Proračun nosivosti elemenata

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Proračun nosivosti elemenata"

Transcript

1 Proračun nosivosti elemenata EC9 obrađuje sve fenomene vezane za stabilnost elemenata aluminijumskih konstrukcija: Izvijanje pritisnutih štapova; Bočno-torziono izvijanje nosača Izvijanje ekscentrično pritisnutih elemenata; Izvijanje višedelnih štapova. Prisutni su svi fenomeni kao i kod čeličnih konstrukcija (EC3). P09-1

2 Izvijanje pritisnutih elemenata EC9 daje pravila za proračun sledećih vidova izvijanja pritisnutih elemenata: fleksiono izvijanje torziono ili torziono-fleksiono izvijanje. Kontrola nosivosti na izvijanje se proverava na sledeći način: P09-2

3 Nosivost pritisnutog štapa na izvijanje - N b,rd χ koeficijent redukcije za relevantan vid izvijanja (bezdimenzionalni koeficijent izvijanja); κ koeficijent kojim se uzima u obzir uticaj zavarivanja (kada postoji); A eff površina efektivnog poprečnog preseka (za preseke klase 1, 2 i 3 je: A eff =A); P09-3

4 Koeficijent redukcije χ α N cr relativna vitkost štapa za relevantan vid izvijanja; granica horizontzontalnog platoa; koeficijent imperfekcije za odgovarajuću krivu izvijanja; kritična sila za relevantan vid izvijanja; P09-4

5 Krive izvijanja P09-5

6 Koeficijent κ Pomoću koeficijenta κ se uzimaju u obzir uticaji slabljenja materijala usled zavarivanja. Vrednosti koeficijenta κ za fleksiono izvijanje elemenata sa podužnim šavovima treba da se odrede na osnovu izraza iz tabele ispod. Za torziono i torziono-fleksiono izvijanje elementa sa podužnim šavovima treba usvojiti da je κ = 1,0; Kod elemenata sa poprečnim šavovima je κ = ω x (videti ekscentričan pritisak)! P09-6

7 Relativna vitkost za fleksiono izvijanje L cr =kl dužina izvijanja; k i koeficijent dužine izvijanja; poluprečnik inercije za razmatranu osu izvijanja; Obavezno treba proveriti fleksiono izvijanje oko obe glavne ose inercije poprečnog preseka! P09-7

8 Relativna vitkost za torziono izvijanje N cr kritična sila za torzioni vid izvijanja! Kritična sila i relativna vitkost za torziono izvijanje mogu da se odrede na osnovu Aneksa I. P09-8

9 Koeficijent k P09-9

10 Parametri za torziono izvijanje L,T i krstasti preseci U i šeširasti preseci P09-10

11 Kritična sila za torziono-fleksiono izvijanje Koeficijenti α yw i α zw P09-11

12 Bočno-torziono izvijanje nosača - za klase 1 i 2 - za klase 3 i 4 P09-12

13 Krive izvijanja za BTI Kriva 1 - preseci klase 1 i 2 Kriva 2 - preseci klase 3 i 4 Bočno-torziono izvijanje može da se zanemari kada je: ili P09-13

14 Relativna vitkost za BTI Kritičan moment M cr može da se odredi prema Aneksu I; Osnovni - elementarni izraz za određivanje kritičnog moment je: P09-14

15 Opšta formula za nosače konstantnog poprečnog preseka, simetrične oko slabije z-z ose μ cr relativan, bezdimenzionalan kritičan moment: bezdimenzionalni torzioni parametar bezdimenzionalna koordinata tačke delovanja poprečnog opterećenja bezdimenzionalni parametar monosimetrije preseka P09-15

16 Položaj opterećenja i faktor monosimetrije preseka P09-16

17 P09-17

18 Alternativan proračun relativne vitkosti za I i U preseke (Aneks I) α X i Y L cr,z i z h t 2 faktor oblika poprečnog preseka; parametri poprečnog preseka; dužina izvijanja za BTI; poluprečnik inercije za savijanje oko slabije ose inercije; visina poprečnog preseka; debljina nožice; P09-18

19 P09-19

20 Monosimetrični preseci koji su simetrični oko jače ose P09-20

21 Ekscentrično pritisnuti elementi Ukoliko se ne sprovodi proračun uticaja po teoriji II reda sa početnim geometrijskim imperfekcijama neophodno je da se izvši kontrola nosivosti ekscentrično pritisnutog elementa na izvijanje; Generalno postoji razlika u proračunu izvijanja kod: elemanata koji su neosetljivi na torzione deformacije ili bočno pridržani i elemenata koji su osetljivi na torzione deformacije; P09-21

22 Torziono osetljivi Kod torziono osetljivih ekscentrično pritisnutih elemenata neophodno je da se proveri: fleksiono izvijanje usled interakcije aksijalne sile i momenta savijanja i bočno-torziono izvijanje usled interakcije aksijalne sile i momenta savijanja ; P09-22

23 Fleksiono izvijanje Obostrano simetrični otvoreni poprečni preseci: Savijanje oko jače y-y ose: Savijanje oko slabije z-z ose: P09-23

24 Koeficijenti iz interakcionih formula ili alternativno ili alternativno ili alternativno za elemente bez lokalnog zavarivanja i sa jednakim momentima na krajevima. α z i α y su koeficijenti oblika poprečnog preseka, ali ne veći od 1,25. P09-24

25 Interakciona formula za šuplje profile ili alternativno P09-25

26 Bočno-torziono izvijanje Kod elemenata koji su osetljivi na torzione deformacije pored fleksionog izvijanja treba da se proveri i bočno-torziono izvijanje, na osnovu sledeće interakcione formule: za preseke sa podužnim šavovima! P09-26

27 Koeficijenti parametri za proračun nosivosti poprečnog preseka koeficijenti koji obuhvataju uticaj zavarivanja Ovi koeficijenti treba da se odnose na najnepovoljniji poprečni presek u posmatranom rasponu. Ako je zavarivanje samo lokalnog karaktera onda se mogu odrediti na osnovu izraza: Ako se lokalno zavarivanje javlja samo u zonama krajeva raspona ili u zonama prevojnih tačkaka onda se koeficijenti mogu povećati! P09-27

28 Višedelni štapovi P09-28

29 Proračun pritisnutih štapova konstantnog višedelnog preseka prema EC9 U opštem slučaju treba sprovesti sledeće kontrole ULS: Kontrola nosivosti na izvijanje oko materijalne ose (ako postoji); Kontrola nosivosti nosivosti na izvijanje oko nematrijalne ose; Kontrola nosivosti samostalnog elementa (najčešće merodavna kontrola za dimenzionisanje!); Kontrola nosivosti veznih elemenata; P09-29

30 Nosivost samostalnog elementa (pojasa) Nosivost samostalnog elementa je najčešće najstrožije granično stanje nosivosti (ULS) kod višedelnih štapova; Mora da se kontroliše i kod štapova ramovskog i kod štapova rešetkastog tipa; Kod štapova rešetkastog tipa neophodna je kontrola samostalnog elementa (pojasa) u sredini raspona; Kod štapova ramovskog tipa neophodna je kontrola samostalnog elementa (pojasa) u sredini raspona gde je maksimalan moment i na krajevima gde je maksimalna smičuća sila; P09-30

31 Proračun samostalnog elementa u sredini N c, Ed N N ch, Ed b, Rd 1,0 Sila u pojasu dvodelnog štapa N δ c, Ed tot h 0 N c, Ed N 2 2 δ tot h 0 N c, Ed c, Ed h 0 δ tot N ch, Ed M Ed = = N N Ed c, Ed 2 δ tot + M Ed 2I h eff N = N 1 N 0 Edδ 0 Ed cr, V A ch Moment savijanja u sredini polja δ 0 = e 0 = L / 500 N c, Ed N c, Ed h 0 N c, Ed 2 δ tot N c, Ed 2 N c, Ed h 0 δ tot N cr, V = 1/ N cr 1 + 1/ S V P09-31

32 P09-32

33 Efektivni moment inercije višedelnog štapa - I eff P09-33

34 Dužina izvijanja samostalnog elementa kod rešetkastih višedelnih štapova P09-34

35 Proračun punih nosača - izbočavanje Izbočavanje usled normalnog napona pritiska - efektivan presek; Izbočavanje rebra smicanjem; Interakcija momenta savijanja i smičuće sile (izbočavanje); Lokalno izbočavanje rebra usled koncentrisane sile; Izbočavanje rebra usled izvijanja nožica (flange induced web buckling) P09-35

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Matrična analiza linijskih

Διαβάστε περισσότερα

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar

METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar METODA KONAČNIH ELEMENATA Osnovne akademske studije, VI semestar Prof dr email: stanko@np.ac.rs Departman za Tehničke nauke Državni Univerzitet u Novom Pazaru 2014/15 Sadržaj Rešavanje jednačina ravnoteže

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

1 RАVANSKE REŠETKE (1.2)

1 RАVANSKE REŠETKE (1.2) 1 RАVNSKE REŠETKE Rešetkasti nosači predstavljaju sistem sačinjen od lakih krutih štapova međusobno zglobno vezanih svojim krajevima. Zglobne veze krajeva štapova se nazivaju čvorovi. Rešetke su opterećene

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine

Mašinski fakultet Univerziteta u Beogradu/ Mašinski elementi 1/ Predavanje 3. Slika1.1 Primeri nepokretne i obrtne osovine ašinski fakultet Univerziteta u Beogradu/ ašinski elementi 1/ Predavanje.1 OSOVINE I VRATILA.1.1. Uvod Vratila i osovine, kao osnovni elementi obrtnog kretanja, moraju uvek biti preko kliznih i kotrljajnih

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA

Predavanje br 3 TRANSPORT I LOGISTIKA 2006/2007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA ANALIZA NOSEĆIH STRUKTURA 11 Predavanje br TRANSPORT I LOGISTIKA 006/007 OSNOVE ZA DIMENZIONISANJE ČELIČNIH KONSTRUKCIJA Dimenzionisanje čeličnih konstrukcija se izvodi na bazi poznavanja rasporeda spoljašnjih

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

O DIMENZIONALNOJ ANALIZI U FIZICI.

O DIMENZIONALNOJ ANALIZI U FIZICI. 1 O DIMENZIONALNOJ ANALIZI U FIZICI Ljubiša Nešić, Odsek za fiziku, PMF, Niš http://www.pmf.ni.ac.yu/people/nesiclj/ Uvod Kao što je poznato, fizičke veličine mogu da imaju dimenzije ili pak da budu bezdimenzionalne.

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

PRILOG 1 PRAVILNIK BAB 87

PRILOG 1 PRAVILNIK BAB 87 PRILOG 1 PRAVILNIK BAB 87 PRILOG 1.1 PRAVILNIK O TEHNIČKIM NORMATIVIMA ZA BETON I ARMIRANI BETON I OPŠTE ODREDBE 1 Ovim pravilnikom propisuju se uslovi i zahtevi koji moraju biti ispunjeni pri projektovanju,

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Tačno merenje Precizno Tačno i precizno

Tačno merenje Precizno Tačno i precizno MERENJE, GREŠKE MERENJA I OBRADA REZULTATA MERENJA Izmeriti neku veličinu u fizici znači naći brojni odnos merene fizičke veličine prema vrednosti iste fizičke veličine, koja je dogovorno izabrana za jedinicu.

Διαβάστε περισσότερα

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE "YTONG STROP" strana

A. STATIČKI PRORAČUN POLUMONTAŽNE STROPNE KONSTRUKCIJE YTONG STROP strana S A D R Ž A J OPĆI DIO: Izvadak iz sudskog registra o registraciji Rješenje o upisu u imenik ovlaštenih inženjera građevinarstva Izvješće o kontroli Tipskog projekta glede mehaničke otpornosti i stabilnosti

Διαβάστε περισσότερα

Proračun toplotne zaštite

Proračun toplotne zaštite Proračun toplotne zaštite za objekat Stambeni objekat urađen prema JUS U.J5.600 iz 1998 i JUS U.J5.510 iz 1987 godine. Sadržaj - analiza konstrukcija - analiza linijskih gubitaka - proračun toplotnih transmisionih

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA

PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA PRIVREDNO DRUŠTVO ZA PROIZVODNJU I POSTAVLJA NJE C EVI, PROFILA I OSTALIH PROIZVODA OD PLASTIČ N IH M ASA d.o.o Radnicka bb 32240 LU ČANI SRBIJA TR: 205-68352-90; MB: 17533606; PIB: 103195754; E-mail:

Διαβάστε περισσότερα

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja...

S A D R Ž A J. 1.1 Opšti podaci Čelik za prednaprezanje Kotve i kablovi Oprema Gubici sile prednaprezanja... 1 1 S A D R Ž A J 1.0 OPIS SISTEMA 1.1 Opšti podaci... 2 1.2 Čelik za prednaprezanje... 2 1.3 Kotve i kablovi... 2 1.4 Oprema... 3 1.5 Gubici sile prednaprezanja... 3 1.5.1 Uvlačenje klina... 4 1.5.2 Elastično

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Vežba 8 Osciloskop 2. Uvod

Vežba 8 Osciloskop 2. Uvod Vežba 8 Osciloskop Uvod U prvom delu vežbe ispituju se karakteristike realnih pasivnih i aktivnih filtara. U drugom delu vežbe demonstrira se mogućnost osciloskopa da radi kao jednostavan akvizicioni sistem.

Διαβάστε περισσότερα

6. Plan armature prednapetog nosača

6. Plan armature prednapetog nosača 6. Plan armature prednapetog nosača 6.1. Rekapitulacija odabrane armature Prednapeta armatura odabrano:3 natege 6812 Uzdužna nenapeta armatura. u polju donji rub nosača (mjerodavna je provjera nosivosti

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

RADIJALNI KLIZNI LEŽAJ

RADIJALNI KLIZNI LEŽAJ FAKULTET ELEKTROTEHNIKE, STROJARSTVA I BRODOGRADNJE ZAVOD ZA STROJARSTVO I BRODOGRADNJU KATEDRA ZA ELEMENTE STROJEVA Damir Jelaska RADIJALNI KLIZNI LEŽAJ (Proračun) Split, srpanj, 2003. O Z N A K E A H

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

PRSKALICA - LELA 12 L / LELA16 L

PRSKALICA - LELA 12 L / LELA16 L PRSKALICA - LELA 12 L / LELA16 L UPUTSTVO ZA UPOTREBU 1 Prskalica je pogodna za raspršivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Uredjaj je namenjen za kućnu,

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: SENZORI PROTOKA

FIZIČKO-TEHNIČKA MERENJA: SENZORI PROTOKA : SENZORI PROTOKA UVOD Merenje protoka je veoma bitno u velikom broju industrijskih aplikacija. Posebno su značajna obračunska merenje, jer se cena gasova i tečnosti određuje na osnovu protoka kroz cevi.

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

MOSTOVI SA KOSIM ZATEGAMA

MOSTOVI SA KOSIM ZATEGAMA MOSTOVI SA KOSIM ZATEGAMA U toku posljednjih tridesetak godina mostovi sa kosim zategama doživljavaju spektakularan razvoj u cijelom svijetu. Ekonomičnost ovih mostova ne leži samo u odličnom iskorištenju

Διαβάστε περισσότερα

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA

FIZIČKO-TEHNIČKA MERENJA: MERENJE BRZINE I UBRZANJA : MERENJE BRZINE I UBRZANJA UVOD Iako brzina predstavlja prvi, a ubrzanje drugi izvod, ne preporučuje se njihovo određivanje preko izvoda, jer usled šuma greška može biti velika. Može se koristi sledeća

Διαβάστε περισσότερα

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti-

PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- PRIKAZ STANDARDA SCS ISO 13370:2006 Toplotne karakteristike zgradaprenošenje toplote preko tla- Metode proračuna -u pogledu određivanja U-vrednosti- Prenos toplote preko poda (temelja) koji je u kontaktu

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch)

stolica yachtsman Od polietilena bijele boje otpornog na udarce. Tapecirana. Stolice i stolovi A B C D E F G Visina (inch) Dubina (inch) Širina (inch) A B C D E F G STOLICE Naziv Visina (inch) Širina (inch) Dubina (inch) AQ1000002 SKIPPER SKLOPIVA STOLICA BIJELA SA BIJELIM JASTUKOM 18 20 17 A AQ1000025 SKIPPER SKLOPIVA STOLICA,BIJELA SA BIJELO PLAVIM

Διαβάστε περισσότερα

Matematički modeli sistema

Matematički modeli sistema Matematički modeli sistema U analizi i sintezi SAU se koriste kvantitativni matematički modeli koji opisuju fiziku sistema. Generalno, dinamika sistema je opisana običnim diferencijalnim jednačinama. lasa

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković

Devizno tržište. Mart 2010 Ekonomski fakultet, Beograd Irena Janković Devizno tržište Devizni urs i devizno tržište Devizni urs - cena jedne valute izražena u drugoj valuti Promene deviznog ursa utiču na vrednost ative i pasive oje su izražene u stranoj valuti Devizni urs

Διαβάστε περισσότερα

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ

OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ OSNOVE PRORAČUNA I DJELOVANJA NA KONSTRUKCIJE SADRŽAJ 1 OSNOVE PRORAČUNA KONSTRUKCIJA... 2 2 DJELOVANJA NA KONSTRUKCIJE... 6 2.1 Klasifikacija djelovanja... 7 2.2 Vlastita težina... 8 2.3 Uporabna opterećenja

Διαβάστε περισσότερα

Kontrola kvaliteta betona Projekat betona

Kontrola kvaliteta betona Projekat betona Kontrola kvaliteta betona Projekat betona Predavanje, 08.01.2013. Pripremili: Doc.dr. Merima Šahinagić-Isović Asis. Marko Ćećez SADRŽAJ Kontrola kvaliteta betona: Opće postavke Partije betona Kontrola

Διαβάστε περισσότερα

m 2 Slika 1: Slika uz zadatak 2.

m 2 Slika 1: Slika uz zadatak 2. ISPIT IZ FIZIKE ETF, Beograd, 0.09.00.. Zavisnost vektora ubrzanja aterijalne tačke od vreena, napisana u polarno koordinatno sisteu, je a = (R v 0/ρ 3 ) e ρ, gde je ρ = ρ(t). Vektor brzine tačke u početno

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

LABORATORIJSKE VEŽBE IZ FIZIKE

LABORATORIJSKE VEŽBE IZ FIZIKE LABORATORIJSKE VEŽBE IZ FIZIKE Ime i prezime: Broj indeksa: UPUTSTVO ZA IZRADU LABORATORIJSKIH VEŽBI IZ FIZIKE. Pre početka sa radom pažljivo se upoznati sa napomenama iz ovog uputstva!. Na početku opisa

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

STVARANJE VEZE C-C POMO]U ORGANOBORANA

STVARANJE VEZE C-C POMO]U ORGANOBORANA STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

2.2. Analiza vremena Pert metodom

2.2. Analiza vremena Pert metodom 2.2. Analiza vremena Pert metodom Dok je kod CPM metode poznato samo jedno vreme trajanja aktivnosti t, kod Pert metode dane su tri procjene: a - optimistično vreme (najkraće moguće vreme u kojemu se može

Διαβάστε περισσότερα

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM

LINEARNA ELEKTRONIKA VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU LINEARNA ELEKTRONIKA LABORATORIJSKE VEŽBE VEŽBA BROJ 4 ANALIZA AKTIVNIH FILTARA SA JEDNIM OPERACIONIM POJAČAVAČEM.. IME I PREZIME BR. INDEKSA

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH KONSTRUKCIJA. Ivan Ignjatović, dipl. inž. građ.

SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH KONSTRUKCIJA. Ivan Ignjatović, dipl. inž. građ. SANACIJE, REKONSTRUKCIJE I ODRŽAVANJE BETONSKIH KONSTRUKCIJA Ivan Ignjatović, dipl. inž. građ. UVOD Savremeni principi projektovanja Eksploatacioni vek konstrukcije UVOD Stalni zahtevi za ekonomskim razvojem,

Διαβάστε περισσότερα

Tehnologija bušenja II

Tehnologija bušenja II INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 1. Vežba V - 1 Tehnologija bušenja II Slide 1 of 44 Algebra i trigonometrija V - 1 Tehnologija bušenja II Slide 2 of 44 Jednačine Pitanje: Ako je a = 3b

Διαβάστε περισσότερα

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić

Univerzitet u Nišu Građevinsko-arhitektonski fakultet. Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Univerzitet u Nišu Građevinsko-arhitektonski fakultet Informatika 2 Mathematica Konstante, promenljive, identifikatori, operatori Biblioteka funkcija Milica Ćirić Mathematica Programski paket Mathematica

Διαβάστε περισσότερα

BETONSKE KONSTRUKCIJE I. Predavanja

BETONSKE KONSTRUKCIJE I. Predavanja BETONSKE KONSTRUKCIJE I Predavanja Zagreb, 010. Igor Gukov SADRŽAJ 1. UVOD...3. FIZIKALNO-MEHANIČKA SVOJSTVA MATERIJALA...6.1. Beton...7.1.1 Računska čvrstoća betona...11.1. Višeosno stanje naprezanja...11.1.3

Διαβάστε περισσότερα

MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv,20 kv i 35 kv IZVEDENIH SLABOIZOLOVANIM PROVODNICIMA

MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv,20 kv i 35 kv IZVEDENIH SLABOIZOLOVANIM PROVODNICIMA JP ELEKTROPRIVREDA SRBIJE Beograd, Vojvode Stepe 4 PRILOG TEHNI^KE PREPORUKE br.10v MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv,20 kv i 35 kv IZVEDENIH SLABOIZOLOVANIM PROVODNICIMA - PRIMERI SA KOMENTAROM

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

Snimanje karakteristika dioda

Snimanje karakteristika dioda FIZIČKA ELEKTRONIKA Laboratorijske vežbe Snimanje karakteristika dioda VAŽNA NAPOMENA: ZA VREME POSTAVLJANJA VEŽBE (SASTAVLJANJA ELEKTRIČNE ŠEME) I PRIKLJUČIVANJA MERNIH INSTRUMENATA MAKETA MORA BITI ODVOJENA

Διαβάστε περισσότερα

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16.

LABORATORIJSKI PRAKTIKUM - FIZIKA. za generaciju 2015/16. LABORATORIJSKI PRAKTIKUM - FIZIKA za generaciju 015/16. SPISAK LABORATORIJSKIH VEŽBI IZ FIZIKE 1. VEŽBA - a) Određivanje ubrzanja Zemljine teže pomoću matematičkog klatna b) Određivanje Jungovog modula

Διαβάστε περισσότερα

TEHNOLOGIJA MAŠINOGRADNJE

TEHNOLOGIJA MAŠINOGRADNJE TEHNOLOGIJA MAŠINOGRADNJE DEO: TEHNOLOGIJA PLASTIČNOG DEFORMISANJA Doc. dr Mladomir Milutinović SAVIJANJE Savijanje je tehnološka metoda plastičnog deformisanja koja nalazi široku primenu u praksi, kako

Διαβάστε περισσότερα

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE

SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE SPECIJALNE INŽENJERSKE GRAĐEVINE 4. PREDAVANJE Visoke građevine VISOKE GRAĐEVINE SADRŽAJ PREDAVANJA (1.dio) Uvodno Povijest i kronologija visokih građevina Nosivi elementi za osnovna opterećenja Mjere

Διαβάστε περισσότερα

REGULACIJA REKA. Odesek za hidrotehniku i vodno ekološko inženjerstvo GRADJEVINSKI FAKULTET UNIVERZITETA U BEOGRADU

REGULACIJA REKA. Odesek za hidrotehniku i vodno ekološko inženjerstvo GRADJEVINSKI FAKULTET UNIVERZITETA U BEOGRADU GRADJEVINSKI FAKULTET UNIVERZITETA U BEOGRADU Odesek za hidrotehniku i vodno ekološko inženjerstvo REGULACIJA REKA VEŽBE Student... Broj indeksa... Grupa... Datum Overa prisustva Datum Overa prisustva

Διαβάστε περισσότερα

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi)

ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) ZAVARENI SPOJEVI (elementi za spajanje nerastavljivi spojevi) Zavarivanje = spajanje dijelova koji su na mjestu spoja dovođenjem topline omekšani ili rastopljeni, uz dodavanje dodatnog materijala ili bez

Διαβάστε περισσότερα

MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv, 20 kv I 35 kv

MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv, 20 kv I 35 kv JP ELEKTROPRIVREDA SRBIJE Beograd, Vojvode Stepe 41 PRILOG TEHNI^KE PREPORUKE br.10b MEHANI^KI PRORA^UN NADZEMNIH VODOVA 10 kv, 0 kv I 35 kv - PRIMERI SA KOMENTAROM - - I izdawe - Obradili: Ђорђе Gli{i}

Διαβάστε περισσότερα

A 2 A 1 Q=? p a. Rješenje:

A 2 A 1 Q=? p a. Rješenje: 8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.

Διαβάστε περισσότερα

Karakterizacija kontinualnih sistema u prelaznom režimu

Karakterizacija kontinualnih sistema u prelaznom režimu Karakterizacija kontinualnih sistema u prelaznom režimu Postoji veći broj parametara koji karakterišu ponašanje sistema u prelaznom režimu. Ovi parametri pripadaju različitim prostorima u kojima se sistemi

Διαβάστε περισσότερα

2.1 Kinematika jednodimenzionog kretanja

2.1 Kinematika jednodimenzionog kretanja Glava 2 Kinematika Gde god da pogledamo oko nas, možemo da uočimo tela u kretanju (u fizici je uobičajeno a se kaže u stanju kretanja ). Čak i kada smo u stanju mirovanja, naše srce kuca i na taj način

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter

USB Charger. Battery charger/power supply via 12 or 24V cigarette lighter USB Charger Battery charger/power supply via 12 or 24V cigarette lighter Compact charger for devices chargeable via USB For example ipod, iphone, MP3 player, etc. Output voltage: 5V; up to 1.2A; short-circuit

Διαβάστε περισσότερα

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337

Predavanje VI. II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 Predavanje VI II semestar (2+2+1) Nastavnik: Prof. dr Dragan Pantić, kabinet 337 dragan.pantic@elfak.ni.ac.rs ? Kalemovi Kalem je elektronska komponenta koja poseduje reaktivnu otpornost direktno proporcionalnu

Διαβάστε περισσότερα

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.

Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0. Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE

REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE ENERGIJE Zadržano pravo na tehničke izmene Važi od januara 2007 www.rehau.com Građevinarstvo Automotivi Industija 2 REHAU SOLECT SISTEMI ZA KORIŠĆENJE SOLARNE

Διαβάστε περισσότερα

Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju.

Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju. 4.9 Komentar uz polje Komentari se javljaju na radnom listu kad dođemo na polje za koje su vezani ali ne utiču na ponašanje sadržaja u polju. Pritisnemo na polje mišem, desni klik miša, Insert Comment,

Διαβάστε περισσότερα

1 T 3015 EN. Samostalni regulator serije 42 Regulator protoka tip Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme.

1 T 3015 EN. Samostalni regulator serije 42 Regulator protoka tip Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme. Samostalni regulator serije 42 Regulator protoka tip 42-36 Aplikacija Regulator za sisteme daljinskog grejanja i velike grejne sisteme. Ventili su nominalne veličine DN 15 do 250 1). Nominalni pritisak

Διαβάστε περισσότερα

Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu

Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu Upravljanje kvalitetom proizvoda I četvrta nastavna jedinica statistički metodi upravljanja kvalitetom / Kontrolne karte Prof. dr Vidosav D. Majstorović, dipl.maš.inž. Mašinski fakultet u Beogradu UKP

Διαβάστε περισσότερα

σ - univerzalna konstanta

σ - univerzalna konstanta 9. ELEKTROTERMIJA Elektrotermija je oblast elektrotehnike u kojoj se proučava konverzija električne energije u toplotu. Pri tome se proučavaju, kako fizički fenomeni ove konverzije, tako i tehnički uređaji

Διαβάστε περισσότερα

Predstavljanje orijentacije i rotacije u 3D

Predstavljanje orijentacije i rotacije u 3D Predstavljanje orijentacije i rotacije u 3D Orijentacija Još jednom: Orijentacija i pravac - isto ili ne? Pravac je određen vektorom, ali rotacija vektora oko samog sebe nema daljeg uticaja. Orijentacija

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

Stalne jednosmerne struje

Stalne jednosmerne struje Stalne jednosmerne struje Električna struja Električnom strujom se može nazvati svako ureñeno kretanje električnih naelektrisanja, bez obzira na uzroke ovog kretanja i na vrstu električnih naelektrisanja

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα