On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova."

Transcript

1

2 Pojam skupa U matematici se pojam skup ne definiše eksplicitno. On predstavlja osnovni pojam, poput pojma tačke ili prave u geometriji. Suštinsko svojstvo skupa je da se on sastoji od elemenata ili članova. Osnovni odnos izmed u elemenata i skupova je pripadanje. Izraz a pripada A se simboličkim matematičkim jezikom piše a A Kaže se i da je a element skupa A, ili da je a sadržan u A. Izraz a ne pripada skupu A, odnosno negacija formule a A, se simbolički označava sa a A. Matematička logika 2 Skupovi

3 Pojam skupa Za simboličko označavanje skupova najčešće koristimo slova latinskog alfabeta. Pri tome, skupove obično označavamo velikim slovima a njihove elemente malim. Primeri skupova: skup svih Beograd ana skup svih nacija skup celih brojeva skup svih reči sve osobe koje imaju odred enu osobinu zajedno čine skup svi tipovi u programskim jezicima (integer, real) čine skupove Matematička logika 3 Skupovi

4 Pojam skupa Napomena: Često sami skupovi jesu elementi drugih skupova. Primeri: prava, kao skup tačaka u ravni, pripada skupu svih pravih te ravni nacija, kao skup individua, pripadnika te nacije, pripada skupu svih nacija Matematička logika 4 Skupovi

5 Zadavanje skupova Navod enjem svih njegovih elemenata, izmed u vitičastih zagrada { i }. {3, 6, 7} Konačan skup, sa elementima 3, 6 i 7. Ovakav način zadavanja skupova koristi se za konačne skupove sa ne tako velikim brojem elemenata, koje je tehnički moguće sve navesti {1, 2,..., n} Konačan skup sa većim brojem elemenata koje tehnički nije moguće sve navesti, zbog čega stavljamo tri tačke... koje znače i tako dalje, po istom obrascu. Odgovarajući obrazac mora da bude očigledan. {2, 4, 6, 8,...} Skup svih parnih brojeva. Primetimo da je ovaj skup, za razliku od prethodnog, beskonačan. N = {1, 2, 3,...} Skup svih prirodnih brojeva. Matematička logika 5 Skupovi

6 Zadavanje skupova Zadavanjem svojstva koje svi njegovi elementi moraju da imaju. Zajedničko svojstvo objedinjuje u skup sve objekte sa tim svojstvom. Takvi skupovi se zapisuju u sledećem obliku A = {x x ima svojstvo P(x)} ili A = {x P(x)}, gde je sa P(x) označeno svojstvo koje može imati objekat x. Na ovaj način je označen skup svih objekata x za koje važi P(x), odnosno skup svih objekata x koji imaju svojstvo P(x). Na primer, skup parnih brojeva može se zadati sa {x postoji y N tako da je x = 2y}. Matematička logika 6 Skupovi

7 Zadavanje skupova Rekurzivna (induktivna) definicija skupa. Skup A se može definisati rekurzivno ili induktivno na sledeći način: (i) zadaju se polazni elementi ili bazni elementi skupa A; (ii) odred uje se način na koji se, pomoću odred enih operacija, iz prethodno definisanih elemenata mogu definisati drugi elementi skupa A; (iii) kaže se da skupu A mogu pripadati oni i samo oni objekti koji se mogu dobiti primenom pravila (i) i (ii) konačan broj puta. Na ovaj način će kasnije biti definisane iskazne i predikatske formule. Rekurzivno se definišu i formule u jeziku FORTRAN. Matematička logika 7 Skupovi

8 Jednakost skupova. Podskup Dva skupa A i B su jednaka, u oznaci A = B, ako imaju iste elemente, tj. A = B def ( x)(x A x B). Negacija gornje formule označava se sa A B. Skup A je podskup skupa B, u oznaci A B, ako su svi elementi skupa A sadržani u B, tj. Odnos zove se inkluzija. A B def ( x)(x A x B). Ako je A B i A B, onda se kaže da je A pravi podskup skupa B, u oznaci A B. Matematička logika 8 Skupovi

9 Jednakost skupova. Podskup Napomena: U prethodnim definicijama koristili smo sledeće simboličke oznake: def znači ako i samo ako ili ekvivalentno (ekvivalencija); znači ekvivalentno po definiciji ; znači ako..., onda... ili povlači (implikacija). Više reči o ovome biće u kasnijim poglavljima. Primetimo da ekvivalentno i ekvivalentno po definiciji imaju drugačija značenja: P Q znači da je P tačno ako i samo ako je tačno Q, dok P def Q znači da P i Q imaju isto značenje, tj. Q je samo drugačiji zapis za P. Matematička logika 9 Skupovi

10 Jednakost skupova. Podskup Primeri jednakih skupova: {x, x} = {x} {x, y} = {y, x} {x, y, z} = {x, z, y} {x, y, z} = {z, x, x, y} Ove jednakosti se dokazuju neposrednom primenom definicije jednakosti skupova. Dokaz se ostavlja za vežbu. Odavde možemo izvući dva pravila koja se tiču zadavanja skupova navod enjem njegovih elemenata: Nije bitan redosled po kome se elementi navode (nabrajaju). Svaki element se navodi samo jednom. Matematička logika 10 Skupovi

11 Jednakost skupova. Podskup Primeri inkluzije: N Z {a, b, c} {b, d, a, c} skup prirodnih brojeva N je podskup skupa celih brojeva Z (i to pravi podskup); Matematička logika 11 Skupovi

12 Jednakost skupova. Podskup Zadatak 1. Da li su sledeća tvrd enja tačna: (a) {a, {b, c}} = {{a, b}, c}; (b) {1, 2, 3} {{1, 2}, 3, {1, 2, 3}}. Rešenje: (a) Ovo nije tačno, jer skupovi na levoj i desnoj strani nemaju iste elemente. Naime, elementi skupa na levoj strani su a i {b, c}, a elementi skupa na desnoj strani su {a, b} i c. Prema tome, a je, na primer, element skupa na levoj strani, ali nije element skupa na desnoj strani. (b) Ni ovo nije tačno, jer elementi skupa na levoj strani su 1, 2 i 3, a elementi skupa na desnoj strani su {1, 2}, 3 i {1, 2, 3}. Dakle, 1 i 2 nisu elementi skupa na desnoj strani. Matematička logika 12 Skupovi

13 Jednakost skupova. Podskup Zadatak 2. Odrediti broj elemenata sledećih skupova: (a) {{, { }}} (b) {1, 2, 3, {1, 2, 3}} (c) {, { }, a, b, {a, b}, {a, b, {a, b}}} (d) {, { }, {, { }}} (e) {, { }, } Rešenje: (a) Skup {{, { }}} ima samo jedan element, skup {, { }}. Matematička logika 13 Skupovi

14 Jednakost skupova. Podskup (b) Skup {1, 2, 3, {1, 2, 3}} ima 4 elementa: (1) 1, (2) 2, (3) 3 i (4) {1, 2, 3}. (c) Skup {, { }, a, b, {a, b}, {a, b, {a, b}}} ima 6 elemenata: (1), (2) { }, (3) a, (4) b, (5) {a, b}, i (6) {a, b, {a, b}}. (d) Skup {, { }, {, { }}} ima 3 elementa: (1), (2) { }, i (3) {, { }}. (e) Skup {, { }, } ima 2 elementa: (1) (dva puta zapisan), i (2) { }. Matematička logika 14 Skupovi

15 Svojstva jednakosti i inkluzije skupova Tvrd enje 1. Za proizvoljne skupove A, B, C važi: (i) A = A A = B B = A A = B B = C A = C (ii) A A A B B A A = B A B B C A C (refleksivnost) (simetričnost) (tranzitivnost) (refleksivnost) (antisimetričnost) (tranzitivnost) Dokaz: Ostavlja se za vežbu. Matematička logika 15 Skupovi

16 Svojstva jednakosti i inkluzije skupova Zbog refleksivnosti inkluzije, svaki skup je i svoj sopstveni podskup. Antisimetričnost inkluzije je svojstvo koje se veoma mnogo koristi kada se dokazuje jednakost skupova. Naime, skupovnu jednakost A = B najčešće dokazujemo tako što dokazujemo da je A B i B A. Matematička logika 16 Skupovi

17 Venovi dijagrami Skupove grafički najčešće predstavljamo pomoću Venovih dijagrama. Kod Venovih dijagrama skupovi su predstavljeni skupovima tačaka izvesnih geometrijskih figura u ravni, kao što su krugovi ili elipse, i oblasti u ravni koje nastaju presecanjem tih geometrijskih figura. Dva primera Venovih dijagrama data su na donjoj slici: Matematička logika 17 Skupovi

18 Razlika skupova Razlika skupova A i B je skup A \ B koji se definiše sa A \ B def = {x x A x B}. tj. skup svih elemenata iz A koji ne pripadaju skupu B Matematička logika 18 Skupovi

19 Razlika skupova Tvrd enje 2. Neka su X i Y proizvoljni skupovi. Tada je X \ X = Y \ Y. Dokaz: Imamo da je x X \ X x X x X x Y \ Y x Y x Y odakle sledi da je x X \ X x Y \ Y. Prema ovom tvrd enju, razlika X \ X ne zavisi od skupa X. Zato prazan skup, u oznaci, definišemo kao skup X \ X, gde je X proizvoljan skup. Matematička logika 19 Skupovi

20 Razlika skupova Prema ovakvoj definiciji x x X x X. Kako je desna strana ove ekvivalencije kontradikcija, to imamo da ni za jedno x ne važi x. Tako dolazimo do ekvivalentne definicije praznog skupa: prazan skup je skup koji nema elemenata. Tvrd enje 3. Za svaki skup X važi X. Dokaz: Implikacija x x X važi za svaki x jer je leva strana te implikacije uvek netačna. Matematička logika 20 Skupovi

21 Presek skupova Presek skupova A i B, u oznaci A B, je skup koji sadrži tačno one elemente koji se nalaze istovremeno u oba skupa: A B def = {x x A x B}. Za skupove A i B čiji je presek prazan skup se kaže da su disjunktni. presek skupova disjunktni skupovi Matematička logika 21 Skupovi

22 Unija skupova Unija skupova A i B, u oznaci A B, je skup koji sadrži sve elemente koji se nalaze bar u jednom od njih: A B def = {x x A x B}. Matematička logika 22 Skupovi

23 Komplement skupa Ako je B A, onda se razlika A \ B zove komplement skupa B u odnosu na A i označava sa C A (B): C A (B) def = A \ B = {x x A x B}. Matematička logika 23 Skupovi

24 Komplement skupa Često se posmatraju isključivo podskupovi nekog unapred datog skupa U, koji se zove univerzalni skup. Tada za B U, C U (B) se označava sa B i zove se samo komplement skupa B: B def = {x x B} Matematička logika 24 Skupovi

25 Primeri skupovnih operacija a) Ako je A = {x N ( k)(x = 2k)}, B = {x N ( m)(x = 3m)}, onda je A B = {x N ( p)(x = 6p)}; A B = {x N ( q)(x = 2q x = 3q)}; A = {x N ( r)(x = 2r 1)}. b) Skupovi tačaka koje pripadaju dvema mimoilaznim pravama su disjunktni. Matematička logika 25 Skupovi

26 Venovi dijagrami (nastavak) Neka je dat univerzalni skup U i njegovi podskupovi A 1, A 2,..., A n. Predstavljanje tih skupova Venovim dijagramom je takvo grafičko predstavljanje gde je univerzalni skup U predstavljen pravougaonikom, a skupovi A 1, A 2,..., A n krugovima ili elipsama. Pri tome mora biti ispunjen uslov da krugovi, odnosno elipse, dele pravougaonik na 2 n delova, od kojih je svaka povezana oblast. Venov dijagram mora da obezbedi dovoljan broj oblasti za predstavljanje svih mogućih preseka skupova A 1,..., A n i njihovih komplemenata. Svi ti preseci mogu biti neprazni, i tada ih ima 2 n, što znači da je neophodno u Venovom dijagramu obezbediti 2 n povezanih oblasti. Matematička logika 26 Skupovi

27 Venov dijagram V 2 Venov dijagram za dva skupa, u oznaci V 2, prikazan je na sledećoj slici: U A B A B A B A B A B Jednostavnosti radi, ovde smo izostavljali znak za presek skupova. Na primer, A B kraći zapis za A B. Komplement se gleda u odnosu na univerzalni skup U. Matematička logika 27 Skupovi

28 Primer: nije Venov dijagram Primer predstavljanja koje nije Venov dijagram, jer ne ispunjava napred postavljeni uslov, dat je na sledećoj slici. U B A Ovo nije Venov dijagram jer skup A B nije predstavljen povezanom oblašću. Matematička logika 28 Skupovi

29 Venov dijagram V 3 Venov dijagram za tri skupa, u oznaci V 3, je U C A B C A B C A B C A B C A B C A B C A B C A B C A B Matematička logika 29 Skupovi

30 Venov dijagram V 4 Venov dijagram za četiri skupa, u oznaci V 4, je prikazan na sledećoj slici: U A 1 B C 4 D 1 : A B C D 9 : A B C D 2 : A B C D 10 : A B C D 3 : A B C D 11 : A B C D 4 : A B C D 12 : A B C D : A B C D 13 : A B C D 6 : A B C D 14 : A B C D 7 : A B C D 15 : A B C D 8 : A B C D 16 : A B C D Matematička logika 30 Skupovi

31 Venovi dijagrami za n skupova Već u slučaju četiri skupa nije moguće nacrtati Venov dijagram sa krugovima, čak i različitih poluprečnika, već se to mora uraditi elipsama. Iako su Venovi dijagrami uvedeni još godine, tek je godine dokazano da se za svaki prirodan broj n može nacrtati Venov dijagram sa n elipsi koji obezbed uje svih 2 n oblasti. Med utim, crtanje Venovih dijagrama za pet i više skupova je toliko komplikovano da to nećemo raditi. Matematička logika 31 Skupovi

32 Venovi dijagrami zadatak Zadatak 3. Dokazati da donja slika ne predstavlja Venov dijagram. U D C A B Označene oblasti izraziti kao preseke skupova A, B, C i D, odnosno njihovih komplemenata, na način kako je to urad eno za V 4. Matematička logika 32 Skupovi

33 Venovi dijagrami zadatak Rešenje: Već na prvi pogled se vidi da nedostaju oblasti koje odgovaraju skupovima A C B D i B D A C, tj., A B C D i A B C D. U D C Drugim rečima, u ovom slučaju je A B C D = i A B C D = A B Matematička logika 33 Skupovi

34 Venovi dijagrami zadatak Sve ostale oblasti iz Venovog dijagrama V 4 su prisutne na ovom dijagramu i odgovaraju sledećim oblastima sa ovog dijagrama U D C 1 : A B C D 8 : A B C D 2 : A B C D 9 : A B C D 3 : A B C D 10 : A B C D : A B C D 11 : A B C D 5 : A B C D 12 : A B C D A B 6 : A B C D 13 : A B C D 7 : A B C D 14 : A B C D. Matematička logika 34 Skupovi

35 Svojstva skupovnih operacija Tvrd enje 4. Neka je A skup i X, Y, Z A. Tada važi: (a) Komutativnost (b) Asocijativnost (c) Distributivnost (d) Apsorptivnost X Y = Y X, X Y = Y X; X (Y Z) = (X Y ) Z, X (Y Z) = (X Y ) Z; X (Y Z) = (X Y ) (X Z), X (Y Z) = (X Y ) (X Z); X (X Y ) = X, X (X Y ) = X; Matematička logika 35 Skupovi

36 Svojstva skupovnih operacija (e) Idempotentnost X X = X, X X = X; (f) De Morganovi zakoni (X Y ) = X Y, (X Y ) = X Y ; (g) X X =, X X = A; (h) X A = X, X A = A; (i) X =, X = X. Dokaz: Ostavlja se za vežbu. Matematička logika 36 Skupovi

37 Svojstva inkluzije Sledeće tvrd enje daje nam vezu izmed u inkluzije i operacija preseka i unije skupova. Tvrd enje 5. Neka su X i Y skupovi. Tada važi: X Y X Y = X, X Y X Y = Y. Dokaz: Ostavlja se za vežbu. Matematička logika 37 Skupovi

38 Partitivni skup Kolekcija svih podskupova proizvoljnog skupa A je skup koji nazivamo partitivni skup skupa A i označavamo ga sa P(A): Tvrd enje 6. P(A) def = {X X A}. (a) Prazan skup je element svakog partitivnog skupa. (b) Skup A je element svog partitivnog skupa P(A). Za razliku od samog praznog skupa, koji nema elemenata, njegov partitivni skup je jednočlan (jednoelementan): P( ) = { } Matematička logika 38 Skupovi

39 Partitivni skup Primer partitivnog skupa: Za A = {a, b, c} je P(A) = {, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}. Tvrd enje: Neka skup A ima n elemenata. Tada (a) A ima ( n k) podskupova sa k elemenata (0 k n); (b) P(A) ima 2 n elemenata. Zbog ovoga se često umesto oznake P(A) koristi oznaka 2 A. Matematička logika 39 Skupovi

40 Partitivni skup Setimo se da je ( n k) binomni koeficijent, tj. ( ) n n(n 1)(n 2)(n k + 1) =. k k(k 1) 2 1 Posebne vrednosti binomnih koeficijenata su: ( ) ( ) ( ) n def n n = 1, = n, 0 1 n = 1. Matematička logika 40 Skupovi

41 Partitivni skup Zadatak: Odrediti sve podskupove skupa A = {α, 2, 5, w}. Rešenje: Svi podskupovi skupa A su broj broj elemenata podskup podskupova {α}, {2}, {5}, {w} 4 2 {α, 2}, {α, 5}, {α, w}, {2, 5}, {2, w}, {5, w} 6 3 {α, 2, 5}, {α, 2, w}, {α, 5, w}, {2, 5, w} 4 4 A 1 ukupno: 16 Matematička logika 41 Skupovi

42 Ure deni par Kao što znamo, {x, y} označava skup koji sadrži elemente x i y, pri čemu je {x, y} isto što i {y, x}, tj., nije nije bitan redosled po kome navodimo elemente x i y. Zato se skup {x, y} ponekad naziva i neured eni par elemenata x i y. Med utim, često se nameće potreba da istaknemo koji je element prvi a koji drugi u paru. Da bi smo to istakli, uvodimo oznaku (x, y) i kažemo da je (x, y) ured eni par elemenata x i y. Za x kažemo da je prva komponenta ili prva koordinata, a za y da je druga komponenta ili druga koordinata ured enog para (x, y). Matematička logika 42 Skupovi

43 Primer ure denog para Svaka tačka u ravni može se predstaviti ured enim parom (a, b) realnih brojeva, pri čemu za a kažemo da je njena x-koordinata, a za b da je njena y-koordinata. Kao što vidimo na slici, ured eni par (1, 3) nije isto što i ured eni par (3, 1). y (1,3) b (a, b) (3,1) a x Matematička logika 43 Skupovi

44 Formalna definicija ure denog para Prethodna priča o ured enim parovima je bila potpuno neformalna. Njena uloga je bila da objasni svrhu uvod enja pojma ured enog para i kako treba shvatiti taj pojam. U nastavfkmu dajemo formalnu matematičku definiciju ured enog para. Ured eni par (x, y) elemenata x i y se formalno definiše kao skup (x, y) def = {{x}, {x, y}}. Ovakva definicija može izgledati vrlo neobično i prilično apstraktno. Med utim, ona omogućava da se iz nje izvedu fundamentalna svojstva ured enih parova. Jedno od takvih svojstava je i jednakost ured enih parova, koja je tema naših daljih razmatranja. Matematička logika 44 Skupovi

45 Formalna definicija ure denog para Tvrd enje 7. Dokazati da su dva ured ena para (a, b) i (c, d) jednaka ako i samo ako je a = c i b = d. Dokaz: Ako je a = c i b = d, tada je jasno da je {a} = {c} i {a, b} = {c, d}, pa je (a, b) = (c, d). Obratno, neka je (a, b) = (c, d), tj. {{a}, {a, b}} = {{c}, {c, d}}. Slučaj a = b: U ovom slučaju je (a, b) = {{a}, {a, b}} = {{a}}, pa što znači da je {{a}} = {{c}, {c, d}}, {{a}} = {{c}} = {{c, d}}, odakle se lako dobija da je a = b = c = d. Matematička logika 45 Skupovi

46 Formalna definicija ure denog para Slučaj a b: U ovom slučaju je {a} {a, b}, zbog čega mora biti i {c} {c, d}, odnosno c d. Iz {c} {{c}, {c, d}} = {{a}, {a, b}} dobija se {c} = {a}, tj. c = a, dok se iz {c, d} {{c}, {c, d}} = {{a}, {a, b}} i {c, d} {a} dobija {c, d} = {a, b}, pa iz d c = a i d {c, d} = {a, b} zaključujemo da mora biti d = b. Dakle, a = c i b = d. Prema tome, dva ured ena para su jednaka ako su im jednake odgovarajuće koordinate. Iz jednakosti ured enih parova možemo zaključiti i da važi (x, y) = (y, x) x = y. Matematička logika 46 Skupovi

47 Ure dena n-torka Uopštenjem pojma ured enog para sa n = 2 na bilo koji prirodan broj n, dolazimo do pojma ured ene n-torke. Ured ena n-torka (x 1, x 2,..., x n ) elemenata x 1, x 2,..., x n definiše se induktivno, na sledeći način: (x 1 ) def = x 1 (x 1,..., x n ) def = ((x 1,..., x n 1 ), x n ). Na primer, ured ena trojka (a, b, c) je zapravo ured eni par ((a, b), c). Za bilo koji k {1,..., n}, element x k se naziva k-ta koordinata ured ene n-torke (x 1,..., x n ). Matematička logika 47 Skupovi

48 Jednakost ure denih n-torki Kao i kod ured enih parova, za ured ene n-torke važi Tvrd enje 8. Dve ured ene n-torke (x 1,..., x n ) i (y 1,..., y n ) su jednake ako i samo ako su im jednake odgovarajuće koordinate, tj. x 1 = y 1 x 2 = y 2... x n = y n. Dokaz: Ovo tvrd enje dokazuje se indukcijom po n. Za n = 1 tvrd enje je trivijalno, a u slučaju n = 2 dokazano je u prethodnom tvrd enju. Pretpostavimo sada da tvrd enje važi za neki prirodan broj n 1 i dokažimo da važi i za n. Matematička logika 48 Skupovi

49 Jednakost ure denih n-torki Zaista, (x 1, x 2,..., x n ) = (y 1, y 2,..., y n ) ((x 1,..., x n 1 ), x n ) = ((y 1,..., y n 1 ), y n ) (definicija ured ene n-torke) (x 1,..., x n 1 ) = (y 1,..., y n 1 ) x n = y n (jednakost ured enih parova) x 1 = y 1... x n 1 = y n 1 x n = y n (indukcijska hipoteza). Ovim je tvrd enje dokazano za svaki prirodan broj n. Matematička logika 49 Skupovi

50 Dekartov proizvod dva skupa Ako su A i B skupovi, onda se skup svih ured enih parova sa prvom koordinatom iz A, a drugom iz B naziva Dekartov, Kartezijev ili direktan proizvod skupova A i B, i označava se sa A B: A B def = {(a, b) a A b B}. Matematička logika 50 Skupovi

51 Dekartov proizvod dva skupa Sam naziv Dekartov proizvod potiče od pojma Dekartov koordinatni sistem predstavljanja tačaka u ravni ured enim parom realnih brojeva. Ako je bilo koji od skupova A i B prazan, tada je po definiciji i njihov Dekartov proizvod A B prazan. Dekartov proizvod A A skupa A sa samim sobom označava se sa A 2 i naziva Dekartov kvadrat skupa A. Primer: Ako je A = {0, 1} i B = {x, y, z}, onda je A B = {(0, x), (0, y), (0, z), (1, x), (1, y), (1, z)}; A 2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. Dekartov proizvod skupova sa m i n elemenata ima mn elemenata. Matematička logika 51 Skupovi

52 Dekartov proizvod n skupova Dekartov proizvod n skupova A 1,..., A n, u oznaci A 1 A n je skup svih ured enih n-torki sa koordinatama iz odgovarajućih skupova: ili n i=1 A i, A 1 A n def = {(a 1,..., a n ) a 1 A 1,..., a n A n }. Ako je bilo koji od skupova A 1,..., A n prazan, onda je po definiciji prazan i skup A 1 A n. Matematička logika 52 Skupovi

53 Dekartov n-ti stepen Ako je A 1 = = A n = A, onda se odgovarajući Dekartov proizvod označava sa A n i zove Dekartov n-ti stepen skupa A. Jasno, A 1 = A. Ako je A, onda je Dekartov stepen zgodno proširiti (dodefinisati) i za n = 0, na sledeći način: A 0 def = { } U ovoj definiciji je najbitnije da je A 0 jednoelementan skup. Jedini element ovog skupa mogli smo označiti i nekako drugačije, ali je uzeta oznaka za prazan skup zbog svoje univerzalnosti. Matematička logika 53 Skupovi

54 Familija skupova Neka je dat neprazan skup I, koji ćemo nazivati indeksni skup, i neka je svakom elementu i I pridružen neki skup A i. Tada možemo formirati novi skup {A i i I} tako što svaki element i u skupu I zamenimo odgovarajućim skupom A i. Dakle, elementi tog novog skupa su skupovi A i. Ovako definisan skup nazivamo familija skupova A i, i I, indeksirana skupom I, koju takod e označavamo i sa {A i } i I. Matematička logika 54 Skupovi

55 Unija familije skupova Unija familije skupova {A i i I} definiše se na sledeći način: A i = {A i i I} def = {x ( i I) x A i }. i I Kao što se vidi sa slike, uniju familije skupova možemo shvatiti tako kao da smo uklonili opne koje razdvajaju elemente iz različitih skupova A i i time sve te elemente objedinili u jedan skup. Matematička logika 55 Skupovi

56 Presek familije skupova Presek familije skupova {A i i I} definiše se sa: A i = {A i i I} def = {x ( i I) x A i }. i I Na slici desno prikazan je presek familije {A i } i I, gde je I = {1, 2, 3, 4, 5}. Matematička logika 56 Skupovi

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Zadaci iz Osnova matematike

Zadaci iz Osnova matematike Zadaci iz Osnova matematike 1. Riješiti po istinitosnoj vrijednosti iskaza p, q, r jednačinu τ(p ( q r)) =.. Odrediti sve neekvivalentne iskazne formule F = F (p, q) za koje je iskazna formula p q p F

Διαβάστε περισσότερα

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe,

O SKUPOVIMA. Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, O SKUPOVIM Do pojma skupa može se vrlo lako doći empirijskim putem, posmatrajući razne grupe, skupine, mnoštva neke vrste objekata, stvari, živih bića i dr. Tako imamo skup stanovnika nekog grada, skup

Διαβάστε περισσότερα

Skupovi, relacije, funkcije

Skupovi, relacije, funkcije Chapter 1 Skupovi, relacije, funkcije 1.1 Skup, torka, multiskup 1.1.1 Skup Pojam skupa ne definišemo eksplicitno. Intuitivno skup prihvatamo kao konačnu ili beskonačnu kolekciju objekata (ili elemenata)u

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije.

Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija. Dokaz: Neka su A i A B tautologije. Svojstva tautologija Tvrd enje 3: Ako su formule A i A B tautologije, onda je tautologija i formula B. Dokaz: Neka su A i A B tautologije. Pretpostavimo da B nije tautologija. Tada postoji valuacija v

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Algebarske strukture

Algebarske strukture i operacije Univerzitet u Nišu Prirodno Matematički Fakultet februar 2010 Istraživačka stanica Petnica i operacije Operacije Šta je to algebra i apstraktna algebra? Šta je to algebarska struktura? Cemu

Διαβάστε περισσότερα

Sistemi veštačke inteligencije primer 1

Sistemi veštačke inteligencije primer 1 Sistemi veštačke inteligencije primer 1 1. Na jeziku predikatskog računa formalizovati rečenice: a) Miloš je slikar. b) Sava nije slikar. c) Svi slikari su umetnici. Uz pomoć metode rezolucije dokazati

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota:

ASIMPTOTE FUNKCIJA. Dakle: Asimptota je prava kojoj se funkcija približava u beskonačno dalekoj tački. Postoje tri vrste asimptota: ASIMPTOTE FUNKCIJA Naš savet je da najpre dobro proučite granične vrednosti funkcija Neki profesori vole da asimptote funkcija ispituju kao ponašanje funkcije na krajevima oblasti definisanosti, pa kako

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18

OSNOVNI PRINCIPI PREBROJAVANJA. () 6. studenog 2011. 1 / 18 OSNOVNI PRINCIPI PREBROJAVANJA () 6. studenog 2011. 1 / 18 TRI OSNOVNA PRINCIPA PREBROJAVANJA -vrlo često susrećemo se sa problemima prebrojavanja elemenata nekog konačnog skupa S () 6. studenog 2011.

Διαβάστε περισσότερα

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F

ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. p q r F ANALIZA SA ALGEBROM I razred MATEMATI^KA LOGIKA I TEORIJA SKUPOVA. Istinitosna tablica p q r F odgovara formuli A) q p r p r). B) q p r p r). V) q p r p r). G) q p r p r). D) q p r p r). N) Ne znam. Date

Διαβάστε περισσότερα

Linearna algebra. skripta. Januar 2013.

Linearna algebra. skripta. Januar 2013. Linearna algebra skripta Januar 3 Reč autora Ovaj tekst je nastao od materijala sa kursa Linearna algebra i analitička geometrija za studente Odseka za informatiku, Matematičkog fakulteta Univerziteta

Διαβάστε περισσότερα

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE

DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne

Διαβάστε περισσότερα

4 Numeričko diferenciranje

4 Numeričko diferenciranje 4 Numeričko diferenciranje 7. Funkcija fx) je zadata tabelom: x 0 4 6 8 fx).17 1.5167 1.7044 3.385 5.09 7.814 Koristeći konačne razlike, zaključno sa trećim redom, odrediti tačku x minimuma funkcije fx)

Διαβάστε περισσότερα

Na grafiku bi to značilo :

Na grafiku bi to značilo : . Ispitati tok i skicirati grafik funkcije + Oblast definisanosti (domen) Kako zadata funkcija nema razlomak, to je (, ) to jest R Nule funkcije + to jest Ovo je jednačina trećeg stepena. U ovakvim situacijama

Διαβάστε περισσότερα

Vektorski prostori. Vektorski prostor

Vektorski prostori. Vektorski prostor Vektorski prostori Vektorski prostor Neka je X neprazan skup i (K, +, ) polje. Skup X je vektorski ili linearni prostor nad poljem skalara K ako ima sledeću strukturu: (1) Definisana je operacija + u skupu

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na

OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Pre nego što krenete sa proučavanjem ovog fajla, obavezno pogledajte fajl ELEMENTARNE FUNKCIJE, jer se na OBLAST DEFINISANOSTI FUNKCIJE (DOMEN) Prva tačka u ispitivanju toka unkcije je odredjivanje oblasti deinisanosti, u oznaci Pre nego što krenete sa proučavanjem ovog ajla, obavezno pogledajte ajl ELEMENTARNE

Διαβάστε περισσότερα

Norme vektora i matrica

Norme vektora i matrica 2 Norme vektora i matrica Pojam norme u vektorskim prostorima se najčešće povezuje sa određenom merom veličine elemenata tog prostora. Tako je u prostoru realnih brojeva R, norma elementa x R najčešće

Διαβάστε περισσότερα

FUNKCIONALNO GUSTE RELACIONE ALGEBRE

FUNKCIONALNO GUSTE RELACIONE ALGEBRE UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Ivan Prokić FUNKCIONALNO GUSTE RELACIONE ALGEBRE -master teza- Novi Sad, 2014 Sadržaj Predgovor 1 1 Uvod 3 1.1

Διαβάστε περισσότερα

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b)

TAČKA i PRAVA. , onda rastojanje između njih računamo po formuli C(1,5) d(b,c) d(a,b) TAČKA i PRAVA Najpre ćemo se upoznati sa osnovnim formulama i njihovom primenom.. Rastojanje između dve tačke Ako su nam date tačke Ax (, y) i Bx (, y ), onda rastojanje između njih računamo po formuli

Διαβάστε περισσότερα

ELEMENTI VISE ˇ MATEMATIKE

ELEMENTI VISE ˇ MATEMATIKE Nada Miličić Miloš Miličić ELEMENTI VISE ˇ MATEMATIKE II deo II izdanje Akademska misao Beograd, 2011 Dr Nada Miličić, redovni profesor Dr Miloš Miličić, redovni profesor ELEMENTI VIŠE MATEMATIKE II DEO

Διαβάστε περισσότερα

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija

Neprekinute funkcije i limesi Definicija neprekinute funkcije i njen odnos prema limesu Asimptote Svojstva neprekinutih funkcija Sadržaj: Nizovi brojeva Pojam niza Limes niza. Konvergentni nizovi Neki važni nizovi. Broj e. Limes funkcije Definicija esa Računanje esa Jednostrani esi Neprekinute funkcije i esi Definicija neprekinute

Διαβάστε περισσότερα

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije:

POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA. U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: POGLAVLJE 1 BEZUSLOVNA OPTIMIZACIJA U ovom poglavlju proučavaćemo problem bezuslovne optimizacije: min f(x) (1.1) pri čemu nema dodatnih ograničenja na X = (x 1,..., x n ) R n. Probleme bezuslovne optimizacije

Διαβάστε περισσότερα

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne

ISKAZI. U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ISKAZI U svakodnevnom govoru, a i u pisanom tekstu, obično se sreću rečenice koje su ili tačne ili netačne, tj rečenice koje imaju logičkog smisla.ovakve rečenice se u matematici nazivaju iskazi.dakle,

Διαβάστε περισσότερα

Determinante. Inverzna matrica

Determinante. Inverzna matrica Determinante Inverzna matrica Neka je A = [a ij ] n n kvadratna matrica Determinanta matrice A je a 11 a 12 a 1n a 21 a 22 a 2n det A = = ( 1) j a 1j1 a 2j2 a njn, a n1 a n2 a nn gde se sumiranje vrši

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi

SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I. Skupovi, funkcije, brojevi SVEUĆILIŠTE U RIJECI UČITELJSKI FAKULTET U RIJECI ODSJEK ZA UČITELJSKI STUDIJ U GOSPIĆU MATEMATIKA I Skupovi, funkcije, brojevi mr.sc. TATJANA STANIN 009. Kratak pregled predavanja koja se izvode na učiteljskom

Διαβάστε περισσότερα

Gradimir V. Milovanović MATEMATIČKA ANALIZA I

Gradimir V. Milovanović MATEMATIČKA ANALIZA I Gradimir V. Milovanović Radosav Ž. D ord ević MATEMATIČKA ANALIZA I Predgovor Ova knjiga predstavlja udžbenik iz predmeta Matematička analiza I koji se, počev od školske 2004/2005. godine, studentima Elektronskog

Διαβάστε περισσότερα

VEKTORI. Nenad O. Vesi 1. = α, ako je

VEKTORI. Nenad O. Vesi 1. = α, ako je VEKTORI Nenad O. Vesi 1 1 Uvod Odnos vektora AB, jednak je α CD ( AB CD ) = α, ako je AB = αcd. Teorema 1 (TEOREME BLIZANCI) Dat je trougao ABC i ta ke P i Q na pravama BC, CA redom i ta ke R i S na pravoj

Διαβάστε περισσότερα

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine

56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA. Sarajevo, godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA SREDNJIH ŠKOLA Sarajevo, 3.04.016. godine 56. TAKMIČENJE MLADIH MATEMATIČARA BOSNE I HERCEGOVINE FEDERALNO PRVENSTVO UČENIKA

Διαβάστε περισσότερα

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom.

RAVAN. Ravan je osnovni pojam u geometriji i kao takav se ne definiše. Ravan je određena tačkom i normalnim vektorom. RAVAN Ravan je osnovni pojam u geometiji i kao takav se ne definiše. Ravan je odeđena tačkom i nomalnim vektoom. nabc (,, ) π M ( x,, ) y z Da bi izveli jednačinu avni, poučimo sledeću sliku: n( A, B,

Διαβάστε περισσότερα

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI

REALNA, KOMPLEKSNA ANALIZA I HILBERTOVI PROSTORI RALNA, KOMPLKSNA ANALIZA I HILBRTOVI PROSTORI M. MATLJVIĆ Abstract. R R M M Uvod Radna verzija, 26 septembar 2007, 29 maj 2008. Kurs iz Teorije Realnih i Kompleksnih funkcija (TR-KF, popularno TRiK) sastoji

Διαβάστε περισσότερα

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo.

Kompleksni brojevi. Algebarski oblik kompleksnog broja je. z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo. Kompleksni brojevi Algebarski oblik kompleksnog broja je z = x + iy, x, y R, pri čemu je: x = Re z realni deo, y = Im z imaginarni deo Trigonometrijski oblik kompleksnog broja je z = rcos θ + i sin θ,

Διαβάστε περισσότερα

MATEMATIČKA ANALIZA 1 1 / 192

MATEMATIČKA ANALIZA 1 1 / 192 MATEMATIČKA ANALIZA 1 1 / 192 2 / 192 prof.dr.sc. Miljenko Marušić Kontakt: miljenko.marusic@math.hr Konzultacije: Utorak, 10-12 WWW: http://web.math.pmf.unizg.hr/~rus/ nastava/ma1/ma1.html 3 / 192 Sadržaj

Διαβάστε περισσότερα

Projektovanje informacionih sistema 39

Projektovanje informacionih sistema 39 Projektovanje informacionih sistema 39 Glava 3 3.0 Osnove relacione algebre - uvod Za manipulisanje podacima i tabelama u relacionim bazama podataka potrebna su osnovna znanja iz relacione algebre. Relaciona

Διαβάστε περισσότερα

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti

POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, Vladimir Balti POLINOMI I RACIONALNE FUNKCIJE Nastava u Matematiqkoj gimnaziji, 004. Vladimir Balti Pojam polinoma. Prsten polinoma.. Dati su polinomi P (x) = x + x +, Q(x) = x 4 x +, R(x) = x x +. Proveriti da li za

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija 18.1200 Prvi razred A kategorija Neka je K sredixte teжixne duжi CC 1 trougla ABC ineka je AK BC = {M}. Na i odnos CM : MB. Na i sve proste brojeve p, q i r, kao i sve prirodne brojeve n, takve da vaжi

Διαβάστε περισσότερα

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa:

Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika 2 KOLOKVIJUM 1. Prezime, ime, br. indeksa: Fakultet tehničkih nauka, Softverske i informacione tehnologije, Matematika KOLOKVIJUM 1 Prezime, ime, br. indeksa: 4.7.1 PREDISPITNE OBAVEZE sin + 1 1) lim = ) lim = 3) lim e + ) = + 3 Zaokružiti tačne

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić

OSNOVI ELEKTRONIKE. Vežbe (2 časa nedeljno): mr Goran Savić OSNOVI ELEKTRONIKE Vežbe (2 časa nedeljno): mr Goran Savić savic@el.etf.rs http://tnt.etf.rs/~si1oe Termin za konsultacije: četvrtak u 12h, kabinet 102 Referentni smerovi i polariteti 1. Odrediti vrednosti

Διαβάστε περισσότερα

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija

Društvo matematičara Srbije. Pripreme za Juniorske olimpijade školske 2007/2008. Matematička indukcija Društvo matematičara Srbije Pripreme za Juiorske olimpijade školske 007/008 -Dord e Baralić Tel:063/706-706-6 e-mail:djolebar@ptt.yu Matematička idukcija Primer 1. Dokazati da je > za sve N. Ituitivo zamo

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA

STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -

Διαβάστε περισσότερα

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών

ΣΕΡΒΙΚΗ ΓΛΩΣΣΑ IV. Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Ενότητα 3: Αντωνυμίες (Zamenice) Μπορόβας Γεώργιος Τμήμα Βαλκανικών, Σλαβικών και Ανατολικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015.

Matematika. Viša razina. Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Matematika Viša razina Marina Ninković, prof. Vesna Ovčina, prof. Zagreb, 2015. Autor: Marina Ninković, prof. Vesna Ovčina, prof. Naslov: Matematika Viša razina Izdanje: 4. izdanje Urednica: Ana Belin,

Διαβάστε περισσότερα

PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI

PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI Prirodno-matematički fakultet, Univerzitet u Nišu, Srbija http://wwwpmfniacrs/mii Matematika i informatika (1) (013), 19-74 PRIMENA KOMPLEKSNIH BROJEVA U PLANIMETRIJI Mihailo Krstić, Student Departmana

Διαβάστε περισσότερα

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12

GRAFOVI. Ljubo Nedović. 21. februar Osnovni pojmovi 2. 2 Bipartitni grafovi 8. 3 Stabla 9. 4 Binarna stabla Planarni grafovi 12 GRAFOVI Ljubo Nedović 21. februar 2013 Sadržaj 1 Osnovni pojmovi 2 2 Bipartitni grafovi 8 3 Stabla 9 4 Binarna stabla 11 5 Planarni grafovi 12 6 Zadaci 13 1 2 1 Osnovni pojmovi Iz Vikipedije, slobodne

Διαβάστε περισσότερα

Polinomske jednaqine

Polinomske jednaqine Matematiqka gimnazija u Beogradu Dodatna nastava, xk.g. 2005/06. Polinomske jednaqine 13.6.2006. Naslov se odnosi na određivanje polinoma po jednoj ili vixe promenljivih (sa npr. realnim ili kompleksnim

Διαβάστε περισσότερα

Teorija kodiranja. Hamingov kod i njegova definicija

Teorija kodiranja. Hamingov kod i njegova definicija Teorija kodiranja. Hamingov kod i njegova definicija Erna Oklapi Gimnazija Novi Pazar ernaoklapii@yahoo.com Sanela Numanović Gimnazija Kruševac sanelanumanovic@yahoo.com Rezime U ovom radu predstavljen

Διαβάστε περισσότερα

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA

MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA SVEUČILIŠTE U ZAGREBU PRIRODOSLOVNO MATEMATIČKI FAKULTET MATEMATIČKI ODSJEK Ivan Krijan, Sara Muhvić MULTIPLICITETI PRESJEKA I RACIONALNOST RAVNINSKIH KRIVULJA Zagreb, 2013. Ovaj rad izraden je na Zavodu

Διαβάστε περισσότερα

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ

KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA 2011/2012 VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ KVANTNA MEHANIKA SKRIPTA UZ I DEO KURSA ŠKOLSKA GODINA / VITOMIR MILANOVIĆ JELENA RADOVANOVIĆ SADRŽAJ. SCHRÖDINGER-OVA JEDNAČINA.. NESTACIONARNA SCHRÖDINGER-OVA JEDNAČINA.. STACIONARNA SCHRÖDINGER-OVA

Διαβάστε περισσότερα

Prostori Soboljeva sa negativnim indeksom

Prostori Soboljeva sa negativnim indeksom UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU Nevena Mutlak Prostori Soboljeva sa negativnim indeksom -master rad- Mentor: prof.dr Marko Nedeljkov Novi Sad,

Διαβάστε περισσότερα

4.1 Elementarne funkcije

4.1 Elementarne funkcije . Elementarne funkcije.. Polinomi Funkcija f : R R zadana formulom f(x) = a n x n + a n x n +... + a x + a 0 gdje je n N 0 te su a n, a n,..., a, a 0 R, zadani brojevi takvi da a n 0 naziva se polinom

Διαβάστε περισσότερα

Programiranje I. Smer Informatika Matematički fakultet, Beograd. Jelena Tomašević, Sana Stojanović November 16, 2005

Programiranje I. Smer Informatika Matematički fakultet, Beograd. Jelena Tomašević, Sana Stojanović November 16, 2005 Programiranje I Beleške sa vežbi Smer Informatika Matematički fakultet, Beograd Jelena Tomašević, Sana Stojanović November 16, 2005 1 1 Specifikacija sintakse programskih jezika, meta jezici Za opis programskih

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj.

Baza topologije. Definicija. Familija B podskupova od X je baza neke topologije na X ako: Topološki prostori. Baza topologije. tj. Opća topologija 24 Opća topologija 26 13. Baza topologije Baza topologije 2 TOPOLOŠKI PROSTORI I NEPREKIDNE FUNKCIJE Topološki prostori Baza topologije Uređajna topologija Produktna topologija na X Y Topologija

Διαβάστε περισσότερα

Geometrijska mesta tačaka i primena na konstrukcije

Geometrijska mesta tačaka i primena na konstrukcije Univerzitet u Nišu Prirodno - matematički fakultet Departman za matematiku Geometrijska mesta tačaka i primena na konstrukcije Master rad Mentor: Prof. dr Mića Stanković Student: Ivana Gavrilović Niš,

Διαβάστε περισσότερα

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016.

VJEROJATNOST I STATISTIKA Popravni kolokvij - 1. rujna 2016. Broj zadataka: 5 Vrijeme rješavanja: 120 min Ukupan broj bodova: 100 Zadatak 1. (a) Napišite aksiome vjerojatnosti ako je zadan skup Ω i σ-algebra F na Ω. (b) Dokažite iz aksioma vjerojatnosti da za A,

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

3. Matrice Operacije s matricama. Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje

3. Matrice Operacije s matricama. Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje 3 Matrice 31 Operacije s matricama Podsjetimo se definicije matrice: Za prirodne brojeve m i n, preslikavanje A : {1, 2,, m} {1, 2,, n} F se naziva matrica tipa (m, n) s koeficijentima iz polja F Običaj

Διαβάστε περισσότερα

Induktivno spregnuta kola

Induktivno spregnuta kola Induktivno spregnuta kola 13. januar 2016 Transformatori se koriste u elektroenergetskim sistemima za povišavanje i snižavanje napona, u elektronskim i komunikacionim kolima za promjenu napona i odvajanje

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1.

Druxtvo matematiqara Srbije OPXTINSKO TAKMIQENjE IZ MATEMATIKE Prvi razred A kategorija. f(x + 1) x f(x) + 1. 09.0200 Prvi razred A kategorija Ako je n prirodan broj, dokazati da 3n 2 + 3n + 7 nije kub nijednog prirodnog broja. U trouglu ABC je ABC = 60. Neka su D i E redom preseqne taqke simetrala uglova CAB

Διαβάστε περισσότερα

VJEŽBE IZ MATEMATIKE 1

VJEŽBE IZ MATEMATIKE 1 VJEŽBE IZ MATEMATIKE 1 Ivana Baranović Miroslav Jerković Lekcija 14 Rast, pad, konkavnost, konveksnost, točke infleksije i ekstremi funkcija Poglavlje 1 Rast, pad, konkavnost, konveksnost, to ke ineksije

Διαβάστε περισσότερα

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone.

Matrica se definiše kao niz brojeva (ili algebarskih simbola) smještenih u redove i kolone. Matrice Uvod u matrice i vektore Pretpostavite da ste odgovorni za iznajmljivanje automobila zaposlenicima svoje firme Sedmični najmovi za različite veličine automobila su: kompaktni 9KM, srednji 60KM,

Διαβάστε περισσότερα

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135

Matematika 1. Marcela Hanzer. Department of Mathematics, University of Zagreb. Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Matematika 1 Marcela Hanzer Department of Mathematics, University of Zagreb Marcela Hanzer (Dept of Math, Uni Zagreb) Matematika 1 1 / 135 Skupovi; brojevi Skupovi osnovni pojam u matematici (ne svodi

Διαβάστε περισσότερα

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive

KOMPLEKSNA ANALIZA. 1. Funkcije kompleksne promenljive KOMPLEKSNA ANALIZA. Funkcije kompleksne promenljive Neka je R skup realnih brojeva, a C skup kompleksnih brojeva. Definicija. Ako je E R, preslikavanje f : E C se naziva kompleksna funkcija realne promenljive.

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD

35(7+2'1,3525$&8195$7,/$GLPHQ]LRQLVDQMHYUDWLOD Predmet: Mašinski elementi Proraþun vratila strana 1 Dimenzionisati vratilo elektromotora sledecih karakteristika: ominalna snaga P 3kW Broj obrtaja n 14 min 1 Shema opterecenja: Faktor neravnomernosti

Διαβάστε περισσότερα

Otvorene mreže. Zadatak 1

Otvorene mreže. Zadatak 1 Otvorene mreže Zadatak Na slici je data otvorena mreža u kojoj je rocesor centralni server. Prosečan intenzitet ulaznog toka rocesa u sistem iznosi X rocesa/sec. Posle rocesorske obrade, roces u % slučajeva

Διαβάστε περισσότερα

1. Skicirati sledeće površi i ispitati njihovu regularnost:

1. Skicirati sledeće površi i ispitati njihovu regularnost: Geometrija 3, drgi kolokvijm Prezime i ime, broj indeksa, grpa Skicirati sledeće površi i ispitati njihov reglarnost: a f, v sh cos v, sh sin v,,, v [ π, π]; b g, v, 3, v,, v R a b Rešenje a Iz oblika

Διαβάστε περισσότερα

PRSKALICA - LELA 5 L / 10 L

PRSKALICA - LELA 5 L / 10 L PRSKALICA - LELA 5 L / 10 L UPUTSTVO ZA UPOTREBU. 1 Prskalica je pogodna za rasprsivanje materija kao sto su : insekticidi, fungicidi i sredstva za tretiranje semena. Prskalica je namenjena za kućnu upotrebu,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc

Διαβάστε περισσότερα

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu

OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA. Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu OSNOVI AUTOMATSKOG UPRAVLJANJA PROCESIMA Vežba br. 6: Dinamika sistema u frekventnom domenu u MATLABu I Definisanje frekventnih karakteristika Dinamički modeli sistema se definišu u vremenskom, Laplace-ovom

Διαβάστε περισσότερα

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku.

x M kazemo da je slijed ogranicen. Weierstrass-Bolzano-v teorem tvrdi da svaki ograniceni slijed ima barem jednu granicnu tocku. 1. FUNKCIJE, LIMES, NEPREKINUTOST 1.1 Brojevi - slijed, interval, limes Slijed realnih brojeva je postava brojeva na primjer u obliku 1,,3..., nn, + 1... koji na realnoj osi imaju oznaceno mjesto odgovarajucom

Διαβάστε περισσότερα

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE

EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE **** MLADEN SRAGA **** 0. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE EKSPONENCIJALNE i LOGARITAMSKE FUNKCIJE α LOGARITMI Autor: MLADEN SRAGA Grafički urednik: Mladen Sraga

Διαβάστε περισσότερα

Unipolarni tranzistori - MOSFET

Unipolarni tranzistori - MOSFET nipolarni tranzistori - MOSFET ZT.. Prijenosna karakteristika MOSFET-a u području zasićenja prikazana je na slici. oboaćeni ili osiromašeni i obrazložiti. b olika je struja u točki, [m] 0,5 0,5,5, [V]

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

MALA NOVOGRČKA GRAMATIKA

MALA NOVOGRČKA GRAMATIKA MALA NOVOGRČKA GRAMATIKA I II ARISTOTELOV UNIVERZITET U TESALONIKI INSTITUT ZA NOVOGRČKE STUDIJE Fondacija Manolisa Trijandafilidisa Manolis A. Trijandafilidis MALA NOVOGRČKA GRAMATIKA Preveo i priredio

Διαβάστε περισσότερα

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x

x + t x 2 x t x 2 t x = + x + = + x + = t 2. 3 y y [x množi cijelu zagradu] y y 2 x [na lijevu stranu prebacimo nepoznanicu y] [izlučimo 3 y ] x x x Zadatak 00 (Sanja, gimnazija) Odredi realnu funkciju f() ako je f ( ) = Rješenje 00 Uvedemo supstituciju (zamjenu varijabli) = t Kvadriramo: t t t = = = = t Uvrstimo novu varijablu u funkciju: f(t) = t

Διαβάστε περισσότερα

Racionalne krive i površi u geometrijskom dizajnu

Racionalne krive i površi u geometrijskom dizajnu Racionalne krive i površi u geometrijskom dizajnu Tijana Šukilović Matematički fakultet, Univerzitet Beograd May 2, 2011, Beograd Sadržaj 1 Racionalne Bézier-ove krive Polinomijalne Bézier-ove krive Algoritam

Διαβάστε περισσότερα

Diferencijalni račun

Diferencijalni račun ni račun October 28, 2008 ni račun Uvod i motivacija Točka infleksije ni račun Realna funkcija jedne realne varijable Neka je X neprazan podskup realnih brojeva. Ako svakom elementu x X po postupku f pridružimo

Διαβάστε περισσότερα

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA

SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA SLUČAJNA PROMENLJIVA I RASPOREDI VEROVATNOĆA CILJEVI POGLAVLJA Nakon čitanja ovoga poglavlja bićete u stanju da: 1. razumete pojmove slučajna promenljiva, raspored verovatnoća, očekivana vrednost i funkcija

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet. Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA. Doktorska disertacija

Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet. Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA. Doktorska disertacija Univerzitet u Kragujevcu Prirodno-matemati~ki fakultet Bojana Borovi}anin SPEKTRALNE OSOBINE NEKIH KLASA GRAFOVA Doktorska disertacija Kragujevac 2007 Sadr`aj Predgovor 2 1 Harmonijski grafovi 5 1.1 Definicija

Διαβάστε περισσότερα

JEDNA NOVA KLASA RELACIJA. Daniel A. Romano 1

JEDNA NOVA KLASA RELACIJA. Daniel A. Romano 1 MAT-KOL (Banja Luka) ISSN 0354-6969 (p), ISSN 1986-5228 (o) Vol. XX (1)(2014), 5-14 Osnove matematike JEDNA NOVA KLASA RELACIJA Daniel A. Romano 1 Sažak: U ovom tekstu, slijedeći koncepte izložene u radovima

Διαβάστε περισσότερα

1.1 Definicija funkcije

1.1 Definicija funkcije . Definicija funkcije Realna funkcija predstavlja osnovni pojam u matematičkoj analizi i centralni objekat svih njenih razmatranja. Definicija Neka je dat skup D R. Ako je svakom x D po nekom zakonu (pravilu)

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem

Dirichletov princip. Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem Dirichletov princip Dirichletov princip je jedan od najjednostavnijih elementarnih kombinatornih principa. U najjednostavnijem obliku glasi ovako: Dirichletov princip: Ako n + 1 predmet rasporedimo kako

Διαβάστε περισσότερα

UREĐAJU NA SKUPU REALNIH BROJEVA

UREĐAJU NA SKUPU REALNIH BROJEVA **** MLADEN SRAGA **** 00. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE UREĐAJU NA SKUPU REALNIH BROJEVA JEDNADŽBE NEJEDNADŽBE APSOLUTNE JEDNADŽBE APSOLUTNE NEJEDNADŽBE

Διαβάστε περισσότερα

Osnovne veličine, jedinice i izračunavanja u hemiji

Osnovne veličine, jedinice i izračunavanja u hemiji Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice

Διαβάστε περισσότερα

Linearni operatori. Stepenovanje matrica

Linearni operatori. Stepenovanje matrica Linearni operatori Stepenovanje matrica Nea su X i Y vetorsi prostori nad istim poljem salara K Presliavanje A : X Y zovemo operator Za operator A ažemo da je linearan ao je istovremeno 1 aditivan: A(u

Διαβάστε περισσότερα