3 + tanx 100 Differentiate G(t) = Answer: G (t) = Differentiate f (x) = lnx + ex 2. Differentiate F(s) = ln ( cos(2s) + 2 ) Answer: F (s) =
|
|
- Ὡρος Μέλιοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Differentiate y xcos(2x 2 ( x Differentiate f (x sinx f (x cos(1 + x - 2*xˆ2 + x*(-1 + 4*x*sin(1 + x - 2*xˆ2 Differentiate y -24*cot(x*csc(xˆ3 3 + tanx 100 Differentiate G(t (cost 4 1 (sec(xˆ2/(2*sqrt(3 + tan(x G (t Differentiate y ln(x + 3 x 2 1/(xˆ2*(3 + x - (2*ln(3 + x/xˆ3 Differentiate y cosq + (sinq 2 dq -sin(q+2*cos(q*sin(q ( 1 Differentiate y ln (-2*t/(5 + tˆ2 t Differentiate y e x + ln(2x (eˆx + xˆ(-1/(2*sqrt(eˆx + ln(2*x Differentiate y x 4 ln(4.7x xˆ3 + 4*xˆ3*ln(4.7*x Differentiate y (t 1 2 cos(2t (400*cos(tˆ3*sin(t/(-1 + cos(tˆ4ˆ2 Differentiate f (x lnx + ex 2 f (x 2*e*x + 1/(2*x*sqrt(ln(x Differentiate F(s ln ( cos(2s + 2 F (s (-2*sin(2*s/(2 + cos(2*s Differentiate f (q (cos(q + π 2 3 f (q -3*cos(q*sin(qˆ2 Differentiate f (x 2 3 cos( x 2x f (x (2*(2-1/(2*sqrt(x*sin(sqrt(x - 2*x/3 ( e Differentiate f (x ln x 2 f (x -2/x ( 1 Differentiate B(t ln 9t 3 + 3t B (t (2*(-1 + t/(3 + cos(1-2*t - (2*(-1 + tˆ2*sin(1-2*t/(3-1*(9*tˆ(3 + cos(1+ -3*tˆ(2 2*tˆ2+ sqrt(2ˆ(-1*(27*tˆ2 + 6*t Differentiate g(x sin(2 x g (x ln(2*2ˆx*cos(2ˆx Differentiate f (x tan(e x f (x eˆx*sec(eˆxˆ2 Differentiate g(z (e 3 sin(5z 2 7z 6 g (z (eˆ3*cos(5*zˆ(2-7*z - 6*(10*z - 7 Differentiate h(x 2cos(x 3/2 h (x (-3*xˆ(1/2*sin(xˆ(3/2 1
2 Differentiate R dq (q + e4 sin(3q 7 (4*(q + eˆ(3*sin(3*q - 7-3*(q + eˆ(4*cos(3*q - 7 / (sin(3*q - 7ˆ(2 Differentiate H dz z 3 ln(z Differentiate B(t (sin( π 4 tan( 9t2 1 3 (3*zˆ(2*ln(zˆ( *zˆ(4*(zˆ(2 + 4ˆ(-1 / (ln(zˆ(2 B (t + 4ˆ(2 Differentiate L(z (tan(10z 7 5/4 L (z Differentiate L(t 4cos(t 4 (25/2*(tan(10*z - 7ˆ(1/4*(1 / (cos(10*z - 7ˆ(2 L (t (2p 11/4 Differentiate h(p cos(p + 5 h (p ((1/2*(2*p - 1ˆ(-3/4*cos(p (2*p - 1ˆ(1/4*sin(p + f 5 (x / (cos(p + 5ˆ(2 ( 1 7*(5/4*10*cos(10*xˆ(-9/4*sin(10*x Differentiate f (y ln y 3 π 3 f (y Differentiate R 6tan(x 5/4 (-1/(yˆ3 - piˆ3*3*yˆ2 Differentiate y sin(t (tan(t 3/8 cos(t - (3/8*(tan(tˆ(-5/8*(1 / (cos(tˆ(2 ( 10 Differentiate y ln s 2 ds -2*(1/s Differentiate B(p (cos(9p 5 3/2 B (p (-27/2*(cos(9*p - 5ˆ(1/2*sin(9*p - 5 Differentiate C(y y 2 + ln(9y C (y 2*y + (yˆ(-1 Differentiate g(x 3tan(10x 2 9 g (x 60*x*(1 / (cos(10*xˆ(2-9ˆ(2 2 Differentiate f (q 9ln(q 3/2 + 1 f (q (-27/2*qˆ(-5/2/(qˆ(-3/2+1 Differentiate L(x 2sin(x 2 3x 7 L (x 2*cos(xˆ(2-3*x - 7*(2*x - 3 (-18*(sin(pi/4*t*(1 / (cos(-9*tˆ(2-1/3ˆ(2 (-16*tˆ(3*sin(tˆ(4 Differentiate f (x 7 cos(10x 5/4 (15/2*xˆ(1/4*(1 / (cos(xˆ(5/4ˆ(2 Differentiate y tan(q (tan(q 1/8 dq 1 / (cos(qˆ(2 - (1/8*(tan(qˆ(-7/8*(1 / (cos(qˆ(2 Differentiate V cos( 3 4 sin(x3/4 cos(3/4*(3/4*xˆ(-1/4*cos(xˆ(3/4 Differentiate g(y tan(7y g (y 3.5*(tan(7*yˆ(-0.5*(1 / (cos(7*yˆ(2 Differentiate y x 3 cos(4x cos(4 3*xˆ(2*cos(4*x - cos(4-4*xˆ(3*sin(4*x - cos(4 ( π Differentiate W ln t 3-3*tˆ(-1
3 Differentiate W x 3 cos(5x 2 + ln(π Differentiate B(y ln(y + ey 4 B (y 3*xˆ(2*cos(5*xˆ(2 + ln(pi - xˆ(3*sin(5*xˆ(2 + ln(pi*(10*x 0.5*yˆ(-1*(ln(yˆ( (4*e*yˆ(3 Differentiate B(x B (x 4*sˆ(3 - sˆ(-1 (3x + cos(25 sin(2x Differentiate H ln(2sin( t + (e 2 t ln(2*cos(sqrt(t + (eˆ2*t*(0.5*tˆ( eˆ2 Differentiate C(x tan(x π C (x (pi*xˆ(pi-1*(1 / (cos(xˆ(piˆ(2 Differentiate L(x (ln(2cos( 1 4 x L (x (ln(2*sin((1/4 - x Differentiate L(t 9sin(4t 2 + ln(4 L (t 8*(9*t*cos(4*tˆ(2 + ln(4 Differentiate y 9sin( q 10q dq 9*(cos(sqrt(q - 10*q*((1/2*qˆ(-1/2-10 Differentiate W πcos( x + ex pi*(-1*sin(sqrt(x + e*x*(0.5*xˆ( e Differentiate L(z (cos(4z 2 L (z (-4*(sqrt(2*(cos(4*zˆ(sqrt(2-1*sin(4*z Differentiate H (4 + cos(t 5 (-5*(4 + cos(tˆ(4*sin(t Differentiate V 2 cos(4x 5/4 (15*(3*x + cos(2ˆ(4*sin(2*xˆ( *x*(3*x + cos(2ˆ(5*cos(2*xˆ(2 + 9 / (sin(2*xˆ(2 + 9ˆ(2 2*(5*sin(4*x*cos(4*xˆ(-9/4 Differentiate y s 4 ln(s ds Differentiate R ln(x2 + 2 x 5/6 3 (2*xˆ(11/6*(xˆ(2 + 2ˆ(-1 - (5/6*xˆ(-1/6*ln(xˆ(2 + 2 Differentiate V cos(8x (-4*(cos(8*xˆ(-0.5*sin(8*x Differentiate y 8 ln(x 10x e 4*xˆ(-1*(ln(xˆ( (10*e*xˆ(e-1 Differentiate H sin(x + (cos(x 2 cos(x - 2*cos(x*sin(x Differentiate y πln(5x 2 + π 10*pi*x/(5*xˆ2 + pi Differentiate H sin(y 5/4 dy (5/4*yˆ(1/4*cos(yˆ(5/4 Differentiate B(q (e 4 sin(q 3 + 2q 2 B (q ((eˆ4*(3*qˆ(2+4*q*cos(qˆ(3 + 2*qˆ(2 Differentiate f (z 7ln(5z 5 f (z -35/z
4 Differentiate f (p ln(p2 + 6 p 4 f (p sin(s/(7 - cos(s (2*pˆ(5*(pˆ(2 + 6ˆ(-1-4*pˆ(3*ln(pˆ(2 + 6 / pˆ(8 Differentiate y x 5/4 ln(3x + 5 q 5 Differentiate g(q ln(q g (q (5/4*xˆ(1/4-3/(3*x + 5 Differentiate z (7 sin(x (5*qˆ(4*ln(q + 1/3 - qˆ(5*(q + 1/3ˆ(-1 / (ln(q + 1/3ˆ(2 5 dx dz (4t + 1/25 Differentiate H cos(8t + 1-5*(7 - sin(xˆ(-6*(-cos(x Differentiate W 8sin(x 2 ln(x (20*(4*t + 1/2ˆ(4*cos(8*t *(4*t + 1/2ˆ(5*sin(8*t dx + 1 / (cos(8*t + 1ˆ(2 ( t 3 8*(2*x - 1/x*cos(xˆ2 - ln(x Differentiate y 9ln π Differentiate y (7 ln(2x π dx 27*tˆ(-1 Differentiate y (4s 9 3 sin(2s ds 12*(4*s-9ˆ2*sin(2*s + 2*(4*s - 9ˆ3*cos(2*s Differentiate f (x ln(2x2 + 7 π f (x (1/pi*4*x/(2*xˆ2 + 7 Differentiate y sin(9x ln(x cos(9*x - ln(x*(9-1/x Differentiate L(z z 3/2 ln(cos(z + 1 L (z (3/2*zˆ(1/2 + sin(z/(cos(z + 1 Differentiate y ln(7 cos(s ds pi*(7 - ln(2*xˆ(pi-1*(-1/x Differentiate y x 7/8 ln(x e (7/8*xˆ(-1/8*ln(x - e + xˆ(7/8*(x - eˆ(-1 Differentiate C(y (cos(3y π 2 π C Differentiate R (sin(2x π 5 (y dr (-3*pi*(cos(3*y - (pi/2ˆ(pi-1*sin(3*y - (pi/2 10*(sin(2*x - piˆ(4*cos(2*x - pi Differentiate g(y ln(y(y 2 1/3 g (y (3*yˆ2-1/3*(1/(y*(yˆ2-1/3 Differentiate y x 2 cos(x 2 + 3x 2 2*x*cos(xˆ(2 + 3*xˆ(2-8*xˆ(3*sin(xˆ(2 + 3*xˆ(2 Differentiate g(p sin(10p g (p 5*(sin(10*pˆ(-0.5*cos(10*p Differentiate C(y ycos(8y 3 4 C (y cos(8*yˆ *yˆ3*sin(8*yˆ3-4 Differentiate y ln(x + 3 (1/2*(ln(x + 3ˆ(-1/2*(1/x 4
5 Differentiate R (ln(9y + π 5 dy 5*(ln(9*y + piˆ4*(1/y Differentiate h(x ln(x π + x π h (x pi*(xˆ(pi-1 - xˆ(-pi-1/(xˆ(-pi + xˆ(pi Differentiate f (p ln(p 5 + ep f (p (5*pˆ4 + e/(pˆ5 + e*p Differentiate V (ln(x 3 + 2ln(x 5 3*ln(xˆ2*(1/x + 2/x Differentiate H ln(x π ex (pi*xˆ(pi-1 - e/(xˆ(pi - e*x Differentiate V ln(z z dz (5*zˆ(4 + (1/3*(zˆ5 + z/3ˆ(-1 Differentiate B(s sin(πs + (cos(s 1/6 B (s pi*cos(pi*s - (1/6*(cos(sˆ(-5/6*sin(s Differentiate L(s ln(s 2 (cos(2s L (s (2*s - (cos(2*(sˆ2 - (cos(2*sˆ(-1 Differentiate W 6ln( t + (e 3 t (6*(sqrt(t + (eˆ3*tˆ(-1*(0.5*tˆ( eˆ3 Differentiate L(t t(ln(3t + π 3 L (t ln(3*t + piˆ3 + 9*t*(ln(3*t + piˆ2/(3*t + pi Differentiate h(x cos( x + (ln(x 10 5/4 h (x -sin(x + (5/4*(ln(x - 10ˆ(1/4*(x - 10ˆ(-1 Differentiate L(x x 4 ln(9x L (x 4*xˆ(3*ln(9*x + xˆ(3 Differentiate C(y ln(y e + cos(y C (y (e*yˆ(e-1 - sin(y/(yˆe + cos(y Differentiate y sin(3x + 5ln(5 3x 3*cos(3*x + 5*ln(5-3*x - 3*sin(3*x + 5*(5-3*xˆ(-1 Differentiate H sin(x + (sin(x 5 cos(x + 5*(sin(xˆ(4*cos(x Differentiate z e cos(q 2 2 dq dz (-2*e*q*sin(qˆ(2-2 Differentiate h(x x 5 ln(x 1 2 h (x 5*xˆ4*ln(x - 1/2 + xˆ5/(x - 1/2 Generated by c WeBWorK, Mathematical Association of America 5
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
3 }t. (1) (f + g) = f + g, (f g) = f g. (f g) = f g + fg, ( f g ) = f g fg g 2. (2) [f(g(x))] = f (g(x)) g (x) (3) d. = nv dx.
3 }t! t : () (f + g) f + g, (f g) f g (f g) f g + fg, ( f g ) f g fg g () [f(g(x))] f (g(x)) g (x) [f(g(h(x)))] f (g(h(x))) g (h(x)) h (x) (3) d vn n dv nv (4) dy dy, w v u x íªƒb N úb5} : () (e x ) e
x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)
x sin x cosx e x lnx x3 + (sin x)/x e x {}}{ (f(g(x))) = f ( g(x)) g (x). }{{}}{{} f(g(x)) 3x cos(x 3 ). 3x cos(x 3 ) x 3 3x sin(x 3 ) (sin(x3 )) = cos(x 3 ) (3x ). 3x cos(x 3 ) = sin(x 3 ) + C. e ( +).
Homework#13 Trigonometry Honors Study Guide for Final Test#3
Homework#13 Trigonometry Honors Study Guide for Final Test#3 1. Στο παρακάτω σχήμα δίνεται ο μοναδιαίος κύκλος: Να γράψετε τις συντεταγμένες του σημείου ή το όνομα του άξονα: 1. (ε 1) είναι ο άξονας 11.
L A TEX 2ε. mathematica 5.2
Διδασκων: Τσαπογας Γεωργιος Διαφορικη Γεωμετρια Προχειρες Σημειωσεις Πανεπιστήμιο Αιγαίου, Τμήμα Μαθηματικών Σάμος Εαρινό Εξάμηνο 2005 στοιχεοθεσια : Ξενιτιδης Κλεανθης L A TEX 2ε σχεδια : Dia mathematica
% APPM$1235$Final$Exam$$Fall$2016$
Name Section APPM$1235$Final$Exam$$Fall$2016$ Page Score December13,2016 ATTHETOPOFTHEPAGEpleasewriteyournameandyoursectionnumber.The followingitemsarenotpermittedtobeusedduringthisexam:textbooks,class
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής
Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................
Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 18/4/2018 Διδάσκων: Ι. Λυχναρόπουλος
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Πρόοδος 8/4/8 Διδάσκων: Ι. Λυχναρόπουλος Άσκηση (Μονάδες ) Να εξετάσετε ως προς τα τοπικά ακρότατα τη συνάρτηση: f x x x (,
298 Appendix A Selected Answers
A Selected Answers 1.1.1. (/3)x +(1/3) 1.1.. y = x 1.1.3. ( /3)x +(1/3) 1.1.4. y = x+,, 1.1.5. y = x+6, 6, 6 1.1.6. y = x/+1/, 1/, 1.1.7. y = 3/, y-intercept: 3/, no x-intercept 1.1.8. y = ( /3)x,, 3 1.1.9.
Solution to Review Problems for Midterm III
Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5
Προβολές και Μετασχηματισμοί Παρατήρησης
Γραφικά & Οπτικοποίηση Κεφάλαιο 4 Προβολές και Μετασχηματισμοί Παρατήρησης Εισαγωγή Στα γραφικά υπάρχουν: 3Δ μοντέλα 2Δ συσκευές επισκόπησης (οθόνες & εκτυπωτές) Προοπτική απεικόνιση (προβολή): Λαμβάνει
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. Απειροστικός Λογισµός Ι. ιδάσκων : Α. Μουχτάρης. Απειροστικός Λογισµός Ι - 3η Σειρά Ασκήσεων
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών Απειροστικός Λογισµός Ι ιδάσκων : Α. Μουχτάρης Απειροστικός Λογισµός Ι - η Σειρά Ασκήσεων Ασκηση.. Ανάπτυξη σε µερικά κλάσµατα Αφου ο ϐαθµός του αριθµητή
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 2015
Γενικά Μαθηµατικά Ι Θέµατα Ιανουαρίου 215 Άσκηση 1: (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (ax+b)(x 2 +1) αν το a είναι ϑετικός αριθµός. (ϐ) Το µεσηµέρι, ένα σαλιγκάρι που ϐρίσκεται στο κέντρο ενός
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις)
Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 8 (λύσεις) Λουκάς Βλάχος και Μανώλης Πλειώνης Άσκηση : (α) Να υπολογισθεί το γενικευµένο ολοκλήρωµα (x+)(x 2 +) (ϐ) Να υπολογισθεί το ολοκλήρωµα f(x) f(x)+f(x+) για κάθε
k = j + x 3 j + i + + f 2
1 ΑΝΑΛΥΣΗ ΙΙ Διανυσματική Ανάλυση Κλίση-Απόκλιση-Στροβιλισμός Εστω f : D R 3 R μία βαθμωτή συνάρτηση και f : D R 3 R 3 μία διανυσματική συνάρτηση. Εισάγουμε τον διαφορικό τελεστή : = x 1 i + x 2 j + x
(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x
ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως
CAMI Wiskunde: Graad 10
10.9 Trigonometrie ie GRA RAAD 10_KABV Kurrikulum 1.1 Definieer ieer trigonometriese verhoudings as sinθ, cosθ en tanθ deur reghoekige driehoeke te gebruik. (a (b cosa sinc tana... sina tanc cosc (c (d
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ. 3.1 Η έννοια της παραγώγου. y = f(x) f(x 0 ), = f(x 0 + x) f(x 0 )
Κεφάλαιο 3 ΠΑΡΑΓΩΓΟΣ 3.1 Η έννοια της παραγώγου Εστω y = f(x) µία συνάρτηση, που συνδέει τις µεταβλητές ποσότητες x και y. Ενα ερώτηµα που µπορεί να προκύψει καθώς µελετούµε τις δύο αυτές ποσοτήτες είναι
Καμπυλόγραμμα Συστήματα Συντεγμένων
Καμπυλόγραμμα Συστήματα Συντεγμένων Προσδιορίστε την αναπαράσταση των τελεστών και σε ένα καμπυλόγραμμο σύστημα συντεταγμένων. Εξειδικεύστε τα αποτέλεσματά σας στις περιπτώσεις : (α) πολικών συντεταγμένων
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
b proj a b είναι κάθετο στο
ΦΥΛΛΑ ΙΟ ΑΣΚΗΣΕΩΝ. Βρείτε όλα τα σηµεία P τέτοια ώστε η απόσταση του P από το A(, 5, 3) είναι διπλάσια από την απόσταση του P από το B(6, 2, 2). είξτε ότι το σύνολο όλων αυτών των σηµείων είναι σφαίρα.
Λύσεις στο Επαναληπτικό Διαγώνισμα 2
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο Επαναληπτικό Διαγώνισμα 2 Για τυχόν παρατηρήσεις, απορίες ή λάθη που θα βρείτε, στείλτε μου
a (x)y a (x)y a (x)y' a (x)y 0
Γραμμικές Διαφορικές εξισώσεις Ανώτερης Τάξης Έστω ότι έχουμε μια γραμμική διαφορική εξίσωση τάξης n a (x) a (x) a (x)' a (x) f (x) () (n) (n) n n 0 όπου a i(x),i 0,...,n και f(x) είναι συνεχείς συναρτήσεις
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Παράγωγος - ιαφόριση ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 05 Μαρτίου 2009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια σύνοψη της ϑεωρίας των πα- ϱαγώγων πραγµατικών
Author : Πιθανώς έχει κάποιο λάθος Supervisor : Πιθανώς έχει καποιο λάθος.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Φυσικής 1ο Σετ Ασκήσεων Γενικών Μαθηματικών ΙΙ Author : Βρετινάρης Γεώργιος Πιθανώς έχει κάποιο λάθος Supervisor : Χ.Τσάγκας 19 Φεβρουαρίου 217 ΑΕΜ: 14638 Πιθανώς
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του τρίτου φυλλαδίου ασκήσεων. 1. Λύστε τις παρακάτω διαφορικές εξισώσεις. Αν προκύψει αλγεβρική σχέση ανάμεσα στις μεταβλητές x, y η οποία δεν λύνεται
Fourier Analysis of Waves
Exercises for the Feynman Lectures on Physics by Richard Feynman, Et Al. Chapter 36 Fourier Analysis of Waves Detailed Work by James Pate Williams, Jr. BA, BS, MSwE, PhD From Exercises for the Feynman
fysikoblog.blogspot.com
fysoblog.blogspot.com Πανεπιστήμιο Αηνών Τμήμα Φυσικής Κβαντομηχανική ΙI Α. Καρανίκας και Π. Σφήκας Σημειώσεις ΙΙ: Αλλαγή Συστήματος Συντεταγμένων Στις σημειώσεις αυτές δίνομε την αναπαράσταση των τελεστών
Ολοκλήρωση. Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι
Ολοκλήρωση Ολοκληρωτικός Λογισμός μιας μεταβλητής Ι Το ζητούμενο Είδαμε μεθόδους υπολογισμού για το πώς μεταβάλλονται οι συναρτήσεις στιγμιαία. Αν αθροίσουμε αυτές τις στιγμιαίες μεταβολές θα έχουμε ένα
Trigonometry Functions (5B) Young Won Lim 7/24/14
Trigonometry Functions (5B 7/4/14 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ
ΘΕΩΡΙΑ - ΠΑΡΑ ΕΙΓΜΑΤΑ ΑΝΑΛΥΤΙΚΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΑΘΗΝΑ 996 Πρόλογος Οι σηµειώσεις αυτές γράφτηκαν για τους φοιτητές του Εθνικού Μετσόβιου Πολυτεχνείου και καλύπτουν πλήρως το µάθηµα των
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.6: Τριγωνομετρικά Ολοκληρώματα Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Γ.6:
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these
1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x 3] x / y 4] none of these 1. If log x 2 y 2 = a, then x 2 + y 2 Solution : Take y /x = k y = k x dy/dx = k dy/dx = y / x Answer : 2] y / x
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ 2/2012
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /0 Έστω r rx, y, z, I a, b συνάρτηση C τάξης και r r r x y z Nα αποδείξετε ότι: d dr r (α) r r, I r r r d dr d r (β) r r, I dr (γ) Αν r 0, για κάθε I κάθε I d (δ)
1. ίνονται τα διανύσµατα: x=(a+µ,1), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.
. ίνονται τα διανύσµατα: x=(a+µ,), y=(0,b), a,b>0. Για ποιες τιµές του µ τα διανύσµατα είναι: (α) γραµµικά εξαρτηµένα, (β) γραµµικά ανεξάρτητα.. ίνονται τα διανύσµατα (x,0), (0,y), (z,0). Είναι γραµµικά
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος
Εφαρμοσμένα Μαθηματικά ΙΙ 5ο Σετ Ασκήσεων (Λύσεις) Διανυσματικά Πεδία Επικαμπύλια Ολοκληρώματα Επιμέλεια: Ι. Λυχναρόπουλος. Να υπολογιστεί το ολοκλήρωμα I = x ds, όπου c το δεξιό ημικύκλιο x + = 6 α) κινούνοι
y(t) S x(t) S dy dx E, E E T1 T2 T1 T2 1 T 1 T 2 2 T 2 1 T 2 2 3 T 3 1 T 3 2... V o R R R T V CC P F A P g h V ext V sin 2 S f S t V 1 V 2 V out sin 2 f S t x 1 F k q K x q K k F d F x d V
ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)
ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23) Υπενθύμιση/Εισαγωγή: Λέμε ότι ένα πεδίο δυνάμεων είναι συντηρητικό (ή διατηρητικό) όταν το έργο που παράγεται από το πεδίο δυνάμεων κατά τη μετατόπιση ενός σώματος από μία
Διαφορικές Εξισώσεις.
Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά
f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,
Διάλεξη 7: Παράγωγοι συναρτήσεων 1 Γενικά Πρόοδος μαθήματος Σάββατο 24/11 στις 14:00 2 Παράγωγος ως συνάρτηση Η παράγωγος της f (x) ως προς x, είναι η συνάρτηση f (x) και η οποία ισούται με f (x) = lim
Αθ.Κεχαγιας. v. 0.86. Λογισµός Συναρτήσεων Μιας Μεταβλητής µε παράρτηµα Αναλυτικής Γεωµετρίας. Σηµειωσεις : Θ. Κεχαγιας.
Σηµειωσεις : Λογισµός Συναρτήσεων Μιας Μεταβλητής µε παράρτηµα Αναλυτικής Γεωµετρίας v..86 Θ. Κεχαγιας Απριλης Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια.....................................
1.1 Βασικές Έννοιες των Διαφορικών Εξισώσεων
Κεφάλαιο 1 Εισαγωγικά Στο κεφάλαιο αυτό θα παρουσιάσουμε τις βασικές έννοιες και ορισμούς των Διαφορικών Εξισώσεων. Στο εδάφιο 1.1 παρουσιάζονται οι βασικές έννοιες και ορισμοί των διαφορικών εξισώσεων
dx cos x = ln 1 + sin x 1 sin x.
Μηχανική Ι Εργασία #5 Χειμερινό εξάμηνο 17-18 Ν. Βλαχάκης 1. Εστω πεδίο δύναμης F = g () cos y ˆ + λ g() sin y ŷ, όπου λ = σταθερά και g() = 1 e π/ B C (σε κατάλληλες μονάδες). (α) Υπολογίστε πόση ενέργεια
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ
ΑΣΚΗΣΕΙΣ: ΟΡΙΑ ΚΑΙ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΕΩΝ Όρια συναρτήσεων. Άσκηση. Ποιό είναι το σύνολο στο οποίο έχει νόημα και ποιό το σύνολο στο οποίο ισχύει καθεμιά από τις ανισότητες: x+2 > 00, > 000, < < ; x 2 x
EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ
EE Solutions of Problems 4 ) Differentiation from first principles: f (x) = lim f(x+) f(x) : a) f(x) = x +x f(x+) f(x) = (x+) +(x+) (x +x) = x+ + = x++ f(x+) f(x) Thus lim = lim x++ = x+. b) f(x) = cos(ax),
Ηλεκτρομαγνητισμός. Χρήσιμες μαθηματικές έννοιες. Νίκος Ν. Αρπατζάνης
Ηλεκτρομαγνητισμός Χρήσιμες μαθηματικές έννοιες Νίκος Ν. Αρπατζάνης Παράγωγος ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ y y = f(x) x φ y y y = f(x) x φ y y y = f(x) φ x 1 x 1 + х x x 1 x 1 + х x x 1 x tanϕ = y x tanϕ = dy dx
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Ανασκόπηση-Μάθημα 17 Κανόνας αλυσίδας - Παράγωγος κατά κατεύθυνση Στο δέκατο έβδομο μάθημα (6/11/2018),
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 2019
ΛΥΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΛ 09 ΘΕΜΑ Α Α. α) ορισμός σελ.5 β)i) για να έχει μια συνάρτηση αντίστροφη πρέπει να είναι -. ii) ορισμός σελ.35 Α. ορισμός σελ.4 Α3. απόδειξη σελ.35 Α4. α)λ
ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ
ΕΥΡΩΠΑΙΚΟ ΑΠΟΛΥΤΗΡΙΟ 2007 ΜΑΘΗΜΑΤΙΚΑ 3 ΠΕΡΙΟΔΩΝ ΗΜΕΡΟΜΗΝΙΑ : 11 Ιουνίου 2007 (πρωί) ΔΙΑΡΚΕΙΑ ΕΞΕΤΑΣΗΣ : 3 ώρες (180 λεπτά) ΕΠΙΤΡΕΠΟΜΕΝΑ ΥΛΙΚΑ : Ευρωπαϊκό τυπολόγιο Υπολογιστής τσέπης ( Χωρίς δυνατότητα
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑΤΙΚΑ Ι Σ. ΤΟΥΜΠΗΣ Οδηγίες (Διαβάστε τες!) 1. Περίληψη: ΟΜΑΔΕΣ ΑΣΚΗΣΕΩΝ 2015-2016 (αʹ) Υπάρχει μια ομάδα ασκήσεων για κάθε κεφάλαιο των σημειώσεων,
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I
SOALMANDIRITINGKATSMA/MA/Sederajat ASAHTERAMPILMATEMATIKA(ASTRAMATIKA)XX I 1-cos(x-a) 1.Hasildari lim =. x a (x-a)sin3(x-a) 2.Jumlahnsukupertamaderetaritmetikaadalah Sn =5 n 2-7n. Jikaasukupertamadanbbedaderettersebut,maka13a+3b=.
τηλ ,
Μαθηματικά για Χημικούς Σ. Μαλεφάκη Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών 8 Οκτωβρίου 2013 Ωρες Μαθήματος 5 ώρες θεωρίας/ ανά εβδομάδα 1 ώρα εργαστήριο/ ανά εβδομάδα (ή 2 ώρες εργαστήριο/ ανά 2 εβδομάδες)
Katedra za matematiku (FSB, Zagreb) Matematika 2 Poglavlje-2 1 / 43
Katedra za matematiku (FSB, Zagreb) Matematika Poglavlje- / 43 Ciljevi učenja Ciljevi učenja za predavanja i vježbe: Integral kao antiderivacija Prepoznavanje očiglednih supstitucija Metoda supstitucije-složeniji
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ-
Κεφάλαιο 4 ΟΛΟΚΛΗΡΩΜΑ 4.1 Το αόριστο ολοκλήρωµα - Βασικά ολοκληρώ- µατα Ορισµός 4.1.1. Αρχική ή παράγουσα συνάρτηση ή αντιπαράγωγος µιας συνάρτησης f(x), x [, b], λέγεται κάθε συνάρτηση F (x) που επαληθεύει
ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ. Α4. α) Λάθος. Το θεώρημα ισχύει για διάστημα και όχι για ένωση διαστημάτων που είναι το σύνολο Α. Π.χ.
ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ENNIA (9) ΕΝΔΕΙΚΤΙΚΕΣ ΠΛΗΡΕΙΣ ΑΠΑΝΤΗΣΕΙΣ Α. α) Θεωρία σχολικού βιβλίου
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου
Αόριστο Ολοκλήρωµα ρ. Κωνσταντίνα Παναγιωτίδου Ακ. Ετος 2018-2019 Θεωρούµε µια συνάρτηση f : I R, όπου το I είναι διάστηµα του R. Ορισµός Μια συνάρτηση F : I R λέγεται αντιπαράγωγος ή αρχική συνάρτηση
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.
Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο 2016-17. Φυλλάδιο ασκήσεων επανάληψης. 1. Για καθεμία από τις παρακάτω συναρτήσεις ελέγξτε βάσει του ορισμού της παραγωγισιμότητας αν είναι παραγωγίσιμη στο αντίστοιχο
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Παραδείγματα Στις Μερικές Παραγώγους Και τον Κανόνα Αλυσιδωτής Παραγώγισης Άσκηση Αν t ( ) < cos t,sin( t) > δύο τρόπους και gt () 3t 4 d gt να υπολογισθεί η παράγωγος ( ()) με Λύση 1 ος
F = y n cos xˆx + sin xŷ. W OABO = F d r. ds + sin(x)dy ds. dy ds = 1 π. ) n 1 cos(s) + sin(s)ds. dy ds = 0. ds = 1 &
Μηχανική Ι Εργασία #4 Μουζλάνοβ Γεώργιος Αριθμός Μητρώου:478 3 Οκτωβρίου 6 Άσκηση Αό τα δεδομένα της άσκησης έχουμε τα εξής: F = y n cos ˆ + sin ŷ Το έργο στην κλειστή διαδρομή O A B O είναι το κλειστό
Answers to Selected Exercises
Answers to Selected Eercises Chapter. second, fifth, fifth, forty-second a i. yes, it is a ii. no, it is not a iii. no b i. no b ii. yes b iii. no c i. yes c ii. no c iii. no d i. no d ii. no d iii. yes
Συνήθεις Διαφορικές Εξισώσεις
Π Δ Μ Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Συνήθεις Διαφορικές Εξισώσεις Δρ. Θεόδωρος Ζυγκιρίδης 28 Δεκεμβρίου 211 2 Περιεχόμενα 1 Εισαγωγή 1 1.1 Ορισμοί.........................................
Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση» Email : stvrentzou@gmail.com
1 Τριγωνομετρία Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω ορθογώνιο τρίγωνο ΑΒΓ με Α = 90 ο. Β φ x Α Γ Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ενός ορθογωνίου τριγώνου, που γνωρίζουμε τις πλευρές
Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) x ξ g(x, ξ), g(x, ξ) f(x) f(ξ) x ξ Ορισμός Cauchy: ɛ > 0 δ(ɛ, ξ) > 0 x x ξ
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι
Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι Ενότητα: Σ.Δ.Ε. γραμμικές 1 ης τάξης, Σ.Δ.Ε. Bernoulli και Riccatti Όνομα Καθηγητή: Χρυσή Κοκολογιαννάκη Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό
Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15
Trigonometry (4 Trigonometric Identities 1//15 Copyright (c 011-014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License,
ii) Υπολογίστε τις μέσες τιμές της θέσης και της ορμής του ταλαντωτή όταν t 0.
ΑΣΚΗΣΗ 4 Αρμονικός ταλαντωτής, τη χρονική στιγμή t, βρίσκεται στην κατάσταση ip ˆ x x, όπου η βασική κατάσταση του αρμονικού ταλαντωτή, ˆp x ο τελεστής της ορμής, και η κλίμακα μήκους του αρμονικού ταλαντωτή.
2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim
9çB$ø`çü5 (-ç ) Ch.Ch4 b. è. [a] #8ƒb f(x, y) = { x y x 4 +y J (x, y) (, ) J (x, y) = (, ) I ϕ(t) = (t, at), ψ(t) = (t, t ), a ÑL
ΥΠΟΛΟΓΙΣΤΕΣ Ι. Τύποι δεδομένων ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ. Παράδειγμα #1. Πράξεις μεταξύ ακεραίων αριθμών
ΥΠΟΛΟΓΙΣΤΕΣ Ι ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΠΡΑΞΕΙΣ Τύποι δεδομένων Οι παρακάτω τύποι δεδομένων υποστηρίζονται από τη γλώσσα προγραμματισμού Fortran: 1) Ακέραιοι αριθμοί (INTEGER). 2) Πραγματικοί αριθμοί απλής ακρίβειας
Δείκτες Poincaré και Θεώρημα Frommer
Δείκτες Poinaré και Θεώρημα Frommer Ζαφειράκογλου Απόστολος 1 Θεωρητική εισαγωγή Στη διαφορική γεωμετρία, ως απόλυτη καμπυλότητα ορίζουμε το ολοκλήρωμα μια επίπεδης καμπύλης, θεωρώντας απειροστή διαμέριση
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
È http://en.wikipedia.org/wiki/icosidodecahedron
À Ô ÐÓ ÖÓÒØ ØÓÙÔ Ö ÕÓÑ ÒÓÙ Ò Ø Ô ØÓÙ Ô Ñ Ð Ø ØÓÙhttp://www.mathematica.grº Å Ø ØÖÓÔ LATEX ÛØ Ò Ã Ð Ò Ø ÃÓØÖôÒ Ä ÙØ Ö ÈÖÛØÓÔ Ô Õ ÐÐ ËÙÒ ÔÓÙÓ ËÕ Ñ Ø Å Õ Ð Æ ÒÒÓ ÉÖ ØÓÌ Ë Ð ¹ ÅÔÓÖ Ò Ò Ô Ö Õ Ò Ò Ñ Ð Ö º ÌÓß
2. Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης
Οι νόµοι της κίνησης, οι δυνάµεις και οι εξισώσεις κίνησης Βιβλιογραφία C Kittel, W D Knight, A Rudeman, A C Helmholz και B J oye, Μηχανική (Πανεπιστηµιακές Εκδόσεις ΕΜΠ, 1998) Κεφ, 3 R Spiegel, Θεωρητική
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Εργασία Παραγωγίζοντας και ολοκληρώνοντας
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο Παραγωγίζοντας και ολοκληρώνοντας 1 1 Ακρότατα συνάρτησης Οι εντολές και Plot[x Cos[x],{x,0,20}] O ut[2 ]= FindMinimum[x Cos[x],{x,2}] {-3.28837,{x 3.42562}}
Στοχαστικές διαδικασίες. Γραµµικά συστήµατα. Αλυσίδες Markov. Θεωρία πληροφοριών. Γιάννης Α. Φίλης
ΣΤΟΧΑΣΤΙΚΕΣ ΙΑ ΙΚΑΣΙΕΣ Στοχαστικές διαδικασίες Γραµµικά συστήµατα Αλυσίδες Markov Θεωρία πληροφοριών Γιάννης Α Φίλης Πολυτεχνείο Κρήτης - Σεπτέµβριος 6 ΠΕΡΙΕΧΟΜΕΝΑ I ΟΡΙΣΜΟΣ ΚΑΙ ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΧΑΣΤΙΚΩΝ
Διαφορικές Εξισώσεις Πρώτης Τάξης
Κεφάλαιο 2 Διαφορικές Εξισώσεις Πρώτης Τάξης Στο κεφάλαιο αυτό θα μελετήσουμε διαφορικές εξισώσεις πρώτης τάξης και θα διατυπώσουμε χωρίς απόδειξη βασικά θεωρήματα αυτών. Το εδάφιο 2.1 ασχολείται με γραμμικές
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας 1
Ασκήσεις Γενικά Μαθηµατικά Ι Λύσεις ασκήσεων Οµάδας Λουκάς Βλάχος και Χάρης Σκόκος ) Να ϐρεθεί το πεδίο ορισµού των συναρτήσεων :. f (x) = log x (5x + 3) + sin x. f (x) = (x + ) sin x 3. f 3 (x) = 3 sin
[1] F(g(x)) = F(z) = f(z) dz Εξάλλου, γνωρίζουμε από τον κανόνα της αλυσίδας ότι df(g(x)) dx
.4. Ολοκλήρωση με Αντικατάσταση Η μέθοδος ολοκλήρωσης με αντικατάσταση (method of substitution) βασίζεται στον κανόνα της αλυσίδας. Ουσιαστικά με τη μέθοδο της αντικατάστασης το αόριστο ολοκλήρωμα υπολογίζεται
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες
Μεθοδολογία για τις Συνήθεις Διαφορικές Εξισώσεις Από την Ενότητα του Ελληνικού Ανοικτού Πανεπιστημίου Σπουδές στις Φυσικές Επιστήμες Ανέπτυξα την παρακάτω μεθοδολογία που με βοήθησε να ανταπεξέλθω στο
Λύσεις στο επαναληπτικό διαγώνισμα 3
Τμήμα Μηχανικών Οικονομίας και Διοίκησης Απειροστικός Λογισμός ΙΙ Γ. Καραγιώργος ykarag@aegean.gr Λύσεις στο επαναληπτικό διαγώνισμα Διπλά Ολοκληρώματα Άσκηση (Υπολογισμός διπλού ολοκληρώματος- Αλλαγή
!"#$ % &# &%#'()(! $ * +
,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς
Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς Οι εξισώσεις Bernoulli αποτελούν την κλάση των μη γραμμικών διαφορικών εξισώσεων
Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη
Απειροστικός Λογισμός ΙΙΙ Υποδείξεις - Συχνά Λάθη Διδάσκοντες: Δάλλα - Αλικάκος 6 Ιουλίου 204 Θέμα (α) Από την γνωστή ανισότητα a 2 + b 2 2 ab, όταν (x, y) (0, 0), τότε ισχύει: f(x, y) f(0, 0) x 2 y 2x
Im{z} x. Re{z} -y. R{z} = x (1.1) I{z} = y (1.2) z = x jy (1.3)
Κεφάλαιο Μαθηματικό Υπόβαθρο. Εισαγωγή Η μελέτη των σημάτων και των συστημάτων που θα παρουσιαστούν στη συνέχεια βασίζεται κατά κύριο λόγο σε βασικές γνώσεις μιγαδικής ανάλυσης. Εν γένει, η θεωρία σημάτων
z k z + n N f(z n ) + K z n = z n 1 2N
Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά 6..5 Λύσεις Σειράς Ασκήσεων Άσκηση (α) Έστω z το όριο της ακολουθίας z n, δηλ. για κάθε ɛ > υπάρχει N(ɛ) ώστε z n z < ɛ για n > N. Για n > N(ɛ), είναι z n
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS
1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS Γραμμικές μη ομογενείς διαφορικές εξισώσεις δευτέρας τάξης λέγονται οι εξισώσεις τύπου y + p(x)y + g(x)y = f(x) (1.1) Οταν f(x) = 0 η εξίσωση y + p(x)y +
ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018
ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-
Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα
Δπηθακπύιηα Οινθιεξώκαηα Κεθάιαην Επηθακπύιηα θαη Επηθαλεηαθά Οινθιεξώκαηα Επηθακπύιηα Οινθιεξώκαηα θαη εθαξκνγέο. Επηθακπύιην Οινθιήξωκα. Έζηω όηη ε βαζκωηή ζπλάξηεζε f(x,y,z) είλαη νξηζκέλε πάλω ζε κία
Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34
Κυματική ΦΥΕ34 0/07/0 Ελληνικό Ανοικτό Πανεπιστήμιο Ενδεικτικές Λύσεις Θεμάτων Τελικών Εξετάσεων στη Θεματική Ενότητα ΦΥΕ34 KYMATIKH Διάρκεια: 80 λεπτά Ονοματεπώνυμο: Τμήμα: Θέμα ο (Μονάδες:.5) Α) Θεωρούμε
(s n (f)) g = s n (f g) = f (s n (g)). s n (f) g = (f D n ) g = f (D n g) = f (g D n ) = f s n (g). K n (x)g δ (x) dx. K n (x) dx.
Ανάλυση Fourier και Ολοκλήρωμα Lebesgue (11 1) 3ο Φυλλάδιο Ασκήσεων Υποδείξεις 1. Εστω f, g : T C ολοκληρώσιμες συναρτήσεις. Δείξτε ότι, για κάθε n N, (s n (f)) g = s n (f g) = f (s n (g)). Υπόδειξη. Θυμηθείτε
Εισαγωγή στις Φυσικές Επιστήμες ( )
κρούση κρούση Εισαγωγή στις Φυσικές Επιστήμες (9-7-6) ΘΕΜΑ A) Οι δύο μάζες στα δεξιά του σχήματος βρίσκονται αρχικά σε κατάσταση ηρεμίας και απέχουν λίγο μεταξύ τους. Η τρίτη μάζα, στα αριστερά του σχήματος
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Βασικά Μαθηµατικά ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 04 Μαρτίου 009 Περίληψη Οι παρούσες σηµειώσεις αποτελούν µια περίληψη των ϐασικών µα- ϑηµατικών γνώσεων που
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης 02/06/2017 1
ΣΕΜΦΕ ΕΜΠ Φυσική ΙΙΙ (Κυματική) Διαγώνισμα επί πτυχίω εξέτασης /6/7 Διάρκεια ώρες. Θέμα. Θεωρηστε ενα συστημα δυο σωματων ισων μαζων (μαζας Μ το καθενα) και δυο ελατηριων (χωρις μαζα) με σταθερες ελατηριων