Osnovne karakteristike: Sve se predstavlja relacijama (tabelama) Zasniva se na strogoj matematičkoj teoriji Minimalna redundansa podataka Jednostavno

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osnovne karakteristike: Sve se predstavlja relacijama (tabelama) Zasniva se na strogoj matematičkoj teoriji Minimalna redundansa podataka Jednostavno"

Transcript

1 1

2 Osnovne karakteristike: Sve se predstavlja relacijama (tabelama) Zasniva se na strogoj matematičkoj teoriji Minimalna redundansa podataka Jednostavno ažuriranje podataka Izbegnute su anomalije ažuriranja Redosled kolona i redova u tabeli nije bitan Ne mogu da egzistiraju dva identična reda (rekorda) u jednoj tabeli Svaki red se može jednoznačno odrediti (postoji primarni ključ) 2

3 Student Knjiga BrInd Ime SifK Naziv 75/01 Marko 001 Računovodstvo 22/02 Petar 002 Baze podataka 156/03 Milan 003 Osnove finansija 112/02 Dragan 004 Poslovna informatika 005 Marketing Tabela, sa svojim atributima, je osnovni objekat relacione baze podataka 3

4 Suština relacionog modela je da se i klase objekata i klase veza između objekata predstavljaju na jedinstven način, tj. preko tabela. RBP relaciona baza podataka RBP se sastoji iz više tabela. Tabele su povezane ključevima. Informacija iz RBP se dobija postavljanjem upita. 4

5 STUDENT Svaka tabela mora da ima: Ime ili naziv tabele, Spisak atributa i Vrednosti atributa (podaci upisani u polja) BrInd Ime Prezime Fakultet Smer Adresa 123/03 Marko Marković FPI PP Požeška 2 224/02 Jovan Jovanović FPI GD Danijelova 22 III- 5/04 Ivana Ivanović FPI GD Kumodrašk a

6 Naziv tabele kolone Atribut 1 Atribut 2 Atribut 3 Atribut 4 Atribut 5 slogovi Podatak u polju... Slog ili zapis ili n-torka... 6

7 Razmatraju se sledeće komponente relacionog modela podataka: Strukturna komponenta predstava podataka Integritetna komponenta zaštita podataka Manipulativna komponenta manipulisanje podacima 7

8 Imenovane osobine entiteta Prost atribut (simple) - ne može se rastavljati na delove bez gubitka svakog značenja atomska vrednost. Složen atribut (composite) se sastoji od više prostih atributa. Može se rastaviti na delove. Adresa Ulica Broj Poštanski broj Grad 8

9 Pri projektovanju IS, treba pažljivo birati atribute, u skladu sa potrebama Primer: STUDENT (BrInd, Ime, Prezime, DatRodjenja, Adresa, Telefon,...) DatumRodjenja sa namerom posedovanja podatka o starosti svakog studenta dobar izbor atributa (informacija se može izračunati) GodineStarosti bile bi loš izbor atributa zahtevale bi svakodnevno ažuriranje BP. 9

10 Skup svih mogućih vrednosti nekog atributa A i naziva se domen tog atributa i označava se sa D i ili Dom(A i ) Domen - tip podataka u programiranju Jedan domen postoji za više atributa. Obrnuto ne važi. Primeri: Atribut: Visina (cm) D 1 : skup celih pozitivnih brojeva Atribut: NazivKnjige D 2 : skup svih različitih naslova knjiga Atribut: Boja D 3 : { žut, crven, zelen, plav } 10

11 Šema relacije R je konačan skup atributa {A i } i konačan skup ograničenja {Oj} nad vrednostima tih atributa. Ograničenja: atributi ne mogu uzimati bilo koje vrednosti. Podrazumeva se da kada su zadati atributi, zadati su i njihovi domeni. Osobine šeme relacije: Nazivi atributa moraju biti različiti unikatnost, Redosled atributa nije bitan, Šema relacije mora da sadrži bar jedan atribut. 11

12 Šema relacije predstavlja svojstva klase objekata ili veza nekog informacionog sistema. Šema relacije: definicija logičke strukture neke klase. Šema relacije se zapisuje: R(A,O) R - naziv relacije A - skup obeležja A={A 1, A 2, A 3,... } A i atribut (obeležje) O - skup ograničenja relacije 12

13 Primer: Šema relacije za klasu STUDENT: R(A,O) A={A 1, A 2, A 3,... } STUDENT ({BrInd,Ime,Prezime,BrPolIspita}, {β 1, β 2 }) β 1 - svaki student ima jedan jedinstveni broj indeksa (ne postoje 2 studenta sa istim brojem indeksa) β 2 - broj položenih ispita je između 0 i 30 13

14 Relaciji u praksi odgovara tabela fizički realizovana kao jedna datoteka. Svakoj n-torki atributa odgovara jedan red tabele odn. jedan slog te datoteke. Slogovi su zapisani najčešće po redosledu unosa. Primer: STUDENT (BrInd,Ime) STUDENT (BrInd, Ime ) 123/02 J.Jankovic 11/03 P.Petrovic 151/02 J.Jovanovic III-15/04 M.Markovic šema relacije relacija 14

15 Logička struktura RBP Fizička realizacija RBP Relaciona BP Relacija Atribut Instanca (n-torka) Kardinalnost relacije Stepen relacije Domen Skup tabela Tabela Naziv kolone u tabeli Red u tabeli Broj redova u tabeli Broj kolona u tabeli Skup dozvoljenih vrednosti za podatke u koloni 15

16 Univerzalnog tipa, primenjiva za sve atribute (svih domena). U praksi postoje situacije kada u relacije unosimo n-torke za koje su vrednosti nekih atributa nepoznate. Postoje dva slučaja koji proizvode Null vrednost: 1. Vrednost postoji, ali nije poznata u trenutku unosa n-torke. 2. Vrednost je nedefinisana, nema smisla. 16

17 1. Npr. Ako je zadata šema relacije: STUDENT (BrInd,Ime,Prezime,Telefon) Kod upisa studenata unosimo sve podatke izuzev podataka o telefonu. Problem je posledica trenutnog nepoznavanja vrednosti atributa. Naknadno se može uneti. 2. Npr. Ako je zadata šema relacije: STUDENT (BrInd,Ime,Prezime,Telefon,Smer) Ne može se uneti smer za studente 1. i 2. godine, jer se naknadno opredeljuju za nega. Problem je posledica ovako odabrane strukture šeme relacije. 17

18 Pri projektovanju IS pažljivo birati šeme relacija izbegavati unos prevelikog broja NULL vrednosti (racionalnost) Primer: Šema relacije Službenik i uvođenje atributa Medalja Službenik (JMBG,Ime,...,Medalja,...) Za većinu službenika na tom mestu bi ostalo prazno mesto sa vrednošću NULL. Rešenje problema: Šema relacije Službenik bez atributa Medalja Službenik (JMBG,Ime,...) 18

19 1. pretpostavka: radnik ima najviše jednu medalju Kreiranje nove šeme relacije Odlikovanja (JMBG,Medalja) Nova relacija bi bila potpuno popunjena, a preko ključa JMBG bila bi u vezi sa šemom relacije Službenik. 2. pretpostavka: radnik može da ima više medalja Kreiranje nove šeme relacije Odlikovanja (JMBG, RBRMed, Medalja) Nova relacija bi bila potpuno popunjena, a preko dela ključa JMBG bila bi u vezi sa šemom relacije Službenik. 1 9

20 Ključ K relacije R je podskup skupa obeležja (atributa) te relacije koji ima sledeća svojstva: Vrednosti atributa iz K jednoznačno određuju pojavu šeme relacije (ne mogu postojati dve n-torke date relacije sa istim vrednostima atributa iz K) - jedinstvenost ključa Ako izbacimo bilo koji atribut iz K, tada se narušava 1. svojstvo - minimalnost ključa. 20

21 Relacija može da ima više kandidata za ključ Zovemo ih ekvivalentni ključevi i uvek se jedan od njih bira za primarni ključ Primer: Student({BrInd,Ime,Prez,BrPIsp,JMBG}, {BrInd,JMBG}) primarni ključ ekvivalentni ključevi 21

22 Student(BrInd,Ime) Knjiga(SifK,SifN) Autor(SifA,Ime) Naslov(SifN, Naziv) Je_autor(SifA,SifN,Koji) Drzi(SifK,BrInd,Datum) 22

23 Ključ jedne relacije u ulozi atributa druge relacije Za strani ključ neophodne su dve relacije Strani ključ povezuje dve relacije (tabele) Primer: STUDENT (BrInd, Ime) KNJIGA (SifK, Naziv) DRŽI (SifK, BrInd,, Datum) Strani ključ relacije Drži koji pokazuje na primarni ključ relacije Knjiga Strani ključ relacije Drži koji pokazuje na primarni ključ relacije Student 23

24 Student (BrInd,Ime) Knjiga(SifK) Naslov(SifN,Naziv,SifO) Oblast(SifO,Naziv) Autor(SifA,Ime) Sadrzi(SifK,SifN) Drzi(SifK,BrInd,Datum) Je_autor(SifA,SifN,Koji) Jedna šema relacije može da sadrži više stranih ključeva Strani ključ može biti: deo primarnog ključa, primarni ključ u celini. 24

25 Kada se sve dešava unutar jedne šeme relacije koja sadrži oba učesnika u vezi strani ključ primarni ključ Primer 1: Radnik(SifR,Ime,Adresa,SifNad) (Pretpostavka: svaki radnik ima samo jednog nadređenog) Primer 2: Osoba(JMBG, Ime, Adresa,...) Brak(JMBG1, JMBG2, Datum_venčanja) 25

26 Osnovni pojmovi relacionog modela podataka: atribut, domen, šema relacije i relacija. Šema relacione BP prvi izvedeni pojam relacionog modela podataka. Šema relacione BP je konačan skup šema relacija {R i } i konačan skup U ograničenja koja važe između njih. Skup ograničenja U uključuje samo ograničenja koja važe između pojedinih šema relacija. Ograničenja nad atributima {O i } su uključena kroz definicije relacija (R(A,O)). 26

27 Šema relacije predstavlja definiciju relacije. Po analogiji, šema relacione BP predstavlja definiciju relacione BP. Primer: Inf. sistem Biblioteka ima sledeću strukturnu komponentu šeme relacione BP (svakoj klasi odgovara jedna šema relacije): Objekti: Student(BrInd,Ime) Knjiga(SifK) Naslov(SifN,Naziv,SifO) Autor(SifA,Ime) Oblast(SifO, NazivO) Veze: Drzi(SifK,BrInd,Datum) Sadrzi(SifK,SifN) Je_autor(SifA,SifN,Koji) 27

28 Relaciona BP je drugi izvedeni pojam u okviru relacionog modela podataka. Definicija: Relaciona baza podataka BP je konačan skup relacija {r i } nad šemom relacione BP {R i } Svaka relacija ima: svoju šemu, svoje instance (n-torke). Nazivi relacija u jednoj BP moraju biti različiti. Imena atributa u jednoj relaciji moraju biti različita. 28

29 Primer: Nad šemom relacione baze podataka Biblioteka Student(BrInd,Ime) Knjiga(SifK) Drzi(SifK,BrInd,Datum) Sadrzi(SifK,SifN) Naslov(SifN,Naziv,SifO) Je_autor(SifA,SifN,Koji) Autor(SifA,Ime) Oblast (SifO, NazivO) postoji sledeća relaciona baza podataka Biblioteka: (ona svojim sadržajem predstavlja stanje sistema Biblioteka u jednom trenutku) 29

30 Student (BrInd, Ime ) 75/00 M.Marković 122/03 D.Ivanović 5/01 P.Jovanović 175/01 R.Savić Autor(SifA, Ime ) AP0 A.Popovic IT0 I.Todorovic AP1 A.Petrovic JN0 J.Nikolic DM0 D.Markovic ZP0 Z.Petrovic 30

31 Knjiga (SifK) Naslov (SifN, Naziv, SifO ) RBP0 Relacione baze pod. A FT00 Finansijska tržišta B PI00 Poslovna informatika A OS00 Osnove finansija B Oblast (SifO, NazivO) A B Računarstvo Finansije 31

32 Drži (SifK, BrInd, Datum ) 001 JJ PP JJ Je_autor (SifA, SifN, Koji ) AP0 RBP0 1 JN0 RBP0 2 DM0 FT00 1 ZP0 PI00 1 DM0 PI00 2 AP1 OS00 1 IT0 OS00 2 ZP0 OS00 3 Sadrži (SifK, SifN ) 001 RBP0 002 RBP0 003 FT PI PI PI OS0 008 OS0 009 OS0 32

33 Služi za predstavljanje ograničenja koja važe nad podacima, odnosno nad vrednostima pojedinih atributa. Ograničenja koje podaci u bazi moraju da zadovolje odnose se na: postojanje podataka, dozvoljene vrednosti podataka i međuzavisnosti među podacima u bazi. 33

34 Ograničenja se po prirodi dele u tri grupe: 1. Ograničenja torki (izražavaju činjenicu da vrednost atributa mora biti iz datog domena) 2. Relaciona ograničenja (čuvaju korektnost veza između atributa unutar relacije) 3. Međurelaciona ograničenja (ograničenja između relacija koja se odnose na strane ključeve) 3 4

35 1. Ograničenja koja proizilaze iz zahteva unikatnosti n-torki u relacijama nazivaju se identifikacioni ili egzistencijalni integritet. U jednoj relaciji ne mogu da postoje dve iste n-torke. 35

36 2. Ograničenja koja se eksplicitno zadaju preko skupova ograničenja O i u okviru šema relacija R i. Takva ograničenja su posledica ograničenja koja važe nad svojstvima u realnom sistemu. Takva ograničenja nazivaju se funkcionalni integritet. 36

37 3. Ograničenja koja uključuju atribute koji se nalaze u različitim relacijama i koja se zadaju preko skupa ograničenja U u okviru šeme relacione BP nazivaju se referencijalni integritet. 37

38 Identifikacioni integritet proizilazi iz osobine unikatnosti n-torki u relaciji (primarni ključ mora biti jedinstven i definisan). Svodi se na formulaciju odgovarajućeg uslova. Uslov identifikacionog integriteta: Ni jedan atribut šeme relacije R koji je u sastavu primarnog ključa nikada ne sme imati NULL vrednost u relaciji r. Ukoliko ovo ne bi bilo ispunjeno, može nastupiti situacija da dve ili više n-torki u relaciji postanu identične. 38

39 Primer: Je_autor (SifA SifN Koji)... AP0 RBP0 1 AP0 PI00 1 Ako bi se dozvolilo da npr. SifN uzme vrednost NULL Je_autor (SifA SifN Koji)... AP0 NULL 1 AP0 NULL 1 Dobile bi se dve identične n-torke što je nedozvoljeno u relacionom modelu. 39

40 f: X Y f - naziv funkcionalne zavisnosti; X,Y - skupovi obeležja; X funkcionalno određuje Y Y funkcionalno zavisi od X znači: svakom elementu iz domena X može se pridružiti najviše jedan element iz domena Y ili poznavanjem jedne vrednosti obeležja X može se tačno odrediti odgovarajuća vrednost obeležja Y. ili 40

41 Trivijalna funkcionalna zavisnost je ona koja je uvek zadovoljena. Primer1: U={A,B,C} A A, ABC A, AB B (desna strana je podskup leve) Primer2: N-nastavnik, S-student, P-predmet Svaki N predaje najviše jedan P Ako S sluša neki P, sluša ga kod samo jednog N Jedan P predaje najviše jedan N N P, SP N, P N 41

42 Suština referencijalnog integriteta je u ograničavanju vrednosti stranog ključa. Uslov referencijalnog integriteta: Svaki podskup atributa šeme relacije R koji predstavlja strani ključ može u relaciji r imati: ili vrednost primarnog ključa u ciljnoj relaciji r1 ili vrednost NULL. Ciljna relacija r1 je relacija u kojoj je atribut koji je strani ključ relacije r primarni ključ. 42

43 Sa stanovišta izmena (ažuriranja) u relaciji koja sadrži strani ključ važe sledeća ograničenja: Ne može se uneti n-torka sa vrednošću stranog ključa koja nije jednaka nekoj vrednosti primarnog ključa u ciljnoj relaciji ili je NULL vrednost. Ne može se izmeniti n-torka tako da vrednost stranog ključa ne bude jednaka nekoj vrednosti primarnog ključa u ciljnoj relaciji ili NULL vrednosti. 43

44 Sa stanovišta izmena (ažuriranja) u ciljnoj relaciji važe sledeća ograničenja: Dodavanje nove n-torke (u ciljnoj relaciji) ne narušava ref. integritet - nastaje samo nova vrednost primarnog ključa. Uklanjanje n-torke (a izmena ponekad) dovodi do nestanka jedne vrednosti primarnog ključa. Ako bi se ta operacija izvršavala bezuslovno to bi narušilo referencijalni integritet. 44

45 Poželjno je naglasiti da li ref. integritet u pojedinim slučajevima uključuje NULL vrednost. Za specifikaciju referencijalnih integriteta usvojena je posebna notacija: skup vrednosti koje u relaciji r nad šemom R uzima neki podskup atributa X zapisuje se kao R[X] i čita kao projekcija relacije r na podskupu atributa X. 45

46 Student (BrInd,Ime) Knjiga (SifK) Naslov (SifN,Naziv,SifO) Oblast (SifO,Naziv) Autor (SifA,Ime) Sadrzi (SifK,SifN) Drzi (SifK,BrInd,Datum) Je_autor (SifA,SifN,Koji) 46

47 Specifikacija referencijalnih integriteta glasi: Knjiga[SifN] Naslov[SifN] Naslov[SifO] Oblast[SifO] NULL Sadrzi[SifN] Naslov[SifN] Drzi[SifK] Knjiga[SifK] Drzi[BrInd] Student[BrInd] Je_autor[SifA] Autor[SifA] Je_autor[SifN] Naslov[SifN] 47

48 Primer: Za šemu relacije Radnik: Radnik(SifR,Ime,Adresa,SifNad) postojala bi sledeća specifikacija ograničenja: Radnik[SifNad] Radnik[SifR] 48

49 Jedna definicija ref. integriteta: Referencijalni integritet je međurelaciona zavisnost sadržavanja kod koje skup obeležja nadskupa predstavlja primarni ključ šeme relacije. Zavisnost sadržavanja je ograničenje između skupova obeležja pri čemu mora da važi da je domen jednog obeležja podskup domena drugog obeležja. 49

Svaki red se može jednoznačno odrediti (postoji primarni ključ)

Svaki red se može jednoznačno odrediti (postoji primarni ključ) 1 Osnovne karakteristike: Sve se predstavlja relacijama (tabelama) Zasniva se na strogoj matematičkoj teoriji Minimalna redudansa podataka Jednostavno ažuriranje podataka Izbegnute su anomalije ažuriranja

Διαβάστε περισσότερα

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.

Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. 1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.

KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA. KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa

Διαβάστε περισσότερα

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka

Doc. dr. sc. Markus Schatten. Zbirka rješenih zadataka iz baza podataka Doc. dr. sc. Markus Schatten Zbirka rješenih zadataka iz baza podataka Sadržaj 1 Relacijska algebra 1 1.1 Izračun upita....................................... 1 1.2 Relacijska algebra i SQL.................................

Διαβάστε περισσότερα

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim:

Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: RELACIONI MODEL RELACIONI MODEL Dve karakteristike čine relacioni model još uvek najpopularnijim i najšire primenjivanim: Struktura modela je veoma jednostavna, prihvatljiva svakom korisniku, jer relaciona

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Računarska grafika. Rasterizacija linije

Računarska grafika. Rasterizacija linije Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

III VEŽBA: FURIJEOVI REDOVI

III VEŽBA: FURIJEOVI REDOVI III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.

Διαβάστε περισσότερα

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića

Verovatnoća i Statistika I deo Teorija verovatnoće (zadaci) Beleške dr Bobana Marinkovića Verovatnoća i Statistika I deo Teorija verovatnoće zadaci Beleške dr Bobana Marinkovića Iz skupa, 2,, 00} bira se na slučajan način 5 brojeva Odrediti skup elementarnih dogadjaja ako se brojevi biraju

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE

SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE 1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).

PID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ). 0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo

Διαβάστε περισσότερα

5. Karakteristične funkcije

5. Karakteristične funkcije 5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... }

Skup svih mogućih ishoda datog opita, odnosno skup svih elementarnih događaja se najčešće obeležava sa E. = {,,,... } VEROVTNOĆ - ZDI (I DEO) U računu verovatnoće osnovni pojmovi su opit i događaj. Svaki opit se završava nekim ishodom koji se naziva elementarni događaj. Elementarne događaje profesori različito obeležavaju,

Διαβάστε περισσότερα

Dijagonalizacija operatora

Dijagonalizacija operatora Dijagonalizacija operatora Problem: Može li se odrediti baza u kojoj zadani operator ima dijagonalnu matricu? Ova problem je povezan sa sljedećim pojmovima: 1 Karakteristični polinom operatora f 2 Vlastite

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B.

Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Korespondencije Neka su A i B proizvoljni neprazni skupovi. Korespondencija iz skupa A u skup B definiše se kao proizvoljan podskup f Dekartovog proizvoda A B. Pojmovi B pr 2 f A B f prva projekcija od

Διαβάστε περισσότερα

Relacijski model podataka i osnove relacijske algebre

Relacijski model podataka i osnove relacijske algebre i osnove relacijske algebre 4. tjedan T. Carić, T. Erdelić Zavod za inteligentne transportne sustave Fakultet prometnih znanosti Sveučilište u Zagrebu Baze podataka T. Carić, T. Erdelić ITS::Baze podataka

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.

Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove. Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

NORMALIZACIJA. Normalne forme daju formalne kriterije prema kojima se utvrñuje da li model podataka ispunjava prethodne zahteve.

NORMALIZACIJA. Normalne forme daju formalne kriterije prema kojima se utvrñuje da li model podataka ispunjava prethodne zahteve. NORMALIZACIJA Osnovni cilj relacionog modela podataka je da odgovarajuća baza podataka: 1. Ne sadrži redundansu, 2. Da se može jednostavno koristiti i menjati. Normalne forme daju formalne kriterije prema

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a =

DRUGI KOLOKVIJUM IZ MATEMATIKE 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. je neprekidna za a = x, y, z) 2 2 1 2. Rešiti jednačinu: 2 3 1 1 2 x = 1. x = 3. Odrediti rang matrice: rang 9x + 6y + z = 1 4x 2y + z = 1 x + 2y + 3z = 2. 2 0 1 1 1 3 1 5 2 8 14 10 3 11 13 15 = 4. Neka je A = x x N x < 7},

Διαβάστε περισσότερα

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =

2log. se zove numerus (logaritmand), je osnova (baza) log. log. log = ( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri

Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:

Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: 2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i

Διαβάστε περισσότερα

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i

1. zadatak , 3 Dakle, sva kompleksna re{ewa date jedna~ine su x 1 = x 2 = 1 (dvostruko re{ewe), x 3 = 1 + i PRIPREMA ZA II PISMENI IZ ANALIZE SA ALGEBROM. zadatak Re{avawe algebarskih jedna~ina tre}eg i ~etvrtog stepena. U skupu kompleksnih brojeva re{iti jedna~inu: a x 6x + 9 = 0; b x + 9x 2 + 8x + 28 = 0;

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici

1. Pojam fazi skupa. 2. Pojam fazi skupa. 3. Funkcija pripadnosti, osobine i oblici. 4. Funkcija pripadnosti, osobine i oblici Meko računarstvo Student: Indeks:. Poja fazi skupa. Vrednost fazi funkcije pripadnosti je iz skupa/opsega: a) {0, b) R c) N d) N 0 e) [0, ] f) [-, ] 2. Poja fazi skupa 2. Na slici je prikazan grafik: a)

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Baze podataka. SQL Jezik relacione BP

Baze podataka. SQL Jezik relacione BP Baze podataka SQL Jezik relacione BP UPIT - SELECT - SQL je jezik veoma visokog nivoa (very-high-level language) Programer izbegava korišćenje komplikovanih manipulacija nad podacima (što je neophodno

Διαβάστε περισσότερα

Obrada signala

Obrada signala Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p

Διαβάστε περισσότερα

SKUPOVI I SKUPOVNE OPERACIJE

SKUPOVI I SKUPOVNE OPERACIJE SKUPOVI I SKUPOVNE OPERACIJE Ne postoji precizna definicija skupa (postoji ali nama nije zanimljiva u ovom trenutku), ali mi možemo koristiti jednu definiciju koja će nam donekle dočarati šta su zapravo

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

DISTRIBUIRANA OBRADA I RELACIONE BAZE PODATAKA

DISTRIBUIRANA OBRADA I RELACIONE BAZE PODATAKA DISTRIBUIRANA OBRADA I RELACIONE BAZE PODATAKA ŠTA JE BAZA PODATA? Izraz baza podataka koristi se za opisivanje svačega od obične grupe podataka, do složenog skupa alatki. TERMINOLOGIJA RELACIONIH BAZA

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

Funkcije. Predstavljanje funkcija

Funkcije. Predstavljanje funkcija Funkcije narna relacija f je funkcionalna relacija ako važi: ( ) za svaki a postoji jedinstven element b takav da (a, b) f. Definicija. Funkcija 1 je uredjena trojka (,, f) gde f zadovoljava uslov: Činjenicu

Διαβάστε περισσότερα

5 Ispitivanje funkcija

5 Ispitivanje funkcija 5 Ispitivanje funkcija 3 5 Ispitivanje funkcija Ispitivanje funkcije pretodi crtanju grafika funkcije. Opšti postupak ispitivanja funkcija koje su definisane eksplicitno y = f() sadrži sledeće elemente:

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Matematika 1 { fiziqka hemija

Matematika 1 { fiziqka hemija UNIVERZITET U BEOGRADU MATEMATIQKI FAKULTET Matematika 1 { fiziqka hemija Vektori Tijana Xukilovi 29. oktobar 2015 Definicija vektora Definicija 1.1 Vektor je klasa ekvivalencije usmerenih dui koje imaju

Διαβάστε περισσότερα

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije.

U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Šta je to relacija? U raznim oblastima se često javlja potreba da se izmed u izvesnih objekata uspostave izvesne veze, odnosi ili relacije. Na primer, često se javlja potreba da se izvesni objekti uporede

Διαβάστε περισσότερα

INTELIGENTNO UPRAVLJANJE

INTELIGENTNO UPRAVLJANJE INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

Program testirati pomoću podataka iz sledeće tabele:

Program testirati pomoću podataka iz sledeće tabele: Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n

Διαβάστε περισσότερα

Modeli i baze podataka

Modeli i baze podataka Modeli i baze podataka priručnik za III razred 1 Kratki istorijat baza podataka Praistorija Nastanak baza podatakaa se vezuje za Herman-aa Holerith-a koji je 1884. godine prijavio patent sistem za automatsku

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa

Algebarske strukture sa jednom operacijom (A, ): Ako operacija ima osobine: zatvorenost i asocijativnost, onda je (A, ) polugrupa Binarne operacije Binarna operacija na skupu A je preslikavanje skupa A A u A, to jest : A A A. Pišemo a b = c. Označavanje operacija:,,,. Poznate operacije: sabiranje (+), oduzimanje ( ), množenje ( ).

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Pitanja i odgovori za drugi test

Pitanja i odgovori za drugi test Pitanja i odgovori za drugi test 1. Šta je BAZA PODATAKA? Baza podataka (DB = Data Base) je organizovana kolekcija logički povezanih podataka, koja obezbeđuje fleksibilnost i sigurnost korišćenja. 2. Objekti

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

Otpornost R u kolu naizmjenične struje

Otpornost R u kolu naizmjenične struje Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

PROJEKTOVANJE INFORMACIONIH SISTEMA

PROJEKTOVANJE INFORMACIONIH SISTEMA Univerzitet u Beogradu Fakultet organizacionih nauka PROJEKTOVANJE INFORMACIONIH SISTEMA -Projektni rad- Mentor : Slañan Babarogić Studenti : Dalibor Vidović Jelena ðuknić Milesa Gordić Aleksandar Dabić

Διαβάστε περισσότερα

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1)

Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Inženjerska grafika geometrijskih oblika (5. predavanje, tema1) Prva godina studija Mašinskog fakulteta u Nišu Predavač: Dr Predrag Rajković Mart 19, 2013 5. predavanje, tema 1 Simetrija (Symmetry) Simetrija

Διαβάστε περισσότερα

Mašinsko učenje. Regresija.

Mašinsko učenje. Regresija. Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti

Διαβάστε περισσότερα

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia.

Iskazna logika 1. Matematička logika. Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad, Serbia. Matematička logika Department of Mathematics and Informatics, Faculty of Science,, Serbia oktobar 2012 Iskazi, istinitost, veznici Intuitivno, iskaz je rečenica koja je ima tačno jednu jednu istinitosnu

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

HEMIJSKA VEZA TEORIJA VALENTNE VEZE

HEMIJSKA VEZA TEORIJA VALENTNE VEZE TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje

Διαβάστε περισσότερα