a C 1 ( ) = = = m.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "a C 1 ( ) = = = m."

Transcript

1 Zdtk 4 (Petr, gimzij) Dvije tke leće, koverget jkosti + dpt i diverget jkosti 5 dpt, slijepljee su zjedo Predmet se lzi 5 cm ispred kovergete leće Odredite gdje je slik predmet ješeje 4 C = + m -, C = 5 m -, = 5 cm = 5 m, =? Poovimo! Jeddž tke leće dje vezu između udljeosti predmet i slike od leće i fokle dljie: + =, f gdje je udljeost predmet od leće, udljeost slike od leće, f udljeost fokus (žrišt) od leće Jkost ili kovergecij leće C jest reciproč vrijedost fokle dljie C = f p vrijedi + = C Njprije ćemo ći položj slike predmet s ozirom prvu leću, kovergetu leću jkosti + dpt, udljeost : C 5 m + = C = C = = = = m C 5 m m Doiveu sliku uzet ćemo ko predmet z drugu leću p je = = m = m Sd tržimo položj slike predmet s ozirom drugu leću, divergetu leću jkosti 5 dpt, udljeost : C m + = C = C = = = = C 5 m m m m = = = 67 m 5 5 Vjež 4 Dvije tke leće, koverget jkosti + dpt i diverget jkosti 8 dpt, slijepljee su zjedo Predmet se lzi 5 cm ispred kovergete leće Odredite gdje je slik predmet 56 m Zdtk 4 (Mrio, gimzij) Kugl polumjer 5 cm im temperturu 67 C Izrčujte kolik se eergij izrči iz je z 8 s ko kuglu smtrmo psolutim crim tijelom ješeje 4 r = 5 cm = 5 m, t = 67 C => T = t + 73 = = 44 K, t = 8 s, σ = W/(m K 4 ), W =? Poovimo! Toplisk eergij koju zrči površi psoluto crog tijel u jediici vreme određuje se Stef Boltzmovim zkoom: P = σ S T 4, gdje je P sg zrčej, T tempertur tijel, S površi tijel i σ Stef Boltzmov kostt: W σ = m K 4

2 W Iz defiicije sge P = slijedi: t W P t W S T 4 t površi kugle = = σ r W = σ r π T t = S = π 8 W 4 = ( 5 m) π ( 44 K ) 8 s = 487 J 48 kj m K 4 Vjež 4 Kugl polumjer 5 cm im temperturu 67 C Izrčujte kolik se eergij izrči iz je z 6 s ko kuglu smtrmo psolutim crim tijelom 8 Zdtk 43 (Sy, gimzij) Pri updu zrke svjetlosti površiu stkl (ideks lom = 5) dolzi do lom i refleksije Koliki kut ztvrju reflektir i lomlje zrk ko je updi kut 3? ješeje 43 = 5, α = 3, γ =? Primijeimo Sell Descrtesov zko lom: α β siα siα si 3 5 si β si β si β si β = = = 5 = 5 si β = β = si β 95 = 3 3 Kut γ izosi: α + γ + β = 8 γ = 8 α + β γ = γ = γ = 35 Kut γ, koji ztvrju reflektir i lomlje zrk, možemo izrčuti i ovj či: γ = β γ = γ = γ = 35 Vjež 43 Pri updu zrke svjetlosti površiu stkl (ideks lom = ) dolzi do lom i refleksije Koliki kut ztvrju reflektir i lomlje zrk ko je updi kut 3? 7 6 Zdtk 44 (Iv, gimzij) S lećom žriše dljie 6 cm, koj služi ko lup, želimo promtrti predmet duljie mm, tko d jegov virtul slik ude 5 mm Koliko mor leć iti udlje od predmet? ješeje 44 f = 6 cm, y = mm, y ' = 5 mm, =? Poovimo! Jeddž tke leće dje vezu između udljeosti predmet i slike od leće i fokle dljie: + =, f gdje je udljeost predmet od leće, udljeost slike od leće, f udljeost fokus (žrišt) od leće y ' y ' 5 mm m = = = = = 5 / ( ) = 5 y y mm čumo udljeost leće od predmet: γ

3 5 3 + = + = = = = 5 = 3 f /: 5 f 5 f 5 f 5 f 5 f 3 3 = f = 6 cm = 36 cm 5 5 Vjež 44 S lećom žriše dljie 8 cm, koj služi ko lup, želimo promtrti predmet duljie mm, tko d jegov virtul slik ude 5 mm Koliko mor leć iti udlje od predmet? 48 cm Zdtk 45 (Petr, gimzij) Koliko mor iti udlje predmet od tjeme kokvog zrcl polumjer zkrivljeosti d i povećje slike ilo 3? ješeje 45 =, m = 3, =? m = = 3 / ( ) = 3 m = 3 Udljeost predmet od tjeme kokvog zrcl izosi: = + = = = 6 = 4 /:6 = = Vjež 45 Koliko mor iti udlje predmet od tjeme kokvog zrcl polumjer zkrivljeosti d i povećje slike ilo 4? 5 8 Zdtk 46 (Petr, gimzij) Dvije kovergete leće imju žriše duljie cm i 5 cm N kojoj međusooj udljeosti treju iti d prlel sop svjetlosti izlzi ko prleli sop? ješeje 46 f = cm = m, f = 5 cm = 5 m, d =? d F F F F f f Kd dvije leće imju zjedičko žrište, td će ulzi i izlzi sop svjetlosti iti prleli d = f + f d = m + 5 m d = 5 m = 5 cm Vjež 46 Dvije kovergete leće imju žriše duljie 5 cm i cm N kojoj međusooj udljeosti treju iti d prlel sop svjetlosti izlzi ko prleli sop? d = 5 m = 5 cm 3

4 Zdtk 47 (Petr, gimzij) Prlel sop zrk svjetlosti pd kovergetu leću žriše duljie 4 cm N kojoj udljeosti iz je tre smjestiti divergetu leću žriše duljie 5 cm p d sop zrk ko prolsk kroz oje leće oste prlel? ješeje 47 f = 4 cm = 4 m, f = 5 cm = 5 m, d =? F F F F d f f zmk između leć izosi: d = f f d = 4 m 5 m d = 5 m = 5 cm Vjež 47 Prlel sop zrk svjetlosti pd kovergetu leću žriše duljie 45 cm N kojoj udljeosti iz je tre smjestiti divergetu leću žriše duljie cm p d sop zrk ko prolsk kroz oje leće oste prlel? d = 5 m = 5 cm Zdtk 48 (Kety, gimzij) Kut prizme je 4 Koliki je ideks lom prizme, ko se zrk koj pd okomito jedu plohu lomi tko d izlzi duž druge plohe prizme? Nem refleksije plohm prizme, spomeute dvije plohe rzpiju kut prizme ješeje 48 A = 4, =? A Budući d je ozčei trokut prvokut, slijedi: ε + A = 9 čumo kut α: ε + A = 9 α A α A α 4 ε + = ε + = = ε + α = 9 Ako svjetlost prelzi iz optički gušćeg sredstv u optički rjeđe sredstvo, lomi se od okomice Kut lom može iti jviše 9 Kut upd koji odgovr kutu lom 9 je α i zove se kut totle refleksije Vrijedi: siα = = = 56 siα si 4 = Vjež 48 Kut prizme je 5 Koliki je ideks lom prizme, ko se zrk koj pd okomito jedu plohu lomi tko d izlzi duž druge plohe prizme? Nem refleksije plohm prizme, spomeute dvije plohe rzpiju kut prizme 3 Zdtk 49 (Kety, gimzij) Koliki je Brewsterov kut polrizcije ko svjetlost pd iz zrk plstiču pločicu čiji griči kut refleksije izosi 37? ješeje 49 α t = 37, α B =? ε α β 4

5 Kd svjetlost prelzi iz jedog optičkog sredstv u drugo, mijej smjer Updi kut α i kut lom β vezi su jeddžom: siα si β si α si β = = Kut lom može iti jviše 9º, β t = 9º Kut upd koji odgovr kutu lom 9º je α t i zove se kut totle refleksije Dkle, griči kut totle refleksije α t je kut z koji lom više ije moguć Slijedi d je si β t = jer fukcij sius može imti jveću vrijedost si β = siα si si = αt αt = si β t = efleksijom i lomom svjetlost se polrizir Svjetlost je potpuo liero polrizir ko reflektir i lomlje zrk čie prvi kut Updi kut α B z koji je reflektir zrk polrizir zove se kut polrizcije Brewsterov [Brusterov] kut polrizcije α B određe je relcijom: tgα B = 59 tgα B = tgα B = α rctg rctg siα B = = si si 37 = si t α α t t = Vjež 49 Koliki je Brewsterov kut polrizcije ko svjetlost pd iz zrk plstiču pločicu čiji griči kut refleksije izosi 3? 63 Zdtk 5 (Amrij, gimzij) Kkvu sliku dje ikokv leć jkosti 3 m - ko se predmet visie cm lzi udljeosti 5 cm od leće? ješeje 5 C = 3 m -, y = cm = m, = 5 cm = 5 m, =?, γ =? Iz jeddže z tku leću doije se udljeost slike od leće: C 5 m + = = C = C = = = = m f C 5 m 3 m Budući d je <, slik je virtul čumo povećje: m γ = = = 4 5 m Budući d je γ >, slik je usprv Vjež 5 Kkvu sliku dje ikokv leć jkosti 3 m - ko se predmet visie cm lzi udljeosti 5 cm od leće? α β Slik je virtul i usprv Zdtk 5 (Iv, studetic) Kolik je fokl dlji ikokve leće izrđee od stkl ideks lom 6? Polumjeri zkrivljeosti sferih ploh leće izose cm i cm ješeje 5 = 6, = cm = m, = cm = m, f =? Leće širokog ru jesu divergete (ili kokve) 5

6 ikokv leć plkokv leć kovekskokv leć Fokl je dlji d jeddžom ( ) = +, f gdje je reltivi ideks lom leće (prem sredstvu u kojemu se lzi leć), i jesu polumjeri zkrivljeosti sferih ploh leće Predzk polumjer pozitiv je pri koveksoj leći Predzk polumjer egtiv je pri kokvoj leći + = + = f = ( f f + ) m ( m) ( 6 ) ( m m) leć je ikokv f m cm m, m = = = = = Vjež 5 Kolik je fokl dlji ikokve leće izrđee od stkl ideks lom 4? Polumjeri zkrivljeosti sferih ploh leće izose cm i cm 67 cm Zdtk 5 (Iv, studetic) Udljeost između predmet i zstor optičkoj klupi izosi m Između jih se lzi koveks leć fokle dljie 9 cm N kojim udljeostim leće od zstor će se jemu stvoriti oštre slike? ješeje 5 d = m, f = 9 cm = 9 m, =? d + = d = d = + = + f d f = + f = + / f ( d ) f d d = f + f d d = f + f d f d = f d = 4 / ± c + d f d = ( ) d + f d = = d, = c f d = d ± d 4 f d m ± m 4 9 m m, =, = 6

7 36 m + m m = 9 = m = m m m 36 m = Vjež 5 Udljeost između predmet i zstor optičkoj klupi izosi m Između jih se lzi koveks leć fokle dljie 6 cm N kojim udljeostim leće od zstor će se jemu stvoriti oštre slike? 8 m i m Zdtk 53 (Iv, studetic) Udljeost predmet od tjeme kovergete leće izosi 3 cm, jegove slike 3 cm Kolik je fokl dlji leće? ješeje 53 = 3 cm, = 3 cm, f =? Iz jeddže tke leće slijedi: = [ ] 3 cm = + = = 3 cm = + = f = = = 5 cm f f f Vjež 53 Udljeost predmet od tjeme kovergete leće izosi 5 cm, jegove slike 5 cm Kolik je fokl dlji leće? 5 cm Zdtk 54 (Ate, tehičk škol) Ispred kovergete leće fokle dljie f = 3 cm lzi se cm udlje predmet visok cm Odredite položj i veličiu slike ješeje 54 f = 3 cm, = cm, y = cm, =?, y =? Jeddž je tke leće + =, f gdje je udljeost predmet i udljeost slike od leće, f je fokl dlji leće čumo položj slike: f f cm 3 cm + = = = = = = 6 cm f f f f cm 3 cm Povećje, tj omjer između veličie slike i predmet, izosi: ' γ = y y = Kd je γ egtiv, slik je orut, kd je pozitiv, slik je usprv Veliči slike izosi: 7

8 Slik je uveć, usprv i virtul Pri kostrukciji slik rimo tri zrke: ' y ' 6 cm = / y y = y = cm = 6 cm y cm Zrk uspored s osi lomi se tko d prolzi fokusom leće Zrk koj prolzi fokusom lomi se tko d ide usporedo s osi 3 Zrk koj ide središtem e mijej smjer F F F F ' F F ' 3 3' Grfičko (kostrukcijom) rješeje zdtk: y ' F y F f f Vjež 54 Ispred kovergete leće fokle dljie f = 3 dm lzi se dm udlje predmet visok 3 cm Odredite položj i veličiu slike ' = 6 dm, y = 9 cm Zdtk 55 (Ate, tehičk škol) Ispred divergete leće žriše dljie f = 4 cm lzi se 6 cm udlje predmet visok 4 cm Odredite položj i veličiu slike ješeje 55 f = 4 cm, = 6 cm, y = 4 cm, =?, y =? Jeddž je tke leće + =, f gdje je udljeost predmet i udljeost slike od leće, f je fokl dlji leće Udljeost je virtule slike, ko i žriš (fokl) dlji divergete leće, egtiv čumo položj slike: 8 = 6 cm f f 6 cm 4 cm + = = = = = = 4 cm f = 4 cm f f f f 6 cm 4 cm Povećje, tj omjer između veličie slike i predmet, izosi: ' γ = y y = Kd je γ egtiv, slik je orut, kd je pozitiv, slik je usprv

9 Veliči slike izosi: Slik je umje, usprv i virtul Pri kostrukciji slik rimo tri zrke: y ' ' 4 / = y y = y = cm 4 cm = 6 cm y 6 cm Zrk uspored s osi lomi se tko d prolzi fokusom leće Zrk koj prolzi fokusom lomi se tko d ide usporedo s osi 3 Zrk koj ide središtem e mijej smjer F F F F ' F F ' 3 3' Grfičko (kostrukcijom) rješeje zdtk: y F y ' F f f Vjež 55 Ispred divergete leće žriše dljie f = 4 dm lzi se 6 dm udlje predmet visok 8 cm Odredite položj i veličiu slike ' = 4 dm, y = 3 cm Zdtk 56 (Gor, elektrotehičk škol) Kd sučeve zrke pdu vodu pod kutom 4, kut lom izosi 3 Kolik je rzi svjetlosti u vodi? (c = 3 8 m/s rzi svjetlosti u zrku (vkuumu)) ješeje 56 α = 4, β = 3, c = 3 8 m/s, v =? Updi kut α i kut lom β vezi su jeddžom α β siα c, si β = v gdje su c i v rzie svjetlosti u zrku i vodi siα c v siα c si β si β = v = c si β si m 33 8 m v = = siα s si 4 = s 9

10 Vjež 56 Kd sučeve zrke pdu stkleu ploču pod kutom 5, kut lom izosi 3 Kolik je rzi svjetlosti u stklu? (c = 3 8 m/s rzi svjetlosti u zrku (vkuumu)) 96 8 m s Zdtk 57 (Iv, studetic) N zstoru koji je m dleko od predmet leć dje dvostruko uveću sliku Odredite žrišu dljiu leće ješeje 57 + = d = m, γ =, f =? Budući d se slik vidi zstoru, rel je i doive kovergetom lećom (diverget leć dje smo virtule slike) el slik kovergete leće uvijek je orut p je povećje γ egtivo čumo udljeost predmet i slike od leće: + = d + = d d γ d γ = d ( γ ) = d = = γ = = γ γ γ Žriš dlji leće izosi: d γ d γ γ + γ d m = + = f = f = f = = = 7 m f f + d + ( γ ) ( ) y F F y' Vjež 57 N zstoru koji je 4 m dleko od predmet leć dje dvostruko uveću sliku Odredite žrišu dljiu leće 53 m Zdtk 58 (Iv, studetic) Dvije plkokve leće jedkih polumjer zkrivljeosti ( = = cm) i rzličitih ideks lom ( = 5, = 7) zlijepljee su svojim rvim plohm Kolik je žriš dlji sustv leć? ješeje 58 = = cm, = 5, = 7, f =? Žriše dljie plkokvih leć su: f, = f = Žriš dlji sustv leć izosi: f f ( ) ( ) f = f = f = f + f ( ) ( ) ( ) ( )

11 f = f = ( ) ( ) ( ) ( ) ( ) ( ) cm cm f = = = 736 cm ( ) + ( ) cm ( 7 ) + cm ( 5 ) Vjež 58 Dvije plkokve leće jedkih polumjer zkrivljeosti ( = = 3 cm) i rzličitih ideks lom ( = 5, = 7) zlijepljee su svojim rvim plohm Kolik je žriš dlji sustv leć? 479 cm Zdtk 59 (Iv, studetic) Z koliko postotk će se promijeiti rzi svjetlosti kd prijeđe iz zrk u vodu čiji je ideks lom = 4/3? ješeje 59 4 c =, =? 3 c c Budući d je rzi svjetlosti u zrku c, jezi rzi v u vodi it će: v = c Promje rzie izosi: c = c v = c = c c c 3 c eltiv pogrešk je: = = = = = ili % = % = 5% c c c 4 3 Vjež 59 Z koliko postotk će se promijeiti rzi svjetlosti kd prijeđe iz zrk u sredstvo čiji je ideks lom = 5/4? % Zdtk 6 (Dey, gimzij) Može li se jeddž sferog zrcl uporiti z rv zrcl? ješeje 6 Budući d je kod rvog zrcl polumjer zkrivljeosti =, iz jeddže sferog zrcl doije se: + = lim = + = = = Zči d je slik u rvom zrclu simetrič s predmetom i virtul (to pokzuje zk mius) y y' = Vjež 6 Predmet je od rvog zrcl udlje 5 cm Kolik je udljeost predmet od slike? 5 cm

Zadatak 001 (Lidija, gimnazija) Predmet visok 10 cm udaljen je 40 cm od tjemena konkavnog sfernog zrcala polumjera

Zadatak 001 (Lidija, gimnazija) Predmet visok 10 cm udaljen je 40 cm od tjemena konkavnog sfernog zrcala polumjera Zdtk (Lidij, gimzij) Predmet isok m udlje je 4 m od tjeme kokog serog zrl polumjer zkriljeosti 5 m. Rčuski odredi položj i eličiu slike. Rješeje y = m, x = 4 m, r = 5 m, x' =?, y' =? Jeddž serog zrl dje

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA

OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA OSNOVE TRIGONOMETRIJE PRVOKUTNOG TROKUT - DEFINIIJ TRIGONOMETRIJSKIH FUNKIJ - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKIJ KUTOV OD - PRIMJEN N PRVOKUTNI TROKUT - PRIMJEN U PLNIMETRIJI 4.1. DEFINIIJ TRIGONOMETRIJSKIH

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

Matematika - usmeni dio ispita Pitanja i rješenja

Matematika - usmeni dio ispita Pitanja i rješenja Mtemtik - usmei dio ispit itj i rješej. itgori poučk c vrijedi smo z prvokuti trokut Dokz: potoji mogo dokz itgoriog poučk/teorem, 69 dokz možete ći ovdje: HTUhttp://www.cut-the-kot.org/pthgors/ UTH Geometrijski

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

1.PRIZMA ( P=2B+M V=BH )

1.PRIZMA ( P=2B+M V=BH ) .RIZMA ( =+M = ).Izrčunti površinu i zpreminu kvr čij je ijgonl ug 0m, užine osnovnih ivi su m i m. D 0m m b m,? D 00 b 00 8 8 b b 87 87 0 87 8 87 b 87 87 87 8 87. Ivie kvr onose se ko :: ijgonl je ug.oreiti

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke

Kinematika materijalne toke. 2. Prirodni koordinatni sustav. 1. Vektorski nain definiranja gibanja. Krivocrtno gibanje materijalne toke Kioco gibje meijle oke Kiemik meijle oke. dio ) Zje kiocog gibj b) Bi i ubje Položj meijle oke u skom euku eme možemo defiii slijedee ie:. Vekoski i defiij gibj (). Piodi i defiij gibj s s (). Vekoski

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA:

PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: PREGLED MINIMALNIH ZNANJA IZ MATEMATIKE ZA ZANIMANJA: elektrotehičr tehičr z rčulstvo tehičr z elektroiku tehičr z električe strojeve s primijejeim rčulstvom. rzred BROJEVI - rčuske opercije s prirodim,

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Priprema za državnu maturu

Priprema za državnu maturu Priprema za državnu maturu G E O M E T R I J S K A O P T I K A 1. Valna duljina elektromagnetskoga vala približno je jednaka promjeru jabuke. Kojemu dijelu elektromagnetskoga spektra pripada taj val? A.

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI

Geodetski fakultet, dr. sc. J. Beban-Brkić Predavanja iz Matematike 1 8. NIZOVI Geodetski fkultet, dr sc J Beb-Brkić Predvj iz Mtemtike 8 NIZOVI Pojm iz Nek je N skup prirodih brojev Prem ekom prvilu svki broj iz N zmijeimo ekim brojem:,,,, R Št smo dobili? Budući d je svkom elemetu

Διαβάστε περισσότερα

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE

PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE PITANJA IZ FOTOMETRIJE I GEOMETRIJSKE OPTIKE 1. Opišite svjetlosne izvore. Po čemu se oni razlikuju? 2. Opiši osjetljivost oka na različite valne duljine. 3. Definiraj (i pojasni) pojmove: točkasti svjetlosni

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika

Fizika 2. Optika. Geometrijska optika Fizika Optika Geometrijska optika Geometrijska optika -empirijska, aproksimativa (vrijedi uz određee uvjete) -svjetlost se proučava kao pravocrta pojava koja se širi brziom c 0 =30 8 ms - u vakuumu -svojstva

Διαβάστε περισσότερα

FOURIEROVI REDOVI I INTEGRALI

FOURIEROVI REDOVI I INTEGRALI FOURIEROVI REDOVI I INEGRALI Pri rješvju rzličitih ižijerskih prole koriste se periodičke fukcije. Pojvljuju se pod terio periodičke fukcije, u ovu skupiu spdju trigooetrijske fukcije, sius i kosius, koje

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

4. Leće i optički instrumenti

4. Leće i optički instrumenti 4. Leće i optički instrumenti. Ključni pojmovi Leće, Besselova metoda, dijaprojektor, mikroskop, Keplerov i Galilejev teleskop. Teorijski uvod Jednadžba leće: Žarišna daljina tanke leće, udaljenost predmeta

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N.

Rješenje: F u =221,9 N; A x = F u =221,9 N; A y =226,2 N. Osnove strojrstv Prvilo izolcije i uvjeti rvnoteže Prijeri z sostlno rješvnje 1. Gred se, duljine uležišten je u točki i obješen je n svoje krju o horizontlno uže. Izrčunjte horizontlnu i vertiklnu koponentu

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Ncioli cetr z vjsko vredovje orzovj MATEMATIKA viš rzi KNJIŽICA FORMULA VIŠA VIŠA RAZINA RAZINA Kopleks roj: i i Mtetik Kopleks roj: Kopleks roj: i z i i z i i z R Kjižic forul VIŠA (cos RAZINA si Kopleks

Διαβάστε περισσότερα

2. Rotacija krutog tijela. Kinematika krutog tijela. 11. dio. Kinematika krutog tijela. 1. Translacija krutog tijela. a) Krivocrtna b) Pravocrtna

2. Rotacija krutog tijela. Kinematika krutog tijela. 11. dio. Kinematika krutog tijela. 1. Translacija krutog tijela. a) Krivocrtna b) Pravocrtna Kod kruog ijel udljeosu bilo kojih diju ok ijel osje ijekom gibj epromijeje. Kiemik kruog ijel 11. dio Kiemik gibj: ) kruog šp b) krue ploe c) kruog ijel. Rzlikujemo: ) slobodo ijelo b) eslobodo ijelo

Διαβάστε περισσότερα

Fizika 2. Optika. Geometrijska optika 2009/10

Fizika 2. Optika. Geometrijska optika 2009/10 Fizika Optika Geometrijska optika 009/10 1 Geometrijska optika -empirijska, aproksimativna (vrijedi uz određene uvjete) -svjetlost se proučava kao pravocrtna pojava koja se širi brzinom c 0 =310 8 ms -1

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

F2_K1_geometrijska optika test 1

F2_K1_geometrijska optika test 1 F2_K1_geometrijska optika test 1 1. Granični lom i totalna refleksija. Izračunajte granični kut upada za sistem staklozrak, ako je indeks loma stakla 1,47. Primjena totalne refleksije na prizmi; jednakokračna

Διαβάστε περισσότερα

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine.

KONSTRUKTIVNI ZADACI (TROUGAO) Rešavanje konstruktivnih zadataka je jedna od najtežih oblasti koja vas čeka ove godine. KONSRUKIVNI ZI (ROUGO) Rešvje kotruktivih zdtk je jed od jtežih olti koj v ček ove godie. Zhtev doro predzje, pozvje odgovrjuće teorije. Zto vm mi preporučujemo d e jpre podetite teorije veze z trougo

Διαβάστε περισσότερα

Geometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas

Geometrijska optika. Fizika 2 Predavanje 9. Dr. sc. Damir Lelas Fakultet elektrotehnike, strojarstva i brodogradnje Razlikovni studiji (90/90/930/940/950) Fizika Predavanje 9 Geometrijska optika Dr. sc. Damir Lelas (Damir.Lelas@fesb.hr, damir.lelas@cern.ch ) Danas

Διαβάστε περισσότερα

PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju)

PREGLED DEFINICIJA I FORMULA ZA 2. KOLOKVIJ IZ MATEMATIKE 1 (pomagalo dozvoljeno na kolokviju) PREGLED DEFINICIJA I FORMULA ZA KOLOKVIJ IZ MATEMATIKE (pomglo dozvoljeo kolokviju) Opći pojmovi: I REALNE FUNKCIJE JEDNE REALNE VARIJABLE Nek su X, Y R Rel fukcij f : X Y je svko pridruživje koje svkom

Διαβάστε περισσότερα

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu

Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.

3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu. ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2

Διαβάστε περισσότερα

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi

NEKE POVRŠI U. Površi koje se najčešće sreću u zadacima su: 1. Elipsoidi. 2. Hiperboloidi. 3. Paraboloidi. 4. Konusne površi. 5. Cilindrične površi NEKE POVŠI U Pvrši kje se njčešće sreću u dcim su:. Elipsidi. Hiperlidi. Prlidi 4. Knusne pvrši 5. Cilindrične pvrši. Elipsidi Osnvn jednčin elipsid ( knnsk) je : + + = c, i c su dsečci n, i si. Presek

Διαβάστε περισσότερα

( ) 2. 3 upisana je kocka. Nađite brid kocke.

( ) 2. 3 upisana je kocka. Nađite brid kocke. Zdtk 00 (Tomislv, tehničk škol) Kugli polumje upisn je kok. Nđite id koke. Rješenje 00 ko je kugli upisn kok, ond je pomje kugle jednk postonoj dijgonli koke: =. Poston dijgonl koke čun se fomulom: D =.

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi

MEHANIKA FLUIDA. Pritisak tečnosti na ravne površi MEHANKA FLUDA Pritisk tečnosti n rvne površi. zdtk. Tešk brn dimenzij:, b i α nprvljen je od beton gustine ρ b. Kosi zid brne smo s jedne strne kvsi vod, gustine ρ, do visine h. Odrediti ukupni obrtni

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA

TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA TRIGONOMETRIJSKE FUNKCIJE OŠTROG UGLA Trignmetrij je prvitn predstvlj lst mtemtike kje se vil izrčunvnjem nepzntih element trugl pmću pzntih. Sm njen nziv ptiče d dve grčke reči TRIGONOS- št znči trug

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1

Uvođenje pojma određenog integrala u srednjoškolskoj nastavi matematike 1 Uvođeje pojm određeog itegrl u sredjoškolskoj stvi mtemtike 1 1. Uvod Iv Božić 2, Tomislv Šikić 3 S pojmom itegrl i itegrlim rčuom učeici se prvi put susreću u četvrtom rzredu sredje škole. S ozirom d

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

1 Ekstremi funkcija više varijabli

1 Ekstremi funkcija više varijabli 1 Ekstremi funkcij više vrijbli Definicij ekstrem funkcije: Funkcij u = f(x 1, x 2,, x n ) im u točki T ( 1, 2,, n ) A) LOKALNI MINIMUM f( 1, 2,, n ) ko z svku točku T vrijedi nejednkost: T ( 1 + dx 1,

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

Beskonačni redovi 1.1 BROJEVNI REDOVI. Beskonačni brojevni red (numerički red, red sa konstantnim članovima) predstavlja sumu u :

Beskonačni redovi 1.1 BROJEVNI REDOVI. Beskonačni brojevni red (numerički red, red sa konstantnim članovima) predstavlja sumu u : Besoči redovi. BROJEVNI REDOVI Besoči brojevi red umeriči red, red s osttim človim predstvlj sumu u : svih člov eog besočog brojevog iz { } Zbirove u u u u. s u, s u u, K, s u. zivmo prcijli zbirovi. Kžemo

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Svjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo.

Svjetlost. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti. Ravno zrcalo Sferno zrcalo. Poglavlje Svjetlost.....3..4..4...4...5..5...5...5.3..6..6...6...6.3..7..8. Priroda svjetlosti Zakoni geometrijske optike Fermatov princip Refleksija svjetlosti Ravno zrcalo Sferno zrcalo Lom svjetlosti

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

VOLUMEN ILI OBUJAM TIJELA

VOLUMEN ILI OBUJAM TIJELA VOLUMEN ILI OBUJAM TIJELA Veličina prostora kojeg tijelo zauzima Izvedena fizikalna veličina Oznaka: V Osnovna mjerna jedinica: kubni metar m 3 Obujam kocke s bridom duljine 1 m jest V = a a a = a 3, V

Διαβάστε περισσότερα

Masa, Centar mase & Moment tromosti

Masa, Centar mase & Moment tromosti FAKULTET ELEKTRTEHNIKE, STRARSTVA I BRDGRADNE - SPLIT Katedra za dinamiku i vibracije Mehanika 3 (Dinamika) Laboratorijska vježba Masa, Centar mase & Moment tromosti Ime i rezime rosinac 008. Zadatak:

Διαβάστε περισσότερα

DETERMINANTE I MATRICE

DETERMINANTE I MATRICE Gimzij: Lucij Vrji Mturl rdj: ETERMINANTE I MATRICE Izrdio: iko Koruić, učeik 4 G Metor: Mile Broić, profesor U Zgreu, 0 siječj 996 SARŽAJ I UVO II ETERMINANTE etermite drugog red etermite trećeg red 3

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

λ ν = metoda + = + = = =

λ ν = metoda + = + = = = Zadata (Mira, gimnazija) Polumjer zarivljenosti udubljenog zrala je 4 m, a predmet je od zrala udaljen a = f. Nañi položaj slie. Rješenje r = 4 m, a = f, b =? Sferno zralo je dio ugline površine, tj. ono

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka?

x y 2 9. Udaljenost točke na osi y od pravca 4x+3y=12 jednaka je 4. Koja je to točka? MATEMATIKA Zdci s držvne mture viš rzin Brojevi i lgebr Funkcije Jedndžbe i nejedndžbe Geometrij Trigonometrij LINEARNA FUNKCIJA 1. Uz koji uvjet jedndžb A+By+C=0 predstvlj prvc?. Koje je znčenje broj

Διαβάστε περισσότερα

povratnog napona 6 prekidača na slici 1.

povratnog napona 6 prekidača na slici 1. Prktikum iz elektroenergetike Lortorij Elektro Mgneti Trnzient Progrm (EMTP) Zdtk Primjer prorčun prelznog povrtnog npon (prekidnje liskog krtkog spoj) Potreno je prorčunti prijelzni povrtni npon n kontktim

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa.

Akvizicija tereta. 5660t. Y= masa drva, X=masa cementa. Na brod će se ukrcati 1733 tona drva i 3927 tona cementa. Akvizicija tereta. Korisna nosivost broda je 6 t, a na brodu ia 8 cu. ft. prostora raspoloživog za sještaj tereta pod palubu. Navedeni brod treba krcati drvo i ceent, a na palubu ože aksialno ukrcati 34

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Fizika 2. Optika: Geometrijska Fizikalna 2007/08

Fizika 2. Optika: Geometrijska Fizikalna 2007/08 Fizika 2 Optika: Geometrijska Fizikalna 2007/08 1 Svjetlost je... Svjetlost je ono što čini objekte oko nas vidljivima Svjetlost je jedini izvor boje Svjetlost je energija Svjetlost je i val i čestica

Διαβάστε περισσότερα

Primjene odreženog integrala

Primjene odreženog integrala VJEŽBE IZ MATEMATIKE Ivn Brnović Miroslv Jerković Lekcij 5 Primjen određenog integrl Poglvlje Primjene odreženog integrl. Povr²in rvninskog lik Z dni rvninski lik omežen krivuljm y = f(x) i y = g(x) te

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio

Geometrijske karakteristike poprenih presjeka nosaa. 9. dio Geometrijske karakteristike poprenih presjeka nosaa 9. dio 1 Sile presjeka (unutarnje sile): Udužna sila N Poprena sila T Moment uvijanja M t Moment savijanja M Napreanja 1. Normalno napreanje σ. Posmino

Διαβάστε περισσότερα

7. ELEMENTARNE FUNKCIJE

7. ELEMENTARNE FUNKCIJE Geodetski fkultet dr. sc. J. e-rkić Predvj iz Mtemtike 7. ELEMENTRNE FUNKIJE Među fukcijm koje su de formulom vžu ulogu imju tkozve elemetre fukcije. Pozvje svojstv elemetrih fukcij omogućit će lkše svldvje

Διαβάστε περισσότερα

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( x) ( ) ( ) ( x) ( ) ( x) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Zadatak 08 (Vedrana, maturantica) Je li unkcija () = cos (sin ) sin (cos ) parna ili neparna? Rješenje 08 Funkciju = () deiniranu u simetričnom području a a nazivamo: parnom, ako je ( ) = () neparnom,

Διαβάστε περισσότερα

2.1. KRISTALNA STRUKTURA

2.1. KRISTALNA STRUKTURA .1. KRISTALNA STRUKTURA Kd govorimo o čvrstim tijelim, rzlikujemo kristle i morfn tijel. N primjer, kr, željezo, germnij, i ntrij-klorid su kristli, stklo, polimerizirne plstične mse, smol, gum i jntr

Διαβάστε περισσότερα

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora

Vježba 1. Analiza i sinteza sistema regulacije brzine vrtnje istosmjernog motora ortorjske vježe z predet ootk uprvljje prozvod sste Vjež Vjež Alz stez sste regulcje rze vrtje stosjerog otor Clj vježe: Stez regultor rze vrtje stosjerog otor pooću etod tehčkog setrčog optu Alzrt dčko

Διαβάστε περισσότερα

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici.

Vrijedi relacija: Suma kvadrata cosinusa priklonih kutova sile prema koordinatnim osima jednaka je jedinici. Za adani sustav prostornih sila i j k () oktant i j k () oktant koje djeluju na materijalnu toku odredite: a) reultantu silu? b) ravnotežnu silu? a) eultanta sila? i j k 8 Vektor reultante: () i 8 j k

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

Trigonometrijske funkcije

Trigonometrijske funkcije 9 1. Trigoometrijske fukcije 1.1. Ako je α + β π,izračuaj 1 + tg α)1 + tg β). 4 1.. Izračuaj zbroj log a tg 1 + log a tg +...+ log a tg 89. 1.3. Izračuaj 40 0 si 0 bez uporabe tablica ili račuala. 1.4.

Διαβάστε περισσότερα

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću

Relativno mirovanje tečnosti. Translatorno kretanje suda sa tečnošću Reltivno irovnje tečnosti Trnsltorno kretnje sud s tečnošću Zdtk Cistern čiji je orečni resek elis oluos i b nunjen je tečnošću ustine i kreće se rvolinijski jednklo ubrzno ubrznje w o orizontlnoj rvni

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI

Sadrˇzaj. Sadrˇzaj 1 9 DVODIMENZIONALNI SLUČAJNI VEKTOR DISKRETNI DVODIMENZIONALNI Sadrˇzaj Sadrˇzaj DVODIMENZIONALNI. DISKRETNI DVODIMENZIONALNI............................ KONTINUIRANI -dim tko želi znati više.............................. 5. KOVARIJANCA, KORELACIJA, PRAVCI REGRESIJE........

Διαβάστε περισσότερα

Proširenje na poučku o obodnom i središnjem kutu

Proširenje na poučku o obodnom i središnjem kutu Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije

Διαβάστε περισσότερα

Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija

Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija. Fotoelasticimetrija doc.dr. Samir Lemeš Opis metode Dobivanje polariziranog svjetla i vrste polariskopa Model u ravninski polariziranom svjetlu Model u kružno polariziranom svjetlu Analiza rezultata 2/30

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα