια Όρι σύνθετης συνάρτησης Θεωρία

Διαβάστε περισσότερα

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ

ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ 1 ΤΡΙΓΡΑΜΜΑ ΚΑΙ ΔΙΑΤΑΞΕΙΣ Στην «Μεγάλη Πραγματεία» τυ Κμφύκιυ αναφέρεται: «Στ Yi 1 υπάρχει τ tài jí 太 極. Τ tài jí 太 極 γεννά τις 2 πρωταρχικές ενέργειες ή πλικότητες τ liang yi 兩 儀 ή αλλιώς yīn yáng» και

Διαβάστε περισσότερα

Χ. Εμμανουηλίδης, 1

Χ. Εμμανουηλίδης, 1 Εφαρμοσμένη Στατιστική Έρευνα Απλό Γραμμικό Υπόδειγμα AΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟ ΕΙΓΜΑ Δρ. Χρήστος Εμμανουηλίδης Αν. Καθηγητής Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Εφαρμοσμένη Στατιστική, Τμήμα Ο.Ε. ΑΠΘ Χ. Εμμανουηλίδης,

Διαβάστε περισσότερα

Διαχείριση Υδατικών Πόρων

Διαχείριση Υδατικών Πόρων Εθνικό Μετσόβιο Πολυτεχνείο Διαχείριση Υδατικών Πόρων Γ.. Τσακίρης Μάθημα 3 ο Λεκάνη απορροής Υπάρχουσα κατάσταση Σενάριο 1: Μέσες υδρολογικές συνθήκες Σενάριο : Δυσμενείς υδρολογικές συνθήκες Μελλοντική

Διαβάστε περισσότερα

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ

ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΣΩΤΕΡΙΚΩΝ ΚΑΙ ΔΙΟΙΚΗΤΙΚΗΣ ΑΝΑΣΥΓΚΡΟΤΗΣΗΣ ΓΕΝ. Δ/ΝΣΗ ΔΙΟΙΚΗΣΗΣ ΑΝΘΡΩΠΙΝΟΥ ΔΥΝΑΜΙΚΟΥ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ ΕΠΕΙΓΟΝ-ΠΡΟΘΕΣΜΙΑ Αθήνα, 7 Μαΐυ 2015 Α.Π:ΔΙΠΑΑΔ/ΕΠ/Φ.3/62/11867

Διαβάστε περισσότερα

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΜΕΣΟΛΟΓΓΙΟΥ ΣΧΟΛΗ ΙΟΙΚΗΣΗΣ & ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ Α εξεταστική περίοδος χειµερινού εξαµήνου 4-5 ιάρκεια εξέτασης ώρες και 45 λεπτά Θέµατα Θέµα (α) Τα υποδείγµατα που χρησιµοποιούνται στην οικονοµική θεωρία ονοµάζονται ντετερµινιστικά ενώ τα οικονοµετρικά

Διαβάστε περισσότερα

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής

Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίου Θαλής Θέματα πανελληνίων διαγωνισμών Ε.Μ.Ε. Β γυμνασίυ Θαλής 1995-1996 Κ, 3cm. Με κέντρ τ σημεί Λ τυ κύκλυ να χαράξετε δεύτερ κύκλ Λ, 3cm. Η διάκεντρς ΚΛ τέμνει τν Κ στ Α και τν Λ στ Β, αν πρεκταθεί. Να κατασκευάσετε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Αγαπητί μαθητές και μαθήτριες, Τα σας πρτείνυν για άλλη μια χρνιά, ένα λκληρωμέν επαναληπτικό υλικό στη Φυσική Θετικής-Τεχνλγικής

Διαβάστε περισσότερα

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ

1.1 Η ΕΝΝΟΙΑ ΤΟΥ ΙΑΝΥΣΜΑΤΟΣ 1 1.1 Η ΕΝΝΟΙ ΤΟΥ ΙΝΥΣΜΤΟΣ ΘΕΩΡΙ 1. ιάνυσµα Λέγεται κάθε πρσανατλισµέν ευθύγραµµ τµήµα. (έχει αρχή και πέρας) A B 2. Μηδενικό διάνυσµα 0 Λέγεται τ διάνυσµα τυ πίυ η αρχή και τ πέρας συµπίπτυν. AA= 0 3.

Διαβάστε περισσότερα

Dimitris Balios 18/12/2012

Dimitris Balios 18/12/2012 18/12/2012 Κστλόγηση εξατμικευμένης και συνεχύς Δρ. Δημήτρης Μπάλις Συστήματα κστλόγησης ανάλγα με τη μρφή της παραγωγικής διαδικασίας Κστλόγηση συνεχύς Κστλόγηση εξατμικευμένης ή κστλόγηση κατά φάση ή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2008 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Στις ερωτήσεις -4 να γράψετε στ τετράδιό σας τν αριθµό της ερώτησης και δίπα τ γράµµα, πυ αντιστιχεί στη σωστή απάντηση.. Ακτίνα πράσινυ φωτός πρερχόµενη

Διαβάστε περισσότερα

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα.

Σκοπός της ενότητας αυτής είναι να παρουσιάσει σύντομα αλλά περιεκτικά τους τρόπους με τους οποίους παρουσιάζονται τα στατιστικά δεδομένα. 2.2. ΕΝΟΤΗΤΑ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ 8 ΜΑΘΗΜΑ ΔΕΔΟΜΕΝΩΝ Σπός Σπός της ενότητας αυτής είναι να παρυσιάσει σύντμα αλλά περιετιά τυς τρόπυς με τυς πίυς παρυσιάζνται τα στατιστιά δεδμένα. Πρσδώμενα απτελέσματα

Διαβάστε περισσότερα

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας

EC-ASE: Ευρωπαϊκό Πιστοποιητικό για τους Συμβούλους / Εκπαιδευτές Κοινωνικής Οικονομίας ΣΥΣΤΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΙΟΤΗΤΑΣ EC-ASE: Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας 2 «Ευρωπαϊκό Πιστπιητικό για τυς Συμβύλυς / Εκπαιδευτές Κινωνικής Οικνμίας» Επικεφαλής Εταίρς:

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

ΣΤΕΦΑΝΟΣ ΣΤΕΦΑΝΟΥ Α.Ε.Μ. 4049

ΣΤΕΦΑΝΟΣ ΣΤΕΦΑΝΟΥ Α.Ε.Μ. 4049 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΜΕΛΕΤΗ ΚΥΚΛΩΜΑΤΩΝ ΕΝΕΡΓΩΝ ΦΙΛΤΡΩΝ ΜΕ ΤΗ ΧΡΗΣΗ ΠΡΟΣΟΜΟΙΩΣΗΣ» «STUDY OF ACTIVE CIRCUIT FILTERS BY USING SIMULATION» ΣΤΕΦΑΝΟΣ

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία»

ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ. Προγράμματος Μεταπτυχιακών Σπουδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχολογία της Υγείας» και στη «Σχολική Ψυχολογία» ΕΣΩΤΕΡΙΚΟΣ ΚΑΝΟΝΙΣΜΟΣ ΛΕΙΤΟΥΡΓΙΑΣ Πργράμματς Μεταπτυχιακών Σπυδών Ειδίκευσης (Π.Μ.Σ.) στην «Ψυχλγία της Υγείας» και στη «Σχλική Ψυχλγία» Α. ΓΕΝΙΚΑ ΑΡΘΡΑ Άρθρ 1 Αντικείμεν-Σκπί 1. Αντικείμεν τυ Πργράμματς

Διαβάστε περισσότερα

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ

Γεώργιος Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΟΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΥΣ ΤΗ ΝΕΑ ΚΟΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠΟ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΟΥ ΕΠΙΠΕΔΟΥ ΕΚΠΑΙΔΕΥΣΗΣ Επιθεώρηση Κινωνικών Ερευνών, 131 Α', 2010, 33-70 Γεώργις Παστιάδης* ΑΣΤΙΚΑ ΚΑΙ ΑΓΡΤΙΚΑ ΚΕΝΤΡΑ: ΔΙΕΡΕΥΝΩΝΤΑΙ ΜΕ ΠΣΤΙΚΕΣ ΜΕΘΔΥΣ ΤΗ ΝΕΑ ΚΙΝΩΝΙΚΗ ΑΤΖΕΝΤΑ, ΥΠ ΤΗΝ ΕΠΙΔΡΑΣΗ ΤΥ ΕΠΙΠΕΔΥ ΕΚΠΑΙΔΕΥΣΗΣ ΠΕΡΙΛΗΨΗ Τ

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 2: Ανάλυση Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 2: Ανάλυση Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ

3.2 ΑΘΡΟΙΣΜΑ ΓΩΝΙΩΝ ΤΡΙΓΩΝΟΥ 3. ΘΡΟΙΣΜ ΩΝΙΩΝ ΤΡΙΩΝΟΥ ΙΙΟΤΗΤΕΣ ΙΣΟΣΚΕΛΟΥΣ ΤΡΙΩΝΟΥ ΘΕΩΡΙ. Άθρισµα γωνιών τριγώνυ Σε πιδήπτε τρίγων τ άθρισµα των γωνιών τυ είναι ίσ µε 80. Ιδιότητες ισσκελύς τριγώνυ Η ευθεία της διαµέσυ πυ αντιστιχεί

Διαβάστε περισσότερα

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2

( ) 11.4 11.7. Μέτρηση κύκλου. α 180. Μήκος τόξου µ ο : Μήκος τόξου α rad : l = αr. Σχέση µοιρών ακτινίων : Εµβαδόν κυκλικού δίσκου : Ε = πr 2 1 11. 11.7 Μέτρηση κύκλυ ΘΩΡΙ Μήκς τόξυ µ : µ 180 Μήκς τόξυ α rad : αr Σχέση µιρών ακτινίων : α π µ 180 µβαδόν κυκλικύ δίσκυ : ( ) µβαδόν κυκλικύ τµέα µ : µ µβαδόν κυκλικύ τµέα α rad : ( ) 1 αr µβαδόν

Διαβάστε περισσότερα

Π.Μ.Σ Ηλεκτρονική Μάθηση

Π.Μ.Σ Ηλεκτρονική Μάθηση Πανεπιστήμι Πειραιώς Διδακτική της Τεχνλγίας και Ψηφιακών Συστημάτων Π.Μ.Σ Ηλεκτρνική Μάθηση Μεταπτυχιακή Διπλωματική Εργασία Αξιλόγηση Πργραμμάτων Δια Βίυ Εκπαίδευσης και Επιμόρφωσης Ενηλίκων από Απόσταση

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ

ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ Ο ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ ΚΑΙ Η ΜΑΓΙΚΗ ΠΕΤΡΑ τυ Prem Rawat ΗΤΑΝ ΚΑΠΟΤΕ ΕΝΑΣ ΕΠΙΧΕΙΡΗΜΑΤΙΑΣ πυ είχε μια μικρή επιχείρηση. Όπως ήταν φυσικό, ως, επιθυμύσε να απκτήσει όσ τ δυνατόν περισσότερα χρήματα. Μια μέρα, κάπις

Διαβάστε περισσότερα

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ-ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ ΕΡΓΑΣΤΗΡΙΟ PASW 18 Δρ. Κουνετάς Η Κωνσταντίνος Ακαδημαϊκό Έτος 2011 2012 ΕΠΙΧ

Διαβάστε περισσότερα

Στατιστική Ι. Ανάλυση Παλινδρόμησης

Στατιστική Ι. Ανάλυση Παλινδρόμησης Στατιστική Ι Ανάλυση Παλινδρόμησης Ανάλυση παλινδρόμησης Η πρόβλεψη πωλήσεων, εσόδων, κόστους, παραγωγής, κτλ. είναι η βάση του επιχειρηματικού σχεδιασμού. Η ανάλυση παλινδρόμησης και συσχέτισης είναι

Διαβάστε περισσότερα

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt

Εάν η εξωτερική περιοδική δύναμη είναι της μορφής F δ =F max ημω δ t, τότε η εφαρμογή του 2 ου Νόμου του Νεύτωνα δίνει: dx b dt Μία ιστρία στην ΕΞΝΓΚΣΜΕΝΗ ΤΛΝΤΩΣΗ Κατά την περσινή σχλική χρνιά, στα πλαίσια της Π.Δ.Σ. πρσπάησα, αντί να λύσ ασκήσεις πυ μπρεί να υπάρχυν σε πλλά ιαφρετικά εξσχλικά βιβλία, να εάν ι μαητές μυ έχυν πραγματικά

Διαβάστε περισσότερα

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

γραπτή εξέταση στο µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική περίδς από 6/0/ έως 06// γραπτή εξέταση στ µάθηµα ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείυ Τµήµα: Βαθµός: Ονµατεπώνυµ: Καθηγητές: ΑΤΡΕΙ ΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Στις παρακάτω ερωτήσεις να γράψετε

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή

ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή 2013 [Πρόλογος] ΟΙΚΟΝΟΜΕΤΡΙΑ Εισαγωγή Μάθημα Εαρινού Εξάμηνου 2012-2013 Μ.Επ. ΟΕ0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης Μαρί-Νοέλ Ντυκέν, Επ. Καθηγητρία

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2

ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο 2 013 [Κεφάλαιο ] ΟΙΚΟΝΟΜΕΤΡΙΑ Κεφάλαιο Μάθημα Εαρινού Εξάμηνου 01-013 M.E. OE0300 Πανεπιστήμιο Θεσσαλίας Τμήμα Μηχανικών Χωροταξίας, Πολεοδομίας και Περιφερειακής Ανάπτυξης [Οικονομετρία 01-013] Μαρί-Νοέλ

Διαβάστε περισσότερα

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης.

Oδεύοντα κύματα είναι διαταραχές (που μεταφέρουν ενέργεια και ορμή) που διαδίδονται στον ανοικτό χώρο με ορισμένη ταχύτητα διάδοσης. Kεφ. 4 OΔEYONTA KYMATA (pges -7 (Trveling Wves Eξετάσυμε ανικτά συστήματα, δηλ. συστήματα χωρίς σύνρα. Oδεύντα κύματα είναι διαταραχές (πυ μεταφέρυν ενέργεια και ρμή πυ διαδίδνται στν ανικτό χώρ με ρισμένη

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης Kozani GR 50100 Ποσοτικές Μέθοδοι Τεχνολογικό Εκπαιδευτικό Ίδρυμα Δυτικής Μακεδονίας Western Macedonia University of Applied Sciences Κοίλα Κοζάνης 50100 Kozani GR 50100 Απλή Παλινδρόμηση Η διερεύνηση του τρόπου συμπεριφοράς

Διαβάστε περισσότερα

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.)

ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) ΗΜΙΤΟΝΙΚΗ ΜΟΝΙΜΗ ΚΑΤΑΣΤΑΣΗ (Η.Μ.Κ.) Ένα κύκλωµα βρίσκεται στην Ηµιτνική Μόνιµη Κατάσταση (Η.Μ.Κ.) όταν : α) Όλες ι πηγές τυ κυκλώµατς είναι ηµιτνειδείς συναρτήσεις τυ χρόνυ Α sin (ωt+φ) ή Α cs (ωt+φ) β)

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ Καθ Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 5 Έστω για την σύγκριση δειγμάτων συλλέγουμε παρατηρήσεις Υ =,,, από

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 4: Στατιστική Ι (4/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.

ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA. ΗΛΕΚΤΡΙΚΑ KΥKΛΩMATA.. HΛΕΚΤΡΙΚΗ ΑΓΩΓΙΜΟΤΗΣ Μεταλλικί αγωγί: τα ελεύθερα φρτία είναι τα ηλεκτρόνια σθένυς τυ µετάλλυ. Πυκνότης ρεύµατς (τ ρεύµα πυ διαπερνά µια κάθετη διατµή τυ αγωγύ ανά µνάδα επιφανείας

Διαβάστε περισσότερα

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT

Τεχνικό εγχειρίδιο. Χαλύβδινος λέβητας βιομάζας σειρά BMT THERM LEV Τεχνικό εγχειρίδι Χαλύβδινς λέβητας βιμάζας σειρά BMT ΨΣας ευχαριστύμε για την επιστσύνη πυ δείχνετε στα πριόντα μας. ΨΓια την απτελεσματική χρήση τυ λέβητα βιμάζας σειράς ΒΜΤ σας συνιστύμε να

Διαβάστε περισσότερα

2 ο υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ. Δυνατότητες της Τεχνολογίας και του Αυτοματισμού στην ανατολή του 21ου α ιώ να

2 ο υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ. Δυνατότητες της Τεχνολογίας και του Αυτοματισμού στην ανατολή του 21ου α ιώ να Π Ρ Α Κ Τ Ι Κ Α 2 υ ΣΥΝΕΔΡΙΟΥ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΥΤΟΜ ΑΤΙΣΜ ΟΥ Δυνατότητες της Τεχνλγίας και τυ Αυτματισμύ στην ανατλή τυ 21υ α ιώ να 2 & 3 Ο Κ Τ Ω Β Ρ Ι Ο Υ 1 9 9 8 ΘΕΣΣΑΛΟΝΙΚΗ ΣΥΝΕΔΡΙΑΚΟ ΚΕΝΤΡΟ Η Ε I.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ

EΞΑΝΑΓΚΑΣΜΕΝΕΣ TAΛANTΩΣEIΣ Kεφ. 3 EΞΑΝΑΓΚΑΣΕΝΕΣ TAΛANTΩΣEIΣ Θα εξετάσυμε τη περίπτση εφαρμγής σ ένα σύστημα μιάς δεδμένης εξτερικής δύναμης η πία να εξαρτάται από τ χρόν (δηλ. τ σύστημα υπβάλλεται σε εξτερική διέγερση. η περίπτση:

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 6: Πολλαπλό Γραμμικό Υπόδειγμα Παλινδρόμησης Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη

για το Τμήμα Πληροφορικής με Εφαρμογές στη Βιοιατρική, του Πανεπιστημίου Στερεάς Ελλάδας ίϊρμίϊμιη Μελέτη Σκπιμότητας «Δημιυργίας βάσης δεδμένων για την παρακλύθηση της σταδιδρμίας των απφίτων τυ τμήματς και τη συνεχή χαρτγράφηση της αγράς εργασίας» για τ Τμήμα Πληρφρικής με Εφαρμγές στη Βιιατρική,

Διαβάστε περισσότερα

Πολλαπλή παλινδρόμηση (Multivariate regression)

Πολλαπλή παλινδρόμηση (Multivariate regression) ΜΑΘΗΜΑ 3 ο 1 Πολλαπλή παλινδρόμηση (Multivariate regression) Η συμπεριφορά των περισσότερων οικονομικών μεταβλητών είναι συνάρτηση όχι μιας αλλά πολλών μεταβλητών Υ = f ( X 1, X 2,... X n ) δηλαδή η Υ

Διαβάστε περισσότερα

Είδη Μεταβλητών. κλίµακα µέτρησης

Είδη Μεταβλητών. κλίµακα µέτρησης ΠΕΡΙΕΧΟΜΕΝΑ Κεφάλαιο 1 Εισαγωγικές Έννοιες 19 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Η Μεταβλητότητα Η Στατιστική Ανάλυση Η Στατιστική και οι Εφαρµοσµένες Επιστήµες Στατιστικός Πληθυσµός και Δείγµα Το στατιστικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 00 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΘΕΜΑ : Θεωρύμε τυς μιγαδικύς αριθμύς α) z(t) + z(t) = z(t)

Διαβάστε περισσότερα

«Νανοκρυσταλλικό πυρίτιο για εφαρμογές σε νανοηλεκτρονικές διατάξεις μνήμης»

«Νανοκρυσταλλικό πυρίτιο για εφαρμογές σε νανοηλεκτρονικές διατάξεις μνήμης» ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΣΤΕΡΕΑΣ ΚΑΤΑΣΤΑΣΗΣ Διδακτρική διατριβή της Αθηνάς Σαλωνίδυ «Νανκρυσταλλικό πυρίτι για εφαρμγές σε νανηλεκτρνικές

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα

ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ. Έννοιες που πρέπει να γνωρίζετε: Α θερμοδυναμικός νόμος, ενθαλπία, θερμοχωρητικότητα ΘΕΡΜΟΧΗΜΕΙΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΘΕΡΜΟΤΗΤΑΣ ΑΝΤΙΔΡΑΣΕΩΣ Έννιες πυ πρέπει να γνωρίζετε: Α θερμδυναμικός νόμς ενθαλπία θερμχωρητικότητα Θέμα ασκήσεως. Πρσδιρισμός θερμχωρητικότητας θερμιδμέτρυ. Πρσδιρισμός θερμότητς

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΜΒΟΛΟΦΟΡΩΝ ΜΗΧΑΝΩΝ Ι ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 13 Διάγνωση Δυσλειτυργιών και βλαβών σύγχρνυ

Διαβάστε περισσότερα

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο

Ορισμός: Μια συνάρτηση f/α ονομάζεται συνεχής στο σημείο x ο 0 ΜΑΘΗΜΑ.4. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ.4.. Συνέχει συνάρτησης στ o Ορισμός: Μι συνάρτηση f/α νμάζετι συνεχής στ σημεί Α, ότν υπάρχει τ lim f () ι είνι: lim f() = f( ) ΙΣΟΔΥΝΑΜΟΣ ΟΡΙΣΜΟΣ Ότν υπάρχει δ > 0 ώστε

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 5 : Δίνετι η πργωγίσιμη συνάρτηση, με πεδί ρισμύ κι σύνλ τιμών

Διαβάστε περισσότερα

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου

1. Πότε µία γωνία λέγεται εγγεγραµµένη; Απάντηση Όταν η κορυφή της είναι σηµείο του κύκλου και οι πλευρές της είναι τέµνουσες του κύκλου 6. 6.4 σκήσεις σχλικύ βιβλίυ σελίδας 9 30 Ερωτήσεις Κατανόησης. Πότε µία γωνία λέγεται εγγεγραµµένη; πάντηση Όταν η κρυφή της είναι σηµεί τυ κύκλυ και ι πλευρές της είναι τέµνυσες τυ κύκλυ. ν φ και ω είναι

Διαβάστε περισσότερα

Μελέτη Σκοπιμότητας «Τεχνική υποστήριξη και δικτυακές υπηρεσίες»

Μελέτη Σκοπιμότητας «Τεχνική υποστήριξη και δικτυακές υπηρεσίες» ΕΛΛΑΔΑ 1 2 0 0 8 /fvutnvih παντύ Ανάπτυξη yta άλυς. ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ GPHIKEYMATQH ΕίΔΙΚΗ ΥΠΗΡΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΣ ΕΠΕΑΕΚ EYPDRAÏKHBi& H ΣΥΙΚΡΗΗΑΤ8Α0ΤΗΣΗ ΕΥΡΩΠΑΪΚΟ ΚΟΙΗΠΝΙΚΟ TAMÊIÛ ΕΥΡΟΠΑΪΚΟ ΤΑΜΕΙΟ

Διαβάστε περισσότερα

βαθμοημέρες ψύξης και θέρμανσης για 27 πόλεις (τρείς

βαθμοημέρες ψύξης και θέρμανσης για 27 πόλεις (τρείς Πρόλγς Σκπός της συγκεκριμένης εργασίας είναι υπλγισμός των βαθμημερών ψύξης και θέρμανσης με στόχ τη δημιυργία κατάλληλης βάσης δεδμένων, έτσι ώστε να απτιμηθύν ι ενεργειακές ανάγκες των κτιρίων στν ελληνικό

Διαβάστε περισσότερα

Β Λυκείου 29 Απριλίου 2001

Β Λυκείου 29 Απριλίου 2001 Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ Πανεπιστήμι Αθηνών Εργαστήρι Φυσικών Επιστημών, Τεχνλγίας, Περιβάλλντς Θεωρητικό Μέρς ΘΕΜΑ Β Λυκείυ 9 Απριλίυ Μια αγώγιμη μεταλλική σφαίρα ακτίνας

Διαβάστε περισσότερα

Μ Ε Λ Ε Τ Η ΑΣΦΑΛΙΣΤΡΑ ΑΥΤΟΚΙΝΗΤΩΝ ΟΧΗΜΑΤΩΝ ΚΑΙ ΜΗΧΑΝΗΜΑΤΩΝ ΤΟΥ ΔΗΜΟΥ ΛΕΒΑΔΕΩΝ

Μ Ε Λ Ε Τ Η ΑΣΦΑΛΙΣΤΡΑ ΑΥΤΟΚΙΝΗΤΩΝ ΟΧΗΜΑΤΩΝ ΚΑΙ ΜΗΧΑΝΗΜΑΤΩΝ ΤΟΥ ΔΗΜΟΥ ΛΕΒΑΔΕΩΝ Δ/ΝΣΗ ΚΑΘΑΡΙΟΤΗΤΑΣ ΑΡ.ΜΕΛΕΤΗΣ: 114/2015 Μ Ε Λ Ε Τ Η ΑΣΦΑΛΙΣΤΡΑ ΑΥΤΟΚΙΝΗΤΩΝ ΟΧΗΜΑΤΩΝ ΚΑΙ ΜΗΧΑΝΗΜΑΤΩΝ ΤΟΥ ΔΗΜΟΥ ΛΕΒΑΔΕΩΝ ΣΥΝΟΛΙΚΟΣ ΠΡΟΫΠΟΛΟΓΙΣΜΟΣ: 25.500,00 Ευρώ Περιεχόμενα: α)τεχνική Έκθεση β)πρϋπλγισμός

Διαβάστε περισσότερα

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις

ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ. «Δημιουργία ολοκληρωμένων αρχείων. μετεωρολογικών δεδομένων από μετρήσεις ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΉ ΕΡΓΑΣΙΑ «Δημιυργία λκληρωμένων αρχείων μετεωρλγικών δεδμένων από μετρήσεις Συνπτικών Μετεωρλγικών Σταθμών στν ελληνικό χώρ με τη χρήση Τεχνητών

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9

ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8. 1.1 Πρόλογος...8. 1.2 Η έννοια και η σημασία της χρηματοοικονομικής ανάλυσης... 9 Περιεχόμενα ΚΕΦΑΛΑΙΟ 1: ΕΙΣΑΓΩΓΗ... 8 1.1 Πρόλγς...8 1.2 Η έννια και η σημασία της χρηματικνμικής ανάλυσης... 9 1.2.1 Ο ρόλς τυ Χρηματικνμικύ Υπεύθυνυ... 11 ΚΕΦΑΛΑΙΟ 2: ΤΟ ΕΛΛΗΝΙΚΟ ΣΥΣΤΗΜΑ ΥΓΕΙΑΣ ΚΑΙ Ο

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. Απλές περιπτώσεις Εφαρμόζουμε τις ιδιότητες των ορίων. Ουσιαστικά κάνουμε αντικατάσταση. lim 3x 4x + 8 = 3 1 4 1 + 8 = 3+ 4 + 8 = 9 ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ υ ΜΑΘΗΜΑΤΟΣ. Να βρείτε τα αρακάτω όρια: α. ( 4 8) + 6 + 8 0 Αλές εριτώσεις Εφαρμόζυμε τις ιδιότητες των ρίων. Ουσιαστικά κάνυμε αντικατάσταση. α. 4 + 8 4 + 8 + 4 + 8 9 8 0 8 4 0 0 + 6

Διαβάστε περισσότερα

Συνολοκλήρωση και VAR υποδείγματα

Συνολοκλήρωση και VAR υποδείγματα ΜΑΘΗΜΑ ο Συνολοκλήρωση και VAR υποδείγματα Ησχέσησ ένα στατικό υπόδειγμα συνολοκλήρωσης και σ ένα υπόδειγμα διόρθωσης λαθών μπορεί να μελετηθεί καλύτερα όταν χρησιμοποιούμε τις ιδιότητες των αυτοπαλίνδρομων

Διαβάστε περισσότερα

Στατιστική Συμπερασματολογία

Στατιστική Συμπερασματολογία 4. Εκτιμητική Στατιστική Συμπερασματολογία εκτιμήσεις των αγνώστων παραμέτρων μιας γνωστής από άποψη είδους κατανομής έλεγχο των υποθέσεων που γίνονται σε σχέση με τις παραμέτρους μιας κατανομής και σε

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ

ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑ ΟΙΚΟΝΟΜΕΤΡΙΑΣ ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Συντελεστής συσχέτισης (εκτιμητής Person: r, Y ( ( Y Y xy ( ( Y Y x y, όπου r, Y (ισχυρή θετική γραμμική συσχέτιση όταν, ισχυρή αρνητική

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ

ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ ιαφάνειες για το µάθηµα Information Management ΑθανάσιοςΝ. Σταµούλης 1 ΠΗΓΗ Κονδύλης Ε. (1999) Στατιστικές τεχνικές διοίκησης επιχειρήσεων, Interbooks 2 1 Γραµµική παλινδρόµηση Είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Γ Λυκείυ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Α κ Θέµα Στις ερωτήσεις πυ ακλυθύν επιλέξτε τη σωστή απάντηση:. Σώµα Σ µάζας κινείται µε ταχύτητα υ σε λεί δάπεδ. Κάπια στιγµή συγκρύεται

Διαβάστε περισσότερα

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης

Οικονομετρία. Εξειδίκευση του υποδείγματος. Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής. Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Οικονομετρία Εξειδίκευση του υποδείγματος Προσθήκη άσχετης μεταβλητής και παράλειψη σχετικής Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι Γνώση και κατανόηση

Διαβάστε περισσότερα

Πολλαπλές λύσεις Δημιουργικότητα σε Προβλήματα Μαθηματικών

Πολλαπλές λύσεις Δημιουργικότητα σε Προβλήματα Μαθηματικών ΠΡΥ025: Διακτική Μαθηματικών Ι Ερασία Πλλαπλές λύσεις Δημιυρικότητα σε Πρβλήματα Μαθηματικών Διάσκων: Αθανάσις αάτσης Εκπαιευτικός: Άωνις Κυριάκυ, ΑΤ 802638 ΠΡΟΫΠΗΡΕΣΙΑΚΗ ΚΑΤΑΡΤΙΣΗ 2008 2009 Περιεχόμενα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 12: ΜΙΚΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ευστάθεια κοντά στη θέση ισορροπίας

ΚΕΦΑΛΑΙΟ 12: ΜΙΚΡΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Ευστάθεια κοντά στη θέση ισορροπίας ΚΕΦΛΙΟ : ΜΙΚΡΕΣ ΤΛΝΤΩΣΕΙΣ. Ευστάθεια κντά στη θέση ισρρπίας Θερύµε ένα συντηρητικό σύστηµα µε -βαθµύς ελευθερίας, τ πί περιγράφεται από τις γενικευµένες συντεταγµένες,,. ν τ σύστηµα βρίσκεται σε µια θέση

Διαβάστε περισσότερα

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής

Οικονομετρία Ι. Ενότητα 8: Κανονικότητα. Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Οικονομετρία Ι Ενότητα 8: Κανονικότητα Δρ. Χαϊδώ Δριτσάκη Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 2015 Πληθυσμός: Εισαγωγή Ονομάζεται το σύνολο των χαρακτηριστικών που

Διαβάστε περισσότερα

ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ

ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ P αιώνα 3 Ο ΣΥΝΕ ΡΙΟ ΣΤΗ ΣΥΡΟ-ΤΠΕ ΣΤΗΝ ΕΚΠΑΙ ΕΥΣΗ 695 ΠΑΡΑ ΟΣΙΑΚΑ ΜΟΥΣΙΚΑ ΟΡΓΑΝΑ ΑΠΟ ΟΛΟ ΤΟ ΚΟΣΜΟ. ΕΝΑ ΜΟΥΣΙΚΟ ΤΑΞΙ Ι ΣΤΙΣ 5 ΗΠΕΙΡΟΥΣ ΜΕ ΜΕΡΙΚΑ ΚΛΙΚ. ΙΑΘΕΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΤΗ ΧΡΗΣΗ Η/Υ Ανδρεάκυ Κωνσταντίνα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής.

ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL. , και οι γραμμές συμβολίζονται με 1,2,3, Μπορούμε να αρχίσουμε εισάγοντας ορισμένα στοιχεία ως εξής. ΕΙΣΑΓΩΓΗ ΣΤΟ EXCEL Το πακέτο Excel είναι ένα πρόγραμμα φύλλου εργασίας (spreadsheet) με το οποίο μπορούμε να κάνουμε υπολογισμούς και διαγράμματα που είναι χρήσιμοι στα οικονομικά. Στο Excel το φύλλο εργασίας

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)

ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 2: Παλινδρόμηση. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis)

Μέρος V. Ανάλυση Παλινδρόμηση (Regression Analysis) Μέρος V. Ανάλυση Παλινδρόμηση (Regresso Aalss) Βασικές έννοιες Απλή Γραμμική Παλινδρόμηση Πολλαπλή Παλινδρόμηση Εφαρμοσμένη Στατιστική Μέρος 5 ο - Κ. Μπλέκας () Βασικές έννοιες Έστω τ.μ. Χ,Υ όπου υπάρχει

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ

ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ ΟΙΚΟΝΟΜΕΤΡΙΑ Ι ΦΥΛΛΑΔΙΟ Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι Πανεπιστημίου Πειραιώς) Τηλ.: 4..97,,, Fax : 4..634 URL : www.vtal.gr emal: f@vtal.gr Παράρτημα Πανεπιστημίου: Δεληγιώργη 6 Α (έναντι

Διαβάστε περισσότερα

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι

ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ Ι ΑΓΟΡΕΣ ΧΡΗΜΑΤΟΣ ΚΑΙ ΚΕΦΑΛΑΙΟΥ 1 Σ. ΘΩΜΑΔΑΚΗΣ Α. ΒΑΣΙΛΑ ΕΞΕΤΑΣΤΙΚΗ ΙΑΝΟΥΑΡΙΟΥ 2010 19 ΙΑΝΟΥΑΡΙΟΥ 2010 ΘΕΜΑ 1 Σε μία κεφαλαιαγρά τ επιτόκι ακίνδυνυ δανεισμύ είναι 3% σε ετήσια

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Ενότητα: ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ. Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Ενότητα: ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ. Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλς Μαθήματς: Γενική Φυσική (Ηλεκτρμαγνητισμός) Ενότητα: ΜΑΓΝΗΤΚΟ ΠΕΔΟ ΗΛΕΚΤΡΚΟΥ ΡΕΥΜΑΤΟΣ Διδάσκων: Επίκυρς Καθηγητής Δημήτρις Βλάχς Τμήμα: Μηχανικών Ηλεκτρνικών Υπλγιστών και Πληρφρικής Κεφάλαι 9 1

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος

Τίτλος Μαθήματος: Γενική Φυσική (Ηλεκτρομαγνητισμός) Διδάσκων: Επίκουρος Καθηγητής Δημήτριος Βλάχος Τίτλς Μαθήματς: Γενική Φυσική (Ηλεκτρμαγνητισμός) νότητα: ΝΟΜΟΣ ΤΟΥ GAUSS Διδάσκων: πίκυρς Καθηγητής Τμήμα: Μηχανικών Ηλεκτρνικών Υπλγιστών και Πληρφρικής ΚΦΑΛΑΙΟ 3 Ο ΝΟΜΟΣ ΤΟΥ GAUSS 3.1 Ηλεκτρική ρή Όπως

Διαβάστε περισσότερα

Ι Α Γ Ω Ν Ι Σ Μ Α ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 04 Ιαν 2011 Επιµέλεια: Μπεντρός Χαλατζιάν

Ι Α Γ Ω Ν Ι Σ Μ Α ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. 04 Ιαν 2011 Επιµέλεια: Μπεντρός Χαλατζιάν Ι Α Γ Ω Ν Ι Σ Μ Α ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 04 Ιαν 2011 Επιµέλεια: Μπεντρός Χαλατζιάν Θ Ε Μ Α 1 Α. Για τις ερωτήσεις A1 A3 να γράψετε στην κόλλα σας τν αριθµό της ερώτησης και δίπλα τ γράµµα

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα