ZA RAZLIČITE RASPONE KONSTRUKCIJE

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ZA RAZLIČITE RASPONE KONSTRUKCIJE"

Transcript

1 INSTITUT ZA GRAĐEVINARSTVO, GRAĐEVINSKE MATERIJALE I NEMETALE d.o.o. Tuzla, Kojšino 29, telefon: +387 (0) ; ; FAX: +387 (0) web adresa: STATIČKI PRORAČUN ZA RAZLIČITE RASPONE KONSTRUKCIJE MONTAŽNOG BIJELOG STROPA, PROIZVOD FIRME XELLA BH d.o.o. TUZLA DIREKTOR INSTITUTA GIT prof.dr.sci. Ahmet Imamović, dipl.inž.građ P-726 Strana 1 od 86

2 NARUČILAC ZADATKA: XELLA BH d.o.o. Tuzla PREDMET ZADATKA: Statička proračun za različite raspone konstrukcije montažnog bijelog stropa, proizvod firme XELLA BH d.o.o. Tuzla IZVRŠILAC ZADATKA: NARUDŽBENICA BROJ: Institut za građevinarstvo, građevinske materijale i nemetale d.o.o. Tuzla od godine NOSILAC ZADATKA: prof.dr.sci. Ahmet Imamović, dipl.inž.građ. S A R A D N I C I: Emina Hadžić, dipl.inž.građ. TEHNIČKA OBRADA: Emina Hadžić, dipl.inž.građ. Sena Softić, lektor INV. BROJ: P-726 BROJ STRANA: 86 DATUM ZAVRŠETKA: godine NALAZI SE U: XELLA BH d.o.o. Tuzla Institut za građevinarstvo, građevinske materijale i nemetale d.o.o. Tuzla P-726 Strana 2 od 86

3 S A D R Ž A J Strana OPŠTA DOKUMENTACIJA PROJEKTANTA Rešenje o registraciji djelatnosti i poreskoj registraciji Instituta GIT d.o.o. Tuzla Kopija uvjerenja o položenom stručnom ispitu za odgovornog projektanta...14 STATIČKI PRORAČUN 1. TEHNIČKI OPIS PROJEKTOVANJE BIJELOG STROPA I DETALJI PRIMJENE IZVOĐENJE KONSTRUKCIJE BIJELI STROP STATIČKI PRORAČUN Proračun nosivosti gredice D1 - raspon l = 3,5 m Proračun nosivosti gredice D2 - raspon l = 4,0 m Proračun nosivosti gredice D3 - raspon l = 4,5 m Proračun nosivosti gredice D4 - raspon l = 5,6 m Proračun nosivosti gredice D5 - raspon l = 6,0 m Proračun nosivosti gredice D6 - raspon l = 6,60 m Staticki proracun - gredice D1, D2, D3 - sistem roštilja Staticki proracun - gredice D4, D5, D6 - sistem roštilja PRILOG: Poprečni presjeci gredica P-726 Strana 3 od 86

4 OPŠTA DOKUMENTACIJA P-726 Strana 4 od 86

5 P-726 Strana 5 od 86

6 P-726 Strana 6 od 86

7 P-726 Strana 7 od 86

8 P-726 Strana 8 od 86

9 P-726 Strana 9 od 86

10 P-726 Strana 10 od 86

11 P-726 Strana 11 od 86

12 P-726 Strana 12 od 86

13 P-726 Strana 13 od 86

14 P-726 Strana 14 od 86

15 STATIČKI PRORAČUN ZA RAZLIČITE RASPONE KONSTRUKCIJE MONTAŽNOG BIJELOG STROPA P-726 Strana 15 od 86

16 1. TEHNIČKI OPIS Bijeli strop, proizvod firme Xella BH d.o.o. Tuzla se izvodi od armiranobetonskih gredica, poprečnih rebara, stropnog bloka i tankoslojnog maltera. Gredice se postavljaju u pravcu kraćih raspona. Njihov puni osni razmak iznosi 68 cm i uvjetovan je dimenzijama stropnog bloka. Poprečna rebra se postavljaju nakon postavljanja gredica i stropnog bloka. Razmak poprečnih rebara prilagođava se cijelom broju blokova, uslovima nosivosti i potresnim zonama. Gredice su proizvedene tako da se strop gradi bez ikakve oplate, bez ili sa minimalnim podupiranjem. Nakon postavljanja gredica, ležajnica ispune i armature poprečnih rebara, vrši se popunjavanje mikro betonom, poslije čega se cijela površina stropa zalije tankoslojnim YTONG malterom, kako bi se popunile sljubnice među blokovima. Strop je djelimično nosiv istog trena po završetku monolitizacije, a cjelokupna nosivost se ostvaruje nakon sedam dana. Podupiranje gredica vrši se samo u sredini raspona, a potpore se mogu ukloniti 24 sata nakon monolitizacije. Na osnovu projektnog zadatka izvršen je proračun gredica bijelog stropa u ravnim pločastim konstrukcijama namijenjenim za međuspratne konstrukcije. Statičkim proračunom, urađenim u programskom paketu Tower izvršena je kontrola sljedećih armiranobetonskih gredica: - gredica D1,visina stropa h = 15 cm, raspon l = 3,50 m, - gredica D2,visina stropa h = 15 cm, raspon l = 4,00 m, - gredica D3,visina stropa h = 15 cm, raspon l = 4,50 m, - gredica D4,visina stropa h = 20 cm, raspon l = 5,60 m, - gredica D5,visina stropa h = 20 cm, raspon l = 6,00 m, - gredica D6,visina stropa h = 20 cm, raspon l = 6,60 m. Proračun obuhvata kontrolu gredica D1-D6 za granična stanja: - granično stanje nosivosti (proračun potrebne armature), - granično stanje upotrebljivosti (kontrola progiba i prslina). Opterećenja za koja su rađene kontrole su opterećenja koja se mogu javiti na međuspratnim konstrukcijama: - sopstvena težina stropa - stalno opterećenje poda i plafona - pregradni zidovi (položaj zidova nije definisan, pa se za zidove čija je težina manja od 2,5 kn/m taj uticaj može uzeti kao ravnomjerno podijeljeno opterećenje sa najmanjom nominalnom vrijednošću od 0,5 kn/m 2 ), - korisno opterećenje stropnih konstrukcija sa najmanjom nominalnom vrijednošću ravnomjerno podijeljenog opterećenja od p = 1,5 kn/m 2 (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe). Kontrola graničnog stanja nosivosti urađena je na modelu sa idealnim uslovima, u kojem su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja na nosivu konstrukciju (statički sistem proste grede), dok je kontrola graničnog stanja upotrebljivosti urađena još i na modelu sa stvarnim uslovima u kojima se zbog veze sa armiranobetonskim vijencem, gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. Ovo uklještenje daje veću nosivost od projektovane nosivosti na modelu u idealnim uslovima, što se može zanemariti jer je na strani sigurnosti. Međutim, značajno smanjuje progibe na razini radnog opterećenja. Armiranobetonske gredice D1-D3 predviđene su za izvođenje pločastih konstrukcija debljine d=15 cm, maksimalnog raspona l = 4,50 m, za navedena opterećenja od betona klase C25/ P-726 Strana 16 od 86

17 Montažni dio gredice čini donji pojas gredice dimenzija 9x3 cm, sa ugrađenim rešetkastim nosačima RAN, proizvedenim iz čelika klase Bst-500. Dodatna armatura gredica je takođe klase Bst-500. Armiranobetonske gredice D4-D6 su predviđene za izvođenje pločastih konstrukcija debljine d=20 cm, maksimalnog raspona l = 6,60 m, za navedena opterećenja od betona klase C25/30. Montažni dio gredice čini donji pojas gredice dimenzija 9x3 cm, sa ugrađenim rešetkastim nosačima RAN, proizvedenim iz čelika klase Bst-500. Dodatna armatura gredica je takođe klase Bst-500. Pregled dužina stropnih gredica i pripadajuće armature za pojedine gredice: Oznaka Visina(cm) Dužina stropne gredice(m) donja Armatura gornja D1 15,0 do 3,50 m D2 15,0 do 4,00m 1xØ8 1xØ8 D3 15,0 do 4,50 m 1xØ12 1xØ10 D4 20,0 do 5,60 m 3xØ8 2xØ8 D5 20,0 do 6,00m 3xØ10 2xØ10 D6 20,0 do 6,60 m 3xØ12 2xØ12 2. PROJEKTOVANJE BIJELOG STROPA I DETALJI PRIMJENE Puni osni razmak gredica bijelog stropa iznosi 68 cm, a nominalna debljina konstrukcije 15 cm. Blokove bijelog stropa moguće je rezati tako da se oni na svojim krajevima mogu prilagoditi bilo kojoj geometriji i da najmanji osni razmak gredica može biti 10 cm. Ispod ove granice polje se puni još jednom gredicom ili se ispod priveže daska kao oplata proširenog stropa. Razmak i širina poprečnih rebara prilagođavaju se cijelom broju blokova, te uvjetima nosivosti i potresnim zonama. Osnovna širina poprečnih rebara je 4 cm, iako rebra mogu biti i šira: 8 cm, 12 cm i 16 cm, što je slučaj kad se želi formirati konkretan nosač s nosivošću većom od one za uobičajena rebra. Spajanje gredica je moguće iz dva smijera, pomoću U sidara u betonu ili pomoću zavarivanja ili jednog i drugog. Spajanje bijelog stropa sa ostalim konstrukcijama ili međusobno, zahvalno je raditi zavarivanjem slijedeći opšta načela konstruiranja i zavarivanja čeličnih konstrukcija. Na crtežima, koji se daju na narednim stranicama, prikazani su karakteristični detalji koji se pojavljuju uz konstrukciju bijelog stropa. Detalji I i II prikazuju vezu armiranobetonske gredice sa horizontalnim serklažom - glavnim vijencem i vezu poprečnog rebra sa horizontalnim serklažom - sporednim vijencem. Kod veze AB gredice sa glavnim vijencem važno je da sve šipke vijenca prolaze iza čvorova RAN nosača, a kod veze poprečnog rebra važno je pravilno sidrenje armature u sporedni vijenac. Površine betona i armature u presjeku vijenca moraju biti odabrane tako da budu same za sebe duktilne. Poprečno rebro prikazano u sklopu detalja I je važan konstruktivni element; ujednačava progibe i nosivost glavnih rebara kada su nejednako opterećeni gravitacijskim opterećenjem, povezuje konstrukciju u horizontalnu cjelinu i prenosi uzdužne i smičuće sile od opterećenja u ravni stropa. Proširenjem poprečnog rebra na 8 cm, 12 cm i 16 cm ono postaje racionalan nosač u poprečnom smijeru ploča. Zbog toga je potrebno da razmak poprečnih rebara ne bude velik P-726 Strana 17 od 86

18 Detalj III prikazuje puni kontinuitet nad osloncima, kada gredice nisu načinjene da kontinuirano prolaze preko oslonaca. Za samu nosivost, kontinuitet često i nije potreban, ali je koristan za umanjenje progiba i povećanje krutosti konstrukcije. Detalj IV prikazuje oslanjanje pregradnih zidova na armiranobetonsku gredicu bijelog stropa. Ispod pregradnaih zidova potrebno je predvidjeti udvojene gredice zbog zadovoljenja nosivosti i progiba. Detalj V prikazuje vezu armiranobetonske gredice bijelog stropa sa postojećom konstrukcijom u slučaju rekonstrukcije i dogradnje objekata. Varijanta sa upucavanjem bijelog stropa između postojećih zidova primjenljiva je kod kvalitetnih zidova, armiranobetonskih, betonskih ili kamenih. Tada se gredice mogu postaviti vješanjem o gornji čvor na već pripremljeno sidro. Umetanje konstrukcije među postojeće zidove uobičajeno se rješava ukopavanjem oslonaca gredice, pri čemu je potrebno osigurati vezivanje zida za gredice, što se obavlja širenjem oslonca u obliku lastina repa. Ukopavanje mora biti tako izvedeno da se gredica može unijeti, pa na jednom kraju rupa mora biti dublja. Nakon izrade otvora za oslonac gredice, cementnim mortom se precizno priprema ležište gredice. Nakon toga se uz sami zid formira vijenac prema crtežu. Na narednim stranicama se daju prethodno opisani detalji bijelog stropa (1-5) P-726 Strana 18 od 86

19 3. IZVOĐENJE KONSTRUKCIJE BIJELI STROP Prilikom montaže bijelog stropa, vrši se podupiranje i nadvišenje konstrukcije bijelog stropa, koji su u uskoj vezi. Podupiranje se vrši za raspone veće od 3,0 m i ono osigurava konstrukciji nosivost i stabilnost u fazi montiranja, a nadvišenje osigurava pravilan oblik nosive konstrukcije kako bi završna obrada s donje strane bila što jednostavnija. Skelu za podupiranje je najjednostavnije predvidjeti od cijevi promjera 48 mm, debljine 3 mm, čija količina zavisi od raspona: - za raspone do 3 m potrebno je cijevnu skelu postaviti samo na osloncima; - za raspone od 3-4 m potreban je jedan srednji podupirač, - za raspone od 4-6 m potrebna su dva srednja podupirača. Visina podupirača treba da bude takva da je ostvarljivo nadvišenje montažne konstrukcije. Prije montaže nosive cijevne skele, potrebno je da izvođač radova izvrši statičku provjeru skele, kako ne bi došlo do neželjenih deformacija. Poslije postavljanja nosive skele, pristupa se montiranju predgotovljenih elemenata sa potrebnom armaturom za gredice prema planu montaže. Nakon montiranja gredica, postavlja se ispuna od specijalno pripremljenih YTONG blokova. Po završetku montaže armiranobetonskih gredica i ispune od blokova, neophodno je provesti postupak oprašivanja komprimiranim zrakom. Nekoliko sati prije betoniranja gredica i poprečnih rebara, treba politi prostor za betoniranje gredica, nakon čega je moguće pristupiti betoniranju gredica betonom C 25/30. Voditi računa da se betoniranje ne odvija pri nepovoljnim meteorološkim uslovima (visoka temperatura, jak vjetar...). Beton koji se ugrađuje u armiranobetonske gredice i poprečna rebra, potrebno je da bude spravljen sa tri frakcije agregata, i to po racepturi koju uradi nadležna stručna institucija za ovu vrstu posla. Zbijanje betona se mora vršiti pervibratorima. Zbog uskok prostora, na glavu vibratora se može navariti armatura da može ulaziti po cijeloj visini gredica. Po završetku betoniranja gredice zaštititi vlažnim jutanim trakama koje treba da stoje sedam dana. Kada su gredice izbetonirane, zabranjeno je kretanje radnika i deponovanje bilo kakvih materijala s obzirom da su gredice malog presjka i da vibracije mogu ugroziti kvalitet betona prije očvršćavanja. Skela, tj. podupirači mogu se ukloniti 15 dana nakon očvršćavanja, dok se ne postigne 70% od projektovane čvrstoće betona. Poslije toga može se nanijeti izravnavajući cementni mort u sloju debljine do 1 cm. Daljnje radnje izvoditi prema projketu za izvođenje. Za svo vrijeme izrade projektovanog stropa, neophodan je stručni nadzor i potrebno je pribaviti uvjerenje o kvalitetu svih materijala ugrađenih u projektovani Ytong strop P-726 Strana 24 od 86

20 4. STATIČKI PRORAČUN 4.1. Proračun nosivosti gredice D1 - raspon l = 3,5 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,12 24 = 0,1440 kn/m' - armatura gredice... = 0,0258 kn/m' - udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1360kN/m' - stropni blok-ytong 530 kg... 0,625 0,15-2 0,02 0,03) 5,30 = 0,4905 kn/m' g = 0,86 kn/m'(g = 1,27 kn/m 2 ) Sopstvenu težinu gredice, program uzima automatski tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa, iznosi: 2. Stalno opterećenje poda i plafona: g 1 = 0,1360+0,4905 = 0,6265 kn/m' - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' 3. Korisno opterećenje-pregradni zidovi: g =1,80 kn/m 2 - pregradni zidovi... 0,50 kn/m 2 4. Korisno opterećenje stropa p 1 = 0,50 0,68 = 0,340 kn/m' p = 0,50 kn/m 2 (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p = 1,50 kn/m P-726 Strana 25 od 86

21 Statički proračun gredice - presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] P-726 Strana 26 od 86

22 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] P-726 Strana 27 od 86

23 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø7 Beton C25/30 Armatura Bst donja zona 2 3 4Ø7 9 Ø4/15 (m=2) [cm] Aa = 1,54 cm 2 - gornja zona 2 7 Aa = 0,77 cm P-726 Strana 28 od 86

24 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (3-6) P-726 Strana 29 od 86

25 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem, gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (3-6) P-726 Strana 30 od 86

26 4.2. Proračun nosivosti gredice D2 - raspon l = 4,0 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,12 24 = 0,1440 kn/m' - armatura gredice... = 0,0258 kn/m' - udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1360kN/m' - stropni blok-ytong 530 kg... 0,625 0,15-2 0,02 0,03) 5,30 = 0,4905 kn/m' g = 0,86 kn/m'(g = 1,27 kn/m 2 ) Sopstvenu težinu gredice, program uzima automatski, tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa iznosi: g 1 = 0,1360+0,4905 = 0,6265 kn/m' 2. Stalno opterećenje poda i plafona: - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' g =1,80 kn/m 2 3. Korisno opterećenje-pregradni zidovi: -pregradni zidovi... = 0,50 kn/m 2 4. Korisno opterećenje stropa p 1 = 0,50 0,68 = 0,340 kn/m' p = 0,50 kn/m 2 (stambeni prostori,boravci,hotelske sobe,bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p = 1,50 kn/m P-726 Strana 31 od 86

27 Statički proračun gredice-presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] P-726 Strana 32 od 86

28 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] P-726 Strana 33 od 86

29 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø7 1Ø8 Beton C25/30 Armatura Bst donja zona Aa =1,54 +0,50 = 2,04 cm 2 Ø4/15 (m=4) - gornja zona 2 3 1Ø8 4Ø7 9 [cm ] Aa = 0,77+0,50 = 1,27 cm P-726 Strana 34 od 86

30 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (2-5) P-726 Strana 35 od 86

31 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem, gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (2-5) P-726 Strana 36 od 86

32 4.3. Proračun nosivosti gredice D3 - raspon l = 4,5 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,12 24 = 0,1440 kn/m' - armatura gredice... = 0,0258 kn/m' -udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1360kN/m' -stropni blok-ytong 530 kg... 0,625 0,15-2 0,02 0,03) 5,30 = 0,4905 kn/m' g = 0,86 kn/m' (g = 1,27 kn/m 2 ) Sopstvenu težinu gredice program uzima automatski, tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa, iznosi: g 1 = 0,1360+0,4905 = 0,6265 kn/m' 2. Stalno opterećenje poda i plafona: - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' g =1,80 kn/m 2 3. Korisno opterećenje - pregradni zidovi: - pregradni zidovi... = 0,50 kn/m 2 p = 0,50 kn/m 2 p 1 = 0,50 0,68 = 0,340 kn/m' 4. Korisno opterećenje stropa (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p = 1,50 kn/m P-726 Strana 37 od 86

33 Statički proračun gredice - presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] P-726 Strana 38 od 86

34 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] P-726 Strana 39 od 86

35 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø7 1Ø10 Beton C25/30 Armatura Bst donja zona Aa = 1,54 +1,13 = 2,67 cm Ø12 4Ø7 9 Ø4/15 (m=4) [cm ] - gornja zona Aa = 0,77+0,79 = 1,56 cm P-726 Strana 40 od 86

36 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (1-4) P-726 Strana 41 od 86

37 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (1-4) P-726 Strana 42 od 86

38 4.4. Proračun nosivosti gredice D4 - raspon l = 5,6 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,17 24 = 0,2040 kn/m' - armatura gredice... = 0,0258 kn/m' - udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1813 kn/m' - stropni blok-ytong 530 kg... 0,625 0,20-2 0,02 0,03) 5,30 = 0,6561 kn/m' g = 1,13 kn/m'(g = 1,66 kn/m 2 ) Sopstvenu težinu gredice, program uzima automatski, tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa iznosi: 2. Stalno opterećenje poda i plafona: g 1 = 0,1813+0,6561 = 0,8374 kn/m' - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' 3. Korisno opterećenje - pregradni zidovi: g = 1,80 kn/m 2 - pregradni zidovi... = 0,50 kn/m 2 4. Korisno opterećenje stropa p 1 = 0,50 0,68 = 0,340 kn/m' p = 0,50 kn/m 2 (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p = 1,50 kn/m P-726 Strana 43 od 86

39 Statički proračun gredice - presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] P-726 Strana 44 od 86

40 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] P-726 Strana 45 od 86

41 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø8 2Ø7 Beton C25/30 Armatura Bst donja zona Aa = 1,54 +1,51 = 3,05 cm Ø8 4Ø7 9 Ø4/15 (m=4) [c m ] - gornja zona Aa = 0,77+1,01 = 1,78 cm P-726 Strana 46 od 86

42 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (3-6) P-726 Strana 47 od 86

43 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem, gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (3-6) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (3-6) P-726 Strana 48 od 86

44 4.5. Proračun nosivosti gredice D5 - raspon l = 6,0 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,17 24 = 0,2040 kn/m' - armatura gredice... = 0,0258 kn/m' - udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1813 kn/m' - stropni blok-ytong 530 kg... 0,625 0,20-2 0,02 0,03) 5,30 = 0,6561 kn/m' g = 1,13 kn/m'(g = 1,66 kn/m 2 ) Sopstvenu težinu gredice program uzima automatski, tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa, iznosi: 2. Stalno opterećenje poda i plafona: g 1 = 0,1813+0,6561 = 0,8374 kn/m' - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' 3. Korisno opterećenje - pregradni zidovi: g = 1,80 kn/m 2 - pregradni zidovi... = 0,50 kn/m 2 p 1 = 0,50 0,68 = 0,340 kn/m' p = 0,50 kn/m 2 4. Korisno opterećenje stropa (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p = 1,50 kn/m P-726 Strana 49 od 86

45 Statički proračun gredice - presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] P-726 Strana 50 od 86

46 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] P-726 Strana 51 od 86

47 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø10 2Ø7 Beton C25/30 Armatura Bst donja zona Aa = 1,54 +2,36 = 3,90 cm Ø10 4Ø7 9 Ø4/15 (m=4) [c m ] - gornja zona Aa = 0,77+1,57 = 2,34 cm P-726 Strana 52 od 86

48 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (2-5) P-726 Strana 53 od 86

49 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (2-5) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (2-5) P-726 Strana 54 od 86

50 4.4. Proračun nosivosti gredice D6 raspon l = 6,60 m Analiza opterećenja: monolitni mikrobeton tankoslojni ytong mort stropni blok ytong Sopstvena težina stropa: - pojasnica gredice... 0,03 0,09 24 = 0,0648 kn/m' - AB gredica... 0,05 0,17 24 = 0,2040 kn/m' - armatura gredice... = 0,0258 kn/m' - udio poprečnog rebra... 0,08 0, ,68/1,50 = 0,1813 kn/m' - stropni blok-ytong 530 kg... 0,625 0,20-2 0,02 0,03) 5,30 = 0,6561 kn/m' g = 1,13 kn/m'(g = 1,66 kn/m 2 ) Sopstvenu težinu gredice, program uzima automatski, tako da dio opterećenja (udio poprečnog rebra i stropni blok) koji treba dodati da bi se proračunom obuhvatila kompletna težina stropa iznosi: 2. Stalno opterećenje poda i plafona: g 1 = 0,1813+0,6561 = 0,8374 kn/m' - malter... = 0,20 kn/m 2 - a/c estrih... = 1,10 kn/m 2 - slojevi poda... = 0,50 kn/m 2 g 2 = 1,80 0,68 = 1,224 kn/m' 3. Korisno opterećenje - pregradni zidovi: g = 1,80 kn/m 2 - pregradni zidovi... = 0,50 kn/m 2 4. Korisno opterećenje stropa p 1 = 0,50 0,68 = 0,340 kn/m' p = 0,50 kn/m 2 (stambeni prostori, boravci, hotelske sobe, bolničke i sanatorijumske sobe) - korisno opterećenje... = 1,50 kn/m 2 p 2 = 1,50 0,68 = 1,02 kn/m' p =1,50 kn/m P-726 Strana 55 od 86

51 Statički proračun gredice - presječne sile #.Opt. 1: Sopstvena težina stropa (g) #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 2: Stalno opterećenje_pod i plafon #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 3: Korisno opterećenje_pregradni zidovi #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] P-726 Strana 56 od 86

52 #.Opt. 4: Korisno opterećenje_1,50 kn/m2 #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 5: 1.35xI+1.35xII+1.5xIII+1.5xIV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] P-726 Strana 57 od 86

53 Statički proračun gredice - dimenzioniranje Dijagrami potrebne i usvojene armature 5 2Ø12 2Ø7 Beton C25/30 Armatura Bst donja zona Aa = 1,54 + 3,39 = 4,93 cm Ø12 4Ø7 9 Ø4/15 (m=4) [c m ] - gornja zona Aa = 0,77+2,26 = 3,03 cm P-726 Strana 58 od 86

54 Proračun prslina i progiba gredica Prsline i progibi konstrukcije u idealnim uvjetima u kojima su gredice bijelog stropa idealnim zglobovima pričvršćene na mjestu oslanjanja. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (1-4) P-726 Strana 59 od 86

55 Prsline i progibi konstrukcije u stvarnim uvjetima u kojima se zbog veze sa armiranobetonskim vijencem, gredice bijelog stropa djelimično upinju u armiranobetonski vijenac. #.Opt. 6: I+II+III+IV #.Uticaji u gredi: (1-4) [kn], [kn], [knm], [m/1000] Dijagrami prslina i progiba.ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (1-4) P-726 Strana 60 od 86

56 Tabela potrebne i usvojene dodatne armature gredica TIP GREDICE L(m) g u (kn/m ²) p u (kn/m ²) q u (kn/m ²) M sd (knm) V sd (kn) pot A a donja zona pot A a gornja zona D1 3,50 4,14 3,00 7,14 7,44 8,50 1,51 0,57 pota dod donja zona pota dod gornja zona A dod donja zona A dod gornja zona D2 4,00 4,14 3,00 7,14 9,72 9,72 1,91 1,10 0,37 0,33 Ø8 Ø8 D3 4,50 4,14 3,00 7,14 12,30 10,93 2,38 1,37 0,84 0,60 Ø12 Ø10 D4 5,60 4,67 3,00 7,67 20,45 14,61 2,90 1,66 1,36 0,89 3Ø8 2Ø8 D5 6,00 4,67 3,00 7,67 23,47 15,65 3,39 1,95 1,85 1,18 3Ø10 2Ø10 D6 6,60 4,67 3,00 7,67 28,40 17,21 4,50 2,58 2,96 1,81 3Ø12 2Ø12 Tabela računskih progiba i potrebnih nadvišenja TIP GREDICE L(m) Računski progib f(t=o)(mm) Računski progib f(t= )(mm) Nadvišenje Δh(mm) Ukupni progib f- Δh(mm) Dozvoljeni progib l/250(mm) D1 3,50 6,76 17,03 15,00 2,03 14,00 D2 4,00 9,61 22,89 15,00 7,89 16,00 D3 4,50 12,92 30,75 15,00 15,75 18,00 D4 5,60 16,95 36,97 20,00 16,97 22,40 D5 6,00 18,31 39,12 20,00 19,12 24,00 D6 6,60 21,82 45,40 20,00 25,40 26, P-726 Strana 61 od 86

57 4.7 Staticki proracun - gredice D1, D2, D3 - sistem roštilja P-726 Strana 62 od 86

58 P-726 Strana 63 od 86

59 P-726 Strana 64 od 86

60 P-726 Strana 65 od 86

61 P-726 Strana 66 od 86

62 P-726 Strana 67 od 86

63 Dimenzioniranje (beton) P-726 Strana 68 od 86

64 P-726 Strana 69 od 86

65 P-726 Strana 70 od 86

66 P-726 Strana 71 od 86

67 ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: ( ).ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: ( ) P-726 Strana 72 od 86

68 ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (53-148) P-726 Strana 73 od 86

69 4.8. Staticki proracun - gredica D4, D5, D6 - sistem roštilja P-726 Strana 74 od 86

70 P-726 Strana 75 od 86

71 P-726 Strana 76 od 86

72 P-726 Strana 77 od 86

73 P-726 Strana 78 od 86

74 P-726 Strana 79 od 86

75 Dimenzionisanje (beton) - potrebna armatura P-726 Strana 80 od 86

76 P-726 Strana 81 od 86

77 P-726 Strana 82 od 86

78 P-726 Strana 83 od 86

79 ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: ( ).ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: ( ) P-726 Strana 84 od 86

80 ak(t0).ug(t0).ak(t ).ug(t ) #.Prsline i ugibi: (68-246) NOSILAC ZADATKA prof.dr.sci. Ahmet Imamović, dipl.inž.građ P-726 Strana 85 od 86

Zadatak 4b- Dimenzionisanje rožnjače

Zadatak 4b- Dimenzionisanje rožnjače Zadatak 4b- Dimenzionisanje rožnjače Rožnjača je statičkog sistema kontinualnog nosača raspona L= 5x6,0m. Usvaja se hladnooblikovani šuplji profil pravougaonog poprečnog preseka. Raster rožnjača: λ r 2.5m

Διαβάστε περισσότερα

Polumontažni sistem za izvođenje međuspratnih i krovnih konstrukcija YTONG STROP

Polumontažni sistem za izvođenje međuspratnih i krovnih konstrukcija YTONG STROP Polumontažni sistem za izvođenje međuspratnih i krovnih konstrukcija YTONG STROP Šta je Ytong strop Upotrebom Ytong stropa gradnja je brža i jednostavnija. Ytong strop je polumontažni sistem za izradu

Διαβάστε περισσότερα

Austrotherm AMK element ispune za meduspratne konstrukcije

Austrotherm AMK element ispune za meduspratne konstrukcije Austrotherm AMK element ispune za meduspratne konstrukcije standardne dimenzije punioca l/b/h = 50cm/40cm/16cm male težine i lako ugradiv idealan kod nadogradnje objekata To nikoga ne ostavlja hladnim!

Διαβάστε περισσότερα

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd

Teorija betonskih konstrukcija 1. Vežbe br. 4. GF Beograd Teorija betonskih konstrukcija 1 Vežbe br. 4 GF Beograd Teorija betonskih konstrukcija 1 1 "T" preseci - VEZANO dimenzionisanje Poznato: statički uticaji (M G,Q ) sračunato kvalitet materijala (f cd, f

Διαβάστε περισσότερα

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II

TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICE I DIJAGRAMI iz predmeta BETONSKE KONSTRUKCIJE II TABLICA 1: PARCIJALNI KOEFICIJENTI SIGURNOSTI ZA DJELOVANJA Parcijalni koeficijenti sigurnosti γf Vrsta djelovanja Djelovanje Stalno Promjenjivo

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET

SVEUČILIŠTE U MOSTARU GRAĐEVINSKI FAKULTET SVEUČILIŠTE U MOSTRU GRĐEVINSKI FKULTET Kolegij: Osnove betonskih konstrukcija k. 013/014 god. 8. pismeni (dodatni) ispit - 10.10.014. god. Zadatak 1 Dimenzionirati i prikazati raspored usvojene armature

Διαβάστε περισσότερα

POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP

POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP POLU MONTAŽNI STROPOVI OMNIA PLOČA POLU MONTAŽNI STROP Strop se sastoji od montažne ploče (obično napravljene na vibro stolu), debljine min. 4 cm, armirane mrežastom armaturom i dodatnog betona, debljine

Διαβάστε περισσότερα

TEHNIČKA DOKUMENTACIJA POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP"

TEHNIČKA DOKUMENTACIJA POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP Građevina: TEHNIČKA DOKUMENTACIJA POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" Sadržaj: strana: 1. Uvod 2 2. Tehnički opis konstrukcije 3 3. Upute za montažu i transport 5 4. Planovi polaganja BROJ

Διαβάστε περισσότερα

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21,

Kolegij: Konstrukcije Rješenje zadatka 2. Okno Građevinski fakultet u Zagrebu. Efektivna. Jedinična težina. 1. Glina 18,5 21, Kolegij: Konstrukcije 017. Rješenje zadatka. Okno Građevinski fakultet u Zagrebu 1. ULAZNI PARAETRI. RAČUNSKE VRIJEDNOSTI PARAETARA ATERIJALA.1. Karakteristične vrijednosti parametara tla Efektivna Sloj

Διαβάστε περισσότερα

4. STATIČKI PRORAČUN STUBIŠTA

4. STATIČKI PRORAČUN STUBIŠTA JBAG 4. STATIČKI PRORAČUN STUBIŠTA PROGRA IZ KOLEGIJA BETONSKE I ZIDANE KONSTRUKCIJE 9 5 SVEUČILIŠTE U ZAGREBU JBAG 4. Statiči proračun stubišta 4.. Stubišni ra 4... Analiza opterećenja 5 5 4 6 8 5 6 0

Διαβάστε περισσότερα

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste

PREDNAPETI BETON Primjer nadvožnjaka preko autoceste PREDNAPETI BETON Primjer nadvožnjaka preko autoceste 7. VJEŽBE PLAN ARMATURE PREDNAPETOG Dominik Skokandić, mag.ing.aedif. PLAN ARMATURE PREDNAPETOG 1. Rekapitulacija odabrane armature 2. Određivanje duljina

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM STROPNI PROGRAM TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi Proizvodi Tehničke

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

Proračunski model - pravougaoni presek

Proračunski model - pravougaoni presek Proračunski model - pravougaoni presek 1 ε b 3.5 σ b f B "" ηx M u y b x D bu G b h N u z d y b1 a1 "1" b ε a1 10 Z au a 1 Složeno savijanje - VEZNO dimenzionisanje Poznato: statički uticaji za (M i, N

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 017. Ime i prezime 50 60 (h) 16 (h0) () () 600 (B) 600 (B) 500 () 500 () SDRŽJ 1. Tehnički opis.... Proračun ploče POZ 01-01... 3.1. naliza opterećenja ploče POZ 01-01...

Διαβάστε περισσότερα

SANACIJE, REKONSTRUKCIJE I BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI

SANACIJE, REKONSTRUKCIJE I BETONSKIH KONSTRUKCIJA U VISOKOGRADNJI GRAĐEVINSKI FAKULTET UNIVERZITETA U BEOGRADU Odsek za konstrukcije Katedra za materijale i konstrukcije (MIK) Master studije (28+28) I semester (2+2) Prof. dr Dušan Najdanović SANACIJE, REKONSTRUKCIJE

Διαβάστε περισσότερα

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA

Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Predavanje br.3 KONSTRUKTIVNI SKLOPOVI ZGRADA Dr Veliborka Bogdanović, red.prof. Dr Dragan Kostić, v.prof. Konstruktivni sklop - Noseći sistem objekta Struktura sastavljena od jednostavnih nosećih elemenata

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PROSTA GREDA (PROSTO OSLONJENA GREDA)

PROSTA GREDA (PROSTO OSLONJENA GREDA) ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje

Διαβάστε περισσότερα

Оsnоvni principi prојеktоvаnjа zidаnih zgrаdа

Оsnоvni principi prојеktоvаnjа zidаnih zgrаdа Građevinsko-arhitektonski fakultet Univerziteta u Nišu Osnovne akademske studije studijski program Arhitektura Školska godina 2015/16 Uvod u arhitektonske konstrukcije, II sem. 2+2 Predavanje br. 6 Оsnоvni

Διαβάστε περισσότερα

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju

Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE. Program

BETONSKE KONSTRUKCIJE. Program BETONSKE KONSTRUKCIJE Program Zagreb, 009. Ime i prezime 50 60 (h) 16 (h0) (A) (A) 600 (B) 600 (B) 500 (A) 500 (A) SADRŽAJ 1. Tehnički opis.... Proračun ploče POZ 01-01...3.1. Analiza opterećenja ploče

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU Odsek za konstrukcije TEORIJA BETONSKIH KONSTRUKCIJA grupa A Odsek za konstrukcije 25.01.2012. grupa A 1. 1.1 Za nosač prikazan na skici 1 odrediti dijagrame presečnih sila. Sopstvena težina je uključena u stalno opterećenje (g), a povremeno opterećenje (P1 i P2)

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)

PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1)

BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) UNIVERZITET U NOVOM SADU 2012 03 FAKULTET TEHNIČKIH NAUKA datum: 07. April 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit (str. 1) Zadatak 1 (100%) - eliminatorni

Διαβάστε περισσότερα

10. STABILNOST KOSINA

10. STABILNOST KOSINA MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

PREDGOTOVLJENE BETONSKE KONSTRUKCIJE

PREDGOTOVLJENE BETONSKE KONSTRUKCIJE PREDGOTOVLJENE BETONSKE KONSTRUKCIJE DARKO MEŠTROVIĆ Rijeka, 2017. Sadržaj 1 OPĆENITO 1 1.1 Materijali za proizvodnju predgotovljenih elemenata 1 1.2 Prednosti i mane montažnog načina građenja 2 1.3 Projektiranje

Διαβάστε περισσότερα

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje

Knauf zvučna zaštita. Knauf ploče Knauf sistemi Knauf detalji izvođenja. Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf zvučna zaštita Knauf ploče Knauf sistemi Knauf detalji izvođenja Dipl.inž.arh. Goran Stojiljković Rukovodilac tehnike suve gradnje Knauf ploče Gipsana Gipskartonska Gipsano jezgro obostrano ojačano

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Proračun nosivosti elemenata

Proračun nosivosti elemenata Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 2 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

Betonske konstrukcije

Betonske konstrukcije SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA, ARHITEKTURE I GEODEZIJE Betonske konstrukcije Završni rad Antonia Pleština Split, 06 SEUČILIŠTE U SPLITU FAKULTET GRAĐEINARSTA,ARHITEKTURE I GEODEZIJE PROJEKT

Διαβάστε περισσότερα

Zidovi. Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА. ZID površinski vertikalni element zgrade 10/27/2015

Zidovi. Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА. ZID površinski vertikalni element zgrade 10/27/2015 Predavanje br.4 ZIDOVI OD ОPEKЕ, BLОКOVA ОD GLINE, BЕTONA I LАKОG BETОNА DR DRAGAN KOSTIĆ, V.PROF. Zidovi ZID površinski vertikalni element zgrade Osnovna podela zidova: prema nameni i položaju u sklopu

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE

BETONSKE KONSTRUKCIJE 1 BETONSKE KONSTRUKCIJE RAMOVSKE KONSTRUKCIJE Prof. dr Snežana Marinković Doc. dr Ivan Ignjatović Semestar: V ESPB: Ramovske konstrukcije 1.1. Podela 1.2. Statički sistemi i statički proračun 1.3. Proračun

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca

30 kn/m. - zamenimo oslonce sa reakcijama oslonaca. - postavimo uslove ravnoteže. - iz uslova ravnoteže odredimo nepoznate reakcije oslonaca . Za zadati nosač odrediti: a) Statičke uticaje (, i T) a=.50 m b) Dimenzionisati nosač u kritičnom preseku i proveriti normalne, smičuće i uporedne napone F=00 k F=50 k q=30 k/m a a a a Kvalitet čelika:

Διαβάστε περισσότερα

1 PRORAČUN PLOČE POS 1

1 PRORAČUN PLOČE POS 1 PLOČA OSLONJENA U JEDNOM PRAVCU P1/1 1 PRORAČUN PLOČE POS 1 Ploča dimenzija 6.0 7.m u osnovi oslonjena je na dve paralelne grede POS, koje su oslonjene na stubove POS S u uglovima ploče. Pored sopstvene

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

SPREGNUTE KONSTRUKCIJE

SPREGNUTE KONSTRUKCIJE SPREGNUTE KONSTRUKCIJE Prof. dr. sc. Ivica Džeba Građevinski fakultet Sveučilišta u Zagrebu SPREGNUTI NOSAČI 1B. DIO PRIJENJIVO NA SVE KLASE POPREČNIH PRESJEKA OBAVEZNA PRIJENA ZA KLASE PRESJEKA 3 i 4

Διαβάστε περισσότερα

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti

je zidni element I razreda namijenjen za oblaganja. obujamska masa (u suhom stanju) srednja vrijednost tlačne čvrstoće ρ b razred požarne otpornosti PLOČA - P 5 je zidni element I razreda namijenjen za oblaganja. Zbog male debljine, a velike površine, ploča je idealna za završne radove u interijerima građevina, prije svega kod oblaganja kupaonskih

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Srednjenaponski izolatori

Srednjenaponski izolatori Srednjenaponski izolatori Linijski potporni izolatori tip R-ET Komercijalni naziv LPI 24 N ET 1) LPI 24 L ET/5 1)2) LPI 24 L ET/6 1)2) LPI 38 L ET 1) Oznaka prema IEC 720 R 12,5 ET 125 N R 12,5 ET 125

Διαβάστε περισσότερα

TEORIJA BETONSKIH KONSTRUKCIJA 79

TEORIJA BETONSKIH KONSTRUKCIJA 79 TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O.

Cenovnik spiro kanala i opreme - FON Inžinjering D.O.O. Cenovnik spiro kanala i opreme - *Cenovnik ažuriran 09.02.2018. Spiro kolena: Prečnik - Φ (mm) Spiro kanal ( /m) 90 45 30 Muf/nipli: Cevna obujmica: Brza diht spojnica: Elastična konekcija: /kom: Ø100

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

ARMATURA. EN EN (Sistem za označavanje čelika Dio 1- Nazivi čelika, Dio 2: Brojčani sistem )

ARMATURA. EN EN (Sistem za označavanje čelika Dio 1- Nazivi čelika, Dio 2: Brojčani sistem ) 1 ARMATURA Armatura predstavlja građevinski proizvod koji se koristi za armiranje betona. Čelik za prethodno naprezanje se takođe može smatrati armaturom, koja se koristi za prethodno napregnute konstrukcije.

Διαβάστε περισσότερα

CIGLA - tehnički priručnik

CIGLA - tehnički priručnik CIGLA - tehnički priručnik SADRŽAJ TERMO PROGRAM KLASIČNI PROGRAM PROGRAM ZA MEĐUSPRATNE KONSTRUKCIJE TROŠKOVNIK ZA UGRADNJU PROIZVODA 04 13 16 21 Proizvodi Građevinska fizika Prednosti termo bloka Proizvodi

Διαβάστε περισσότερα

Prethodno napregnute konstrukcije

Prethodno napregnute konstrukcije Prethodno napregnute konstrukcije Predavanje VI 2017/2018 Prof. dr Radmila Sinđić-Grebović Dimenzionisanje prethodno napregnutih konstrukcija II Proračun prema graničnim stanjima nosivosti 2 Dijagram:

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

UZDUŽNA DINAMIKA VOZILA

UZDUŽNA DINAMIKA VOZILA UZDUŽNA DINAMIKA VOZILA MODEL VOZILA U UZDUŽNOJ DINAMICI Zanemaruju se sva pomeranja u pravcima normalnim na pravac kretanja (ΣZ i = 0, ΣY i = 0) Zanemaruju se svi vidovi pobuda na oscilovanje i vibracije,

Διαβάστε περισσότερα

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A

GRAĐEVINSKI FAKULTET U BEOGRADU TEORIJA BETONSKIH KONSTRUKCIJA grupa A TEORIJA BETONSKIH KONSTRUKCIJA 25.12.2012. grupa A 1. 1.1 Dimenzionisati prema momentima savijanja (Mu) karakteristične preseke nosača prikazanog na skici 1. Prilikom dimenzionisanja obezbediti graničnu

Διαβάστε περισσότερα

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL

PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL PRORAČUN AB STUPA STATIČKI SUSTAV, GEOMETRIJSKE KARAKTERISTIKE I MATERIJAL Materijal: Beton: C25/30 C f ck /f ck,cube valjak/kocka f ck 25 N/mm 2 karakteristična tlačna čvrstoća fcd proračunska tlačna

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

MASTER RAD KONTROLNI PRORAČUN IZVEDENIH MOSTOVA SEKTORA 8, AUTOPUTNOG PRAVCA E80 (KORIDOR 10)

MASTER RAD KONTROLNI PRORAČUN IZVEDENIH MOSTOVA SEKTORA 8, AUTOPUTNOG PRAVCA E80 (KORIDOR 10) Univerzitet u Nišu Građevinsko-arhitektonski fakultet MASTER RAD KONTROLNI PRORAČUN IZVEDENIH MOSTOVA SEKTORA 8, AUTOPUTNOG PRAVCA E80 (KORIDOR 10) Petar Radosavljević MRG 148/12 Niš, oktobar 2015. Ispitna

Διαβάστε περισσότερα

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka

Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Aksijalno pritisnuti štapovi konstantnog višedelnog preseka Metalne konstrukcije 1 P6-1 Osobenosti višedelnih štapova Poprečni presek se sastoji od više samostalnih elemenata koji su mestimično povezani;

Διαβάστε περισσότερα

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa

1. Dimenzionisanje poprečnog preseka nosača. Pretpostavlja se poprečni presek HEB 600. Osnovni materijal S235 f y 235MPa f u 360MPa a. zadatak Sračuna i konstruisa montažni nastavak nosača izrađenog od vruce valjanog profila prema zadam presečnim silama:ved = 300 kn MEd = 1000 knm. Za nosač usvoji odgovarajući HEB valjani profil. Nastavak

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

ZAVRŠNI RAD "USPOREDBA RAVNINSKOG I PROSTORNOG MODELA OKVIRNE KONSTRUKCIJE"

ZAVRŠNI RAD USPOREDBA RAVNINSKOG I PROSTORNOG MODELA OKVIRNE KONSTRUKCIJE ZAVRŠNI RAD IZ PREDMETA "GRAĐEVNA STATIKA 2" NA TEMU: "USPOREDBA RAVNINSKOG I PROSTORNOG MODELA OKVIRNE KONSTRUKCIJE" Mentor: prof.dr.sc. Krešimir Fresl, dipl.ing.građ. Studentica: Barbara Martinković,

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA datum: 27. avgust 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA datum: 27. avgust 2012 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU UNIVERZITET U NOVOM SADU 01 08 FAKULTET TEHNIČKIH NAUKA datum: 7. avgust 01 DEPARTMAN ZA GRAĐEVINARSTVO I GEODEZIJU BETONSKE KONSTRUKCIJE (1) pismeni ispit Zadatak 1 je eliminatornog tipa (kvalifikuje

Διαβάστε περισσότερα

ROŽNJAČE. Rožnjače

ROŽNJAČE. Rožnjače 1 ROŽNJAČE 2 Rožnjače Opšte 3 Rožnjače primaju i prenose opterećenje sa krovne površine na glavne nosače. Leže u krovnoj ravni i pružaju se paralelno sa podužnom osom hale. Raspon l: od 4,0 do 18,0 m (uobičajeno

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar

BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar BETONSKE KONSTRUKCIJE 1 Osnovne akademske studije, V semestar Prof dr Stanko Brčić email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

LANCI & ELEMENTI ZA KAČENJE

LANCI & ELEMENTI ZA KAČENJE LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće

Διαβάστε περισσότερα

METALNE KONSTRUKCIJE II

METALNE KONSTRUKCIJE II METALNE KONSTRUKCIJE II dr T. Vacev - Metalne konstrukcije II 2016/201. 1 Predmet br. teme Dodatne napomene objašnjenja uputstva NASLOV PODNASLOV PODNASLOV Osnovni sadržaj. Važniji pojmovi i sadržaji su

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORIJ ETONSKIH KONSTRUKCIJ 1 PRESECI S PRSLINO - VELIKI EKSCENTRICITET ČISTO SVIJNJE - VEZNO DIENZIONISNJE Poznato: - statički ticaji za pojedina opterećenja ( i ) - kalitet materijala (f, σ ) - dimenzije

Διαβάστε περισσότερα

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar

PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar PREDNAPREGNUTE I SPREGNUTE KONSTRUKCIJE Osnovne akademske studije, VII semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke, GRAÐEVINARSTVO Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj

Διαβάστε περισσότερα

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju.

zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. zastori zastori sunset curtain Kućište od željeza zaštićeno epoksidnim prahom, opruge od željeza. Lako i brzo se montiraju. (mm) (mm) za PROZOR im (mm) tv25 40360 360 400 330x330 tv25 50450 450 500 410x410

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

CENTRIČNO PRITISNUTI ELEMENTI

CENTRIČNO PRITISNUTI ELEMENTI 3/7/013 CETRIČO PRITISUTI ELEMETI 1 Primeri primene 1 3/7/013 Oblici poprečnih presea 3 Specifičnosti pritisnutih elemenata ivijanje Konrola napona u poprečnom preseu nije dovoljan uslov a dimenionisanje;

Διαβάστε περισσότερα

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD

SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE ZAVRŠNI RAD Toni Mušura Split, 015. SVEUČILIŠTE U SPLITU FAKULTET GRAĐEVINARSTVA, ARHITEKTURE I GEODEZIJE Toni Mušura Statički proračun

Διαβάστε περισσότερα

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min

( ) π. I slučaj-štap sa zglobovima na krajevima F. Opšte rešenje diferencijalne jednačine (1): min Kritična sia izvijanja Kritična sia je ona najmanja vrednost sie pritisa pri ojoj nastupa gubita stabinosti, odnosno, pri ojoj štap iz stabine pravoinijse forme ravnoteže preazi u nestabinu rivoinijsu

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

konstruktivni detalji

konstruktivni detalji Ytong sustav gradnje konstruktivni detalji λ 10 DRY = 0,09 Najbolja toplinska izolacija 115 110/120 100 20/90 120 80/120 60 70/75 30/35/40/45 50 30/35 15/20/25 10/15 10 10/15 10 TEMELJ I SOKL 10-05 Temelj

Διαβάστε περισσότερα

2. STATIKA 4. Tabela nosivosti 4 3. IZVEDBA 5-8

2. STATIKA 4. Tabela nosivosti 4 3. IZVEDBA 5-8 Stropni sustav SADRÆAJ 1. OPIS STROPNOG SUSTAVA POROTHERM 1-3 Osnovne dimenzije i prednost sustava 1 Elementi sustava - karakteristike i tehniëki podaci 2-3 Vatrootpornost, zvuëna izolacija i regulacija

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα