Tehničko rešenje: Industrijski prototip - moduo sa 20 paralelnih dvobitnih FADC na jednoj štampanoj ploči

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Tehničko rešenje: Industrijski prototip - moduo sa 20 paralelnih dvobitnih FADC na jednoj štampanoj ploči"

Transcript

1 hničo šnj: Industijsi pototip - moduo s pllnih dvobitnih FADC n jdnoj štmpnoj ploči Ruovodilc pojt: Vldimi Vujičić Odgovono lic: Vldimi Vujičić Autoi: Nbojš Pjvlic, Vlibo Pjvlic, Dgn Pjić, Ivn Župunsi, Vldimi Vujičić, Mjn U, Plton Sovilj, Zon Mitović, Slobodn Milovnčv, Bojn Vujičić, Božid Vujičić Rzvijno: u oviu pojt thnološog zvoj R-39 Godin:. Pimn: Kt opis šnj Oblst n oju s ovj industijsi pototip odnosi j ltothni i čunstvo. Ovj pototip omogućv d s, s njgovim pošinjm, šv poblm dundntnog mnj toov ltičn sng i ngij u ltodistibutivnoj mži. Autoim nij poznto slično šnj u svtu. Ovj industijsi pototip omogućuj d s s dovoljnom pouzdnošću i pciznošću ppoznj pijmni dfinisnih nzivnih sng i potom omogućuj odđivnj tč u ojim s odvijju stohstiči pocsi njihovog uljučnj isljučnj. Dti su opis i modl pototip, o i podci o nmni, vificiji i pimni. Ovj pototip j dlj pimnjn u industijsim pototipvim dvostuog tofznog nlizto sng ozn tip MM i čtvostuog tofznog nlizto sng ozn tip MM4. Rliztoi: Fultt thničih nu u Novom Sdu; Koisnici: Eltovojvodin d.o.o. Novi Sd; Nigl d.o.o. Ptovdin; Fultt thničih nu u Novom Sdu; Podtip šnj: Industijsi pototip (M 8)

2 OPIS PROOIPA Kompltno šnj ltonsog dvostuog tofznog nlizto sng s dodtim funcijm mnj vlitt ltičn ngij, lizovno n jdnoj štmpnoj ploči, dto j n slici. Sli. Kompltno šnj ltonsog dvostuog tofznog nlizto sng s dodtim funcijm mnj vlitt ltičn ngij, lizovno n jdnoj štmpnoj ploči. Moduli štmpn ploč su: modul z npjnj ltonsih ol pototip, modul z ondicioninj ulznih signl, modul nlognih funcij pototip i modul digitlnih funcij pototip.

3 Pototip omogućuj d s m i gistuju stnj n (dv) tofzn NN izvod iz distibutivnih stnic (DS-). Pototip omogućuj d s m i gistuju vdnosti fznih npon, vdnosti stuj pojdinih fz i u nultom vodu, tivn sng po fzm, fvncij i tmptu DS-. Pototip omogućuj d s z svi NN izvod iz DS- iz snimljnih podt izčunvju: Rtivn i pividn sng po fzm, Ftoi sng po fzm, Moduli impndnsi, Ativn, tivn i pividn ngij. Z svi izvod s m i izčunvju ftoi izobličnj b z ti fzn npon. Bzin uzimnj i zpisivnj uzo j, po stnddnoj vdnosti, uzo u sundi. Mn i gistovn vličin s, pomoću ovog pototip, mogu miti i gistovti s sldćim msimlnim gnicm gš: Npon i stuj: ±, % od mnog opsg Ativn i pividn sng: ±,5 % - II - Rtivn sng: ±, % - II - Ativn i pividn ngij: ±,5 % - II - Rtivn ngij: ±, % - II - Moduo impndns: ±,5 % - II - Fvncij: ±, Hz Fto sng:, % Fto izobličnj: 4, % MODEL PROOIPA Modl pototip j zsnovn n stohstičom digitlnom mnju i mož s podliti n dv blo: blo z ondicioninj i blo z stohstičo digitlno mnj(sli ). Sli. Modl pototip.

4 Signl n ulzu u stohstiči digitlni mni blo j ondicionini signl. Ulog ovog ondicioninj mož biti pojčnj, linizcij, pomnj nivo, filtinj, glvns izolcij, zličit thni z potisivnj šum itd. Koncptulni blo dijgm z stohstičo digitlno mnj jdnog Fuijovog oficijnt pojčnog ulznog signl s mož pdstviti n slici 3, što j z sldć zmtnj jdnostvniji obli dijgm s sli. Sli 3. Koncptulni blo dijgm z stohstičo digitlno mnj jdnog Fuijovog oficijnt pojčnog ulznog signl, pimnjn u softvu. Izlz umulto s oisti z izčunvnj oficijnt. Pomoćni signl s j ditovn bzn (osinusn ili sinusn) funcij. j. vži, s = R cos ω t z mnj -tog osinusnog Fuijovog oficijnt, ili s = R sin ω t z mnj -tog sinusnog Fuijovog oficijnt. Koncptulni blo dijgm s mož implmntiti o n slici 3, to d s nij mni signl, vć ditovni sinusni ili osinusni signl, unpd gnisn i usldištn u mmoiju. Sli 4. Unpđni oncptulni blo dijgm stohstičog digitlnog mnj jdnog Fuijovog oficijnt pojčnog signl, pimnjn u softvu. Umsto oišćnj dv A/D onvto, digitlni odmci ditovn bzisn funcij su usldištni u mmoiji. d i d su gnisni ditovni signli i oni zdovoljvju sldć uslov oji ogničvju njihovu mplitudu i dfinišu njihovu funciju spodl vovtnoć: p d i ( ) d i Δ i =, z i =, Δ i ()

5 N su uzoovn vdnosti ondicioninog signl s i pomoćnog signl s u distnim vmnsim tnucim unut vmnsog intvl () dt o ψ i ψ, sptivno. Izmn vdnost zliuj s od poizvod ulznih signl z mnu gšu, oj uljučuj ft vntizcij A/D onvto i unsni dit: Ψ = Ψ Ψ = s s () + Ko s mni ondicionini signl sstoji od pojčnog ulznog signl i šum, ond j: Ψ = s s + n s (3) + Pvi čln izlz množč j signl oji j potbno miti dugi čln j posldic šum. i čln u (3) su sttističi nzvisni, sdnj vdnost Ψ j sum sdnjih vdnosti pomnutih člnov. Sdnj vdnost tćg čln u (3) j nul, i n utič n sdnju vdnost očivnog izlz Ψ u mnom intvlu. Končni ulzni opsg ±R blo z stohstičo digitlno mnj dfiniš gnic intgcij z usdnjvnj ft šum. Stog su dv postl čln u sdnjoj vdnosti dt o: Ψ = s s dt + R n p( n) dn R s dt (4) Ao ptpostvimo d šum im npolisnu Gusovu spodlu, njgov sdnj vdnost j nul to d dugi čln u (4) postj tođ nul, i ond j: Ψ = s s dt (5) U digitlnom mnju, z N odm ondicioninog signl n intvlu [, ], sdnj vdnost j: Ψ = N N = Ψ (6) Suminj uzo toom mnog intvl j uđno umultoom i ov sum j izlz umulto. Ovj izlz s mož obditi miopocsoom oji dli izz umulto s bojm odm N, i oji tođ izčunv svu sinusnu (i osinusnu) omponnt -tog hmoni (indsi sin i cos uzuju d j u pitnju izmni -ti sinusni i -ti osinusni Fuijov oficijnt). Ψ cos =, R b Ψ sin = (7) R U blou z stohstičo digitlno mnj, vijns izlz množč s sstoji od dtministič vijns, slučjn vijns i stohstič vijns gš. Ovi dlovi su nolisni, to d uupn vijns iznosi:

6 σ = σ d + σ + Ψ σ (8) Dtministič vijns σ d, j odđn o: σ ( ) d = ss dt ssdt (9) Dtministič vijns σ d j svojstvo signl i n tb d bud učunt u mnu nsigunost. Slučjn vijns i vijns gš, σ i σ, zdovoljvju cntlnu gničnu tomu i vijns njihov sdnj vdnosti zvisi od boj odm N unut mnog intvl : σ σ σ =, σ = () N N Stnddn mn nsigunost sdnj vdnosti Ψ j dfinisn po stnddn dvijcij: u ( ) = σ + σ Ψ () Rltivn mn nsigunost u s izčunv o: u = σ + σ Ψ Stnddn mn nsigunost i ltivn mn nsigunost su ogničn s: () S u( Ψ) S u Δ ( σ n + ) N Δ ( σ n + ) Ψ N (3) Gonj gnic stnddn mn nsigunosti j odđn ftivnom vdnošću pomoćnog signl (S ), šumom (σ n ), i zolucijom A/D onvto (Δ ), o i bojm odm (N) u mnom intvlu. Ao j R mplitud pomoćnog signl, td j: S = R / (4) Pm pthodnim lcijm, stnddn mn nsigunost z bilo oji Fuijov oficijnt, izmn ovom mtodom, j ogničn s:

7 u( ) = u( b ) ( σ + n N Δ ) (5) Iz (5) s mož izvsti d j stnddn mn nsigunost z mplitudu hmoni: u( + b Δ ( σ n + ) ) N (6) U slučju idlnog A/D onvto, vnt A/D onvto iznosi Δ = i dsn stn jdnčin (5) s tnsfomiš u σ / n N, što j vdtni on Km-Rov donj gnic (Cmé Ro low bound - CRLB). Ao s pimni totjn Fuijov tnsfomcij n signl s, z oji ćmo sd ptpostviti d j nstcionni signl, s pozosom funcijom šiin jdn mnom intvlu. Ao zultti ov tnsfomcij budu oficijnti i i b i, ond s s mož pdstviti u fomi tigonomtijsog polinom obli: s <t< M M = n n, () t + cos nω t + b sin nω t n= n= (7) ω = π / M j d tigonomtijsog polinom. Pođnj oncpt stohstičog digitlnog mnj s tipičnim digitlnim mnjm nstcionnog signl j dto n slici 5. Izlzi digitlnog mnj su digitlni odmci u vmnsom domnu. Sv digitln vdnost j zpvo digitlizovn vdnost odgovjućg nlognog odm s ulz i to j dobo poznti lsični pistup digitlnog mnj odm po odm. Z zliu od ovvog pistup, izlzi digitlnog stohstičog mnj su Fuijovi oficijnti i i b i. Svi Fuijov oficijnt j funcij svih nlognih odm s ulz toom intvl mnj, to d ovj mtod nij bzin n pistupu odm po odm vć n intvlsom pistupu.

8 Sli 5. Pođnj oncpt stohstičog digitlnog mnj signl u fvntnom domnu, pimnjnog u softvu, s tipičnim digitlnim mnjm u vmnsom domnu. Koncpt mnj Fuijovog oficijnt pojčnog ulznog signl mož biti pošin n složniji oncptulni blo dijgm hdvso-softvs z mnj pdfinisnog sup hmoni ondicioninog signl n ulzu u stohstiči digitlni mni blo. Osim jdnosmn omponnt, pdfinisni sup uljučuj sv hmoni oji su od ints z nlizu signl. Mmoij dj ditovn bzisn funcij z svu sinusnu i osinusnu omponntu, i sv sinusn i osinusn omponnt zhtvju jdn digitlni množč i jdn digitlni umulto. Stog, o bi sistm tbo miti jdnosmnu omponntu i N h hmoni ov stutu zhtv N h + množč i N h + umulto. Ao s pogldju pthodn fomul, mož s vidti d j vnt Δ dfinisn zolucijom A/D onvto, boj odm N s mož izbti o ompomis izmđu potbn bzin mnj i zhtvn tčnosti. Zbog tog ovj sistm mož imti vom dobu tčnost, č i d j šum znčjn, zhvljujući povćnom boju odm N. NAMENA Ršnj j nmnjno pimni u dvostuom tofznom nliztou sng, oji ontoliš dv izvod n izlzu iz.4v tfo stnic, odnosno pimni u čtvoostuom tofznom nliztou sng oji ontoliš čtii izvod n izlzu iz.4v tfo stnic. VERIFIKACIJA Pfomns su ispitn i vifiovn u ditovnoj lbotoiji Lbotoiji z mtologiju Fultt thničih nu u Novom Sdu..

9 PRIMENA Ršnj j pimnjno u industijsim pototipovim dvostuog tofznog nlizto sng ozn tip MM i čtvoostuog tofznog nlizto sng ozn tip MM4, o i sijsim uđjim s istim oznm tip sptivno. Industijsi pototip - moduo s pllnih dvobitnih FADC n jdnoj štmpnoj ploči pojtovn j n Fulttu thničih nu u Novom Sdu, u oviu tućg pojt b. R-39 od Ministstv posvt, nu i thnološog zvoj Rpubli Sbij. Štmpno Dcmb.

Stanje rešenosti u svetu

Stanje rešenosti u svetu hničo ršnj: Softvr z simulciju mrnj u frvncijsom domnu Ruovodilc projt: Vldimir Vujičić Odgovorno lic: Vldimir Vujičić Autori: Plton Sovilj, Vldimir Vujičić, Mirjn robo, Bojn Vujičić, Drgn Pjić, Nbojš

Διαβάστε περισσότερα

PRIMENA INTEGRALA

PRIMENA INTEGRALA www.mtmtinj.com PRIMENA INTEGRALA P ngo što knmo s izčunvnjm povšin, dužin luk, zpmin ili povšin otcion povši momo odditi: - pomoću p tčk ispitmo tok i nctmo kivu kivko j to nophodno - gnic intgl nđmo

Διαβάστε περισσότερα

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006.

Rešenja A/2 kolokvijuma iz predmeta MERNI SISTEMI U TELEKOMUNIKACIJAMA 10. januar 2006. šnj A/ kolokvijum iz prdmt MENI SISEMI U ELEKOMUNIKACIJAMA. jnur. Zdtk. D i prikznim urđjm mogl mriti mplitud čtvrtog hrmonik u mmorijki lok tr d ud upin ditrovn zin unkcij ( t) y co π Izlz iz urđj j td

Διαβάστε περισσότερα

Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji.

Specijalna vrsta nepravih integrala jesu oni koji sadrze potencije ili geometrijski red u podintegralnoj funkciji. Mt Vijug: Rijsni zdci iz vis mtmti 9. NEPRAVI INTEGRALI 9. Opcnito o nprvim intgrlim Intgrl oli f d s nziv nprviln o: ) jdn ili oj grnic intgrcij nisu oncn vc soncn:, ) pod intgrln funcij f j prinut u

Διαβάστε περισσότερα

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK

SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.

Διαβάστε περισσότερα

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla.

ČETVOROUGAO. β 1. β B. Četvorougao je konveksan ako duž koja spaja bilo koje dve tačke unutrašnje oblasti ostaje unutar četvorougla. Mnogougo oji im četii stnice nziv se četvoougo. ČETVOROUGAO D δ δ γ C A α β B β Z svi četvoougo vži im je zi unutšnji i spoljšnji uglov isti i iznosi 0 0 α β γ δ 0 0 α β γ δ 0 0 Njpe žemo četvoouglovi

Διαβάστε περισσότερα

Sistem sučeljnih sila

Sistem sučeljnih sila Sistm sučljnih sila Gomtrijski i analitički način slaganja sila, projkcija sil na osu i na ravan, uslovi ravnotž Sistm sučljnih sila Za sistm sila s kaž da j sučljni ukoliko sil imaju zajdničku napadnu

Διαβάστε περισσότερα

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2

Budući da je u jednakokračnom pravokutnom trokutu visina osnovice jednaka polovini osnovice, vrijedi: a 2 Zdtk (Romn, gimnzij) Sdnji jdnkokčnog tpz im duljinu 5 ko su dijgonl mđusono okomit, kolik j njgo pošin? Rjšnj udući d j u jdnkokčnom pokutnom tokutu isin osnoi jdnk poloini osnoi, ijdi: x = + = x + y

Διαβάστε περισσότερα

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:

Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi: tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene

Διαβάστε περισσότερα

Matematički osnovi Z transformacije

Matematički osnovi Z transformacije Mtemtiči osnovi Z trnsformcije Uvod u Z-trnsformciju: Z-trnsformcij i njen invern trnsformcij se u mtemtici rmtrju i rlog što ovve trnsformcije imju neposrednu primenu u eletrotehnici i to prvenstveno

Διαβάστε περισσότερα

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.

Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx. Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),

Διαβάστε περισσότερα

ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο

ο ο 3 α. 3* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο 18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T

Διαβάστε περισσότερα

KUPA I ZARUBLJENA KUPA

KUPA I ZARUBLJENA KUPA KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p

Διαβάστε περισσότερα

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i

4 INTEGRALI Neodredeni integral Integriranje supstitucijom Parcijalna integracija Odredeni integral i Sdržj 4 INTEGRALI 64 4. Neodredeni integrl........................ 64 4. Integrirnje supstitucijom.................... 68 4. Prcijln integrcij....................... 7 4.4 Odredeni integrl i rčunnje površine

Διαβάστε περισσότερα

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor

dužina usmjerena (orijentirana) dužina (zna se koja je točka početna, a koja krajnja) vektor I. VEKTORI d. sc. Min Rodić Lipnović 009./010. 1 Pojm vekto A B dužin A B usmjeen (oijentin) dužin (n se koj je točk početn, koj kjnj) A B vekto - kls ( skup ) usmjeenih dužin C D E F AB je epeentnt vekto

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču

PIRAMIDA I ZARUBLJENA PIRAMIDA. - omotač se sastoji od bočnih strana(najčešće jednakokraki trouglovi), naravno trostrana piramida u omotaču PIRAMIDA I ZARULJENA PIRAMIDA Slično ko i kod pizme i ovde ćemo njpe ojniti oznke... - oeležvmo dužinu onovne ivice - oeležvmo dužinu viine pimide - oeležvmo dužinu viine očne tne ( potem) - oeležvmo dužinu

Διαβάστε περισσότερα

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a

Kinematika materijalne toke. 3. dio a) Zadavanje krivocrtnog gibanja b) Brzina v i ubrzanje a Kinemik meijlne oke 3. dio ) Zdnje kiocnog gibnj b) Bzin i ubznje 1 Kiocno gibnje meijlne oke Položj meijlne oke u skom enuku emen možemo definii n slijedee nine: 1. Vekoski nin defininj gibnj (). Piodni

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su

VALJAK. Valjak je geometrijsko telo ograničeno sa dva kruga u paralelnim ravnima i delom cilindrične površi čije su ALJAK ljk je geometijsko telo ogničeno s dv kug u plelnim vnim i delom ilindične povši čije su izvodnie nomlne n vn ti kugov. Os vljk je pv koj polzi koz ente z. Nvno ko i do sd oznke su: - je povšin vljk

Διαβάστε περισσότερα

ZI. NEODREðENI INTEGRALI

ZI. NEODREðENI INTEGRALI ZI. Nodrđni intgrali 7 ZI. NEODREðENI INTEGRALI. Antidrvacij. Pronañi tri antidrivacij funkcij.. Odrdi sv antidrivacij funkcij.. Pronañi dvij antidrivacij funkcij.. Pronañi antidrivaciju funkcij za koju

Διαβάστε περισσότερα

2.6 Nepravi integrali

2.6 Nepravi integrali 66. INTEGRAL.6 Neprvi integrli Definicij. Nek je f : [, R funkcij koj je Riemnn integrbiln n svkom podsegmentu [, ] od [,. Ako postoji končn es f() (.4) ond se tj es zove neprvi integrl funkcije f n [,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 2. ARITMETICKI I GEOMETRIJSKI NIZ, RED, BINOMNI POUCAK. a n ti clan aritmetickog niza Mte Vijug: Rijesei zdci iz mtemtike z sredju skolu. ARITMETICKI I GEOMETRIJKI NIZ, RED, BINOMNI POUCAK. Aritmeticki iz Opci oblik ritmetickog iz: + - d Gdje je: prvi cl ritmetickog iz ti cl ritmetickog

Διαβάστε περισσότερα

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi

= + injekcija. Rješenje 022 Kažemo da funkcija f ima svojstvo injektivnosti ili da je ona injekcija ako vrijedi Zdtk 0 (Anstzij, gimnzij) Provjeri je li funkcij f log( 5) + + injekcij Rješenje 0 Kžemo d funkcij f im svojstvo injektivnosti ili d je on injekcij ko vrijedi f ( ) f ( ) Dkle, funkcij je injekcij ko rzličitim

Διαβάστε περισσότερα

10.1. Bit Error Rate Test

10.1. Bit Error Rate Test .. Bt Error Rat Tst.. Bt Error Rat Tst Zadata. Izračuat otrba broj rth formacoh bta u BER tstu za,, ogršo dttovaa bta a rjmu, tao da s u sstmu sa brzoom sgalzacj od Mbs mož tvrdt da j vrovatoća grš rosa

Διαβάστε περισσότερα

Industrijski kaloriferi

Industrijski kaloriferi Inustrijski klorifri INDUSTRIJSKI KALORIFERI UniKl UVOD Upotr i jlovnj Klorifri su urđji z zgrijvnj, hlđnj, vntiliju i filtrirnj rznih ojkt ko što su: fričk hl, rioni, hngri, sklišt, grž i slični ojkti.

Διαβάστε περισσότερα

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις

ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 6 Περιστροφική Κίνηση Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Eφαρμογές Περιστροφική κίνηση Άσκηση 1 Η κυματοσυνάρτηση ψ(φ) για

Διαβάστε περισσότερα

A MATEMATIKA Zadana je z = x 3 y + 1

A MATEMATIKA Zadana je z = x 3 y + 1 A MATEMATIKA (.5.., treći kolokvij). Zdn je z 3 + os. () Izrčunjte ngib plohe u pozitivnom smjeru -osi. (b) Izrčunjte ngib pod ) u točki T(, ). () Izrčunjte z u T(, ). (5 bodov). Zdn je z 3 ln. () Izrčunjte

Διαβάστε περισσότερα

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos

2. Ako je funkcija f(x) parna onda se Fourierov red funkcije f(x) reducira na Fourierov kosinusni red. f(x) cos . KOLOKVIJ PRIMIJENJENA MATEMATIKA FOURIEROVE TRANSFORMACIJE 1. Za periodičnu funkciju f(x) s periodom p=l Fourierov red je gdje su a,a n, b n Fourierovi koeficijenti od f(x) gdje su a =, a n =, b n =..

Διαβάστε περισσότερα

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT

Dekompozicija DFT. Brzi algoritmi na bazi radix-2. Brza Furijeova transofrmacija. Tačnost izračunavanja. Kompleksna FFT OASDSP 1: 7 FFT OASDSP : 7 FFT Dkompozicija DFT Brzi algoritmi a bazi radix- Brza Furijova trasofrmacija Tačost izračuavaja Komplksa FFT ovi Sad, Oktobar 5 straa OASDSP : 7 FFT Brza trasformacija : itrativa dkompozicija

Διαβάστε περισσότερα

FURIJEOVI REDOVI ZADACI ( II

FURIJEOVI REDOVI ZADACI ( II FURIJEOVI REDOVI ZADACI ( II deo Primer. Fukciju f ( = rzviti u Furijeov red segmetu [,] ztim izrčuti sumu red. ( Rešeje: Kko je f ( = = = f ( zkjučujemo d je fukcij pr. Koristimo formue: = f ( = + ( cos

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Složeni cevovodi

MEHANIKA FLUIDA. Složeni cevovodi MEHANIKA FLUIDA Složeni cevovoi.zaata. Iz va velia otvorena rezervoara sa istim nivoima H=0 m ističe voa roz cevi I i II istih prečnia i užina: =00mm, l=5m i magisalni cevovo užine L=00m, prečnia D=50mm.

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

ITU-R SA (2010/01)! " # $% & '( ) * +,

ITU-R SA (2010/01)!  # $% & '( ) * +, (010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V

Διαβάστε περισσότερα

Diskretne matematièke strukture

Diskretne matematièke strukture UNIVERZITET U BEOGRADU Fkultt orgnizcionih nuk dr Mirjn Èngloviæ Diskrtn mtmtièk struktur (nrdigovn skript) Bogrd, 997. SADRŽAJ. UVOD... 3.. RELACIJA. OPERACIJA. FUNKCIJA... 3.. OSNOVNI POJMOVI LOGIKE...

Διαβάστε περισσότερα

1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26

Διαβάστε περισσότερα

2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30

Διαβάστε περισσότερα

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β

TROUGAO. - Stranice a,b,c ( po dogovoru stranice se obeležavaju nasuprot temenu, npr naspram temena A je stranica a, itd) 1, β TRUG Mngug kji im ti stnie zve se tug. snvni elementi tugl su : - Temen,, - Stnie,, ( p dgvu stnie se eležvju nsupt temenu, np nspm temen je stni, itd) - Uglvi, unutšnji α, β, γ i spljšnji α, β, γ γ α

Διαβάστε περισσότερα

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity D. of o. NU Fs s ν ss L. Pof. H L ://s.s.. D. of o. NU. Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - -

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

4. Trigonometrija pravokutnog trokuta

4. Trigonometrija pravokutnog trokuta 4. Trigonometrij prvokutnog trokut po školskoj ziri od Dkić-Elezović 4. Trigonometrij prvokutnog trokut Formule koje koristimo u rješvnju zdtk: sin os tg tg ktet nsuprot kut hipotenuz ktet uz kut hipotenuz

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na

Ovo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na . Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija

Διαβάστε περισσότερα

W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti.

Osnove elektrotehnike I parcijalni ispit VARIJANTA A. Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. Osnove elektrotehnike I prcijlni ispit 3..23. RIJNT Prezime i ime: roj indeks: Profesorov prvi postult: Što se ne može pročitti, ne može se ni ocijeniti... U vzdušni pločsti kondenztor s rstojnjem između

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: Dinamički sistem Ulazi Izlazi (?)

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: Dinamički sistem Ulazi Izlazi (?) DINAMIKA Dinički siste - pogon s otoro jednoserne struje: N: u u f Dinički siste Ulzi Izlzi (?) i, [ i ],, f f U opšte slučju ovj dinički siste je NELINEARAN MATEMATIČKI MODEL POGONA SA NEZAVISNO POBUĐENOM

Διαβάστε περισσότερα

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo

GRANIČNE VREDNOSTI FUNKCIJA zadaci II deo GRANIČNE VREDNOSTI FUNKCIJA zdci II deo U sledećim zdcim ćemo korisii poznu grničnu vrednos: li i mnje vrijcije n i 0 n ( Zdci: ) Odredii sledeće grnične vrednosi: Rešenj: 4 ; 0 g ; 0 cos v) ; g) ; 4 ;

Διαβάστε περισσότερα

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA

SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA SINUSNA I KOSINUSNA TEOREMA REŠAVANJE TROUGLA Sinusn terem glsi: Strnie trugl prprinlne su sinusim njim nsprmnih uglv. R sinβ sinγ Odns dužine strni i sinus nsprmng ugl trugl je knstnt i jednk je dužini

Διαβάστε περισσότερα

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m

DINAMIKA. u f. Dinamički sistem - pogon sa motorom jednosmerne struje: N: NELINEARAN. m m DINAMIKA Dinmički sistem - pogon s motorom jednosmerne struje: N: u u m m i, [ i ],, U opštem slučju ovj dinmički sistem je U opštem slučju ovj dinmički sistem je NELINEARAN MATEMATIČKI MODEL POGONA SA

Διαβάστε περισσότερα

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1)

TEKSTOVI ZADATAKA (2. kolokvijum) iz Elektromagnetike (studijski program EEN, 2012/1) TEKSTOV ZADATAKA (2. kolokvijum) iz Elektomgnetike (stuijski pogm EEN, 22/). Oeiti silu koj eluje n tčksto opteećenje Q smešteno izn polusfeične povone izočine nultog potencijl. 2. Oeiti elimične kpcitivnosti

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!!

DINAMIKA. Dinamički sistem - pogon sa motorom jednosmerne struje: N: u f Ulazi Izlazi (?) U opštem slučaju ovaj DS je NELINEARAN!!!! DINAMIKA Dnčk sste - ogon s otoro jednoserne struje: N: { DS } u u Ulz Izlz (?),,, [ ] θ U ošte slučju ovj DS je NELINEAAN!!!! BLOK DIJAGAM MAEMAIČKOG MODELA POGONA Iz jednčne ndukt u e e Iz Njutnove jednčne

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου

Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου Κεφάλαιο 2 Διαχείριση Σηµάτων σε Ψηφιακά Συστήµατα Ελέγχου u Μετατροπή Αναλογικού Σήµατος σε Ψηφιακό (A/D Conversion) Ο µετασχηµατισµός Ζ u Μαθηµατική Ανάλυση της Διαδικασίας A/D Μετατροπή Ψηφιακού Σήµατος

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

Mašinski fakultet, Beograd - Mehanika 3 Predavanje 5 1

Mašinski fakultet, Beograd - Mehanika 3 Predavanje 5 1 ški fkultt Bogd - hnik 3 Pdvnj 5 Ktnj tčk od djtvom cntln il Zkon ovš Nk omt ktnj tčk m m n koju dluj mo cntln il F i čmu j cnt il u noktnoj tčki O omnt il F u odnou n tčku O j z v vm ktnj tčk jdnk nuli

Διαβάστε περισσότερα

IUPAC nomenklatura cikloalkana Imenuju se tako što se na ime alkana doda prefiks ciklo. Cikloalkil-grupe:

IUPAC nomenklatura cikloalkana Imenuju se tako što se na ime alkana doda prefiks ciklo. Cikloalkil-grupe: IKLOALKANI n n iklični ugljovodonici gd su tomi mñusobno povzni vzm. Prstnovi (broj tom u prstnu): mli (-4), obični (5-7), srdnji (8-1), vliki (1...). IUPA nomnkltur ciklolkn Imnuju s tko što s n im lkn

Διαβάστε περισσότερα

ROVER (MG ROVER GROUP LTD)

ROVER (MG ROVER GROUP LTD) 100 114 D 38 52 01/92 + 0822-8962 237,40 0811-8962 134,20 115 D TUD 5 42 57 12/94 + 0822-8963 237,40 0811-8963 134,20 1500 (Triumph) 1.5 42 62 10/70-12/74 0800-0175 11,00 1.5 49 66 01/72-12/74 0800-0175

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori

MATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a:

Pismeni dio ispita iz Matematike Riješiti sistem jednačina i diskutovati rješenja u zavisnosti od parametra a: Zenica, 70006 + y+ z+ 4= 0 y+ z : i ( q) : = = y + z 4 = 0 a) Napisati pavu p u kanonskom, a pavu q u paametaskom obliku b) Naći jednačinu avni koja polazi koz pavu p i okomita je na pavu q ate su pave

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 7: Διαμόρφωση Γωνίας (1/2) Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα Διαμόρφωση γωνίας Ορισμοί Η έννοια της Στιγμιαίας Συχνότητας Διαμόρφωση Φάσης (Phase

Διαβάστε περισσότερα

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka

1 Afina geometrija. 1.1 Afini prostor. Definicija 1.1. Pod afinim prostorom nad poljem K podrazumevamo. A - skup taqaka 1 Afina geometrija 11 Afini prostor Definicija 11 Pod afinim prostorom nad poljem K podrazumevamo svaku uređenu trojku (A, V, +): A - skup taqaka V - vektorski prostor nad poljem K + : A V A - preslikavanje

Διαβάστε περισσότερα

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f

Odredjeni integral je granicna vrijednost sume beskonacnog broja clanova a svaki clan tezi k nuli i oznacava se sa : f x dx f x f x f x f x b a f Mte ijug: Rijeseni zdci iz vise mtemtike 8. ODREDJENI INTEGRALI 8. Opcenito o odredjenom integrlu Odredjeni integrl je grnicn vrijednost sume eskoncnog roj clnov svki cln tezi k nuli i ozncv se s : n n

Διαβάστε περισσότερα

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum

Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum 27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Επίλυση Δ.Ε. με Laplace

Επίλυση Δ.Ε. με Laplace Επίλυση Δ.Ε. με Laplace Ν. Παπαδάκης 24 Οκτωβρίου 2015 Ν. Παπαδάκης Επίλυση Δ.Ε. με Laplace 24 Οκτωβρίου 2015 1 / 78 Περιεχόμενα 1 Παρουσίαση Προβλήματος Επίλυση διαϕορικής εξίσωσης Ορισμός Άλλες μορϕή

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Chapter 5. hence all the terms which are not in the range 0,1, can be accumulated to ψ

Chapter 5. hence all the terms which are not in the range 0,1, can be accumulated to ψ Cpt 5 5 t T Sic is pidic i wit pid Tf 5 c is s pidic i wit pid Tf { } b { } 5 Sic ψ ψ c t ts wic t i t K c b cctd t ψ w c i tis cs t Fi sis pstti ivvs cp pti sqcs t t w f Eq 5 t i sti is q t if twis it

Διαβάστε περισσότερα

Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x).

Da se podsetimo Algoritam optimizacije. Odrediti vrednosti parametara kola koje će garantovati da odziv F(x, p) ima željenu vrednost F * (x). Aotam otmzac Da s odstmo Aotam otmzac Aotam otmzac Aotam otmzac : Oddt vdost aamtaa oa [,... ] o ć aatovat da odzv (x, ma žu vdost * (x. Mtod: až mmuma fuc š E(x,; (oma za vattatvu ocu odstuaa dobo od

Διαβάστε περισσότερα

Metode rješavanja izmjeničnih krugova

Metode rješavanja izmjeničnih krugova Strnic: V - u,i u(t) i(t) etode rešvn izmeničnih kruov uf(t) konst if(t)konst etod konturnih stru etod npon čvorov hevenin-ov teorem Norton-ov teorem illmn-ov teorem etod superpozicie t Strnic: V - zdtk

Διαβάστε περισσότερα

APROKSIMACIJA FUNKCIJA

APROKSIMACIJA FUNKCIJA APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu

Διαβάστε περισσότερα

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac

a) Kosi hitac Krivolinijsko gibanje materijalne toke Sastavljeno gibanje Specijalni sluajevi kosog hica: b) Horizontalni hitac c) Vertikalni hitac ) Kosi hic Kriolinijsko ibnje merijlne oke Ssljeno ibnje 5. dio 3 4 Specijlni slujei koso hic: b) orizonlni hic c) Veriklni hic b) orizonlni hic c) Veriklni hic 5 6 7 ) Kosi hic 8 Kosi hic (bez opor zrk)

Διαβάστε περισσότερα

σ (otvorena cijev). (34)

σ (otvorena cijev). (34) DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Magneti opis i namena Opis: Napon: Snaga: Cena:

Magneti opis i namena Opis: Napon: Snaga: Cena: Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ o ΔΙΑΓΩΝΙΣΜΑ ΔΕΚΕΜΒΡΙΟΣ 0: ΘΕΜΑΤΑ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις - 4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα

Διαβάστε περισσότερα

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120

3525$&8158&1(',=$/,&(6$1$92-1,095(7(120 Srednja masinska skola OSOVE KOSTRUISAJA List1/8 355$&8158&1(',=$/,&(6$1$9-1,095(7(10 3ROD]QLSRGDFL maksimalno opterecenje Fa := 36000 visina dizanja h := 440 mm Rucna sila Fr := 350 1DYRMQRYUHWHQR optereceno

Διαβάστε περισσότερα

( ) p a. poklopac. Rješenje:

( ) p a. poklopac. Rješenje: 5 VJEŽB - RIJEŠENI ZDI IZ MENIKE LUID 1 1 Treb odrediti silu koj drži u rvnoteži poklopc B jedinične širine, zlobno vezn u točki, u položju prem slici Zdno je : =0,84 m; =0,65 m; =5,5 cm; =999 k/m B p

Διαβάστε περισσότερα

Εισαγωγή στην Τεχνολογία Αυτοματισμού

Εισαγωγή στην Τεχνολογία Αυτοματισμού ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑIΟΥ & ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ. Τμήματα Ναυτιλίας και Επιχειρηματικών Υπηρεσιών & Μηχ. Αυτοματισμού ΤΕ Εισαγωγή στην Τεχνολογία Αυτοματισμού Ενότητα # 3: Μετασχηματισμός Laplace: Συνάρτηση μεταφοράς

Διαβάστε περισσότερα

IZVOD FUNKCIJE Predpostvimo d je unkcij deinisn u nekom intervlu, i d je tčk iz intervl, iksirn. Uočimo neku proizvoljnu tčku iz tog intervl,. Ov tčk može d se pomer levo desno, p ćemo je zvti promenljiv

Διαβάστε περισσότερα

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.

5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο. 728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

AKTUATORI U JEDNOSMERNOM POGONU Pojačivači snage

AKTUATORI U JEDNOSMERNOM POGONU Pojačivači snage AKTUATORI U JEDNOSMERNOM POGONU Pojčivči snge Uređji z npjnje električnom energijom jednosmernih motor u pogonim, pre sveg regulisnim. ENERGETSKI ULAZ P eu L d P uu UPRAVLJAČKI ULAZ AKTUATOR + u + e M

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A 2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein

Διαβάστε περισσότερα

Osnovne teoreme diferencijalnog računa

Osnovne teoreme diferencijalnog računa Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : Μετασχηματισμός LAPLACE (Laplace Tranform) Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Leaving Certificate Applied Maths Higher Level Answers

Leaving Certificate Applied Maths Higher Level Answers 0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)

Διαβάστε περισσότερα

Teme predavanja. Teorija signala. Motivacija za T-F analizu. Motivacija za T-F analizu. Grupno kašnjenje. Motivacija za T-F analizu

Teme predavanja. Teorija signala. Motivacija za T-F analizu. Motivacija za T-F analizu. Grupno kašnjenje. Motivacija za T-F analizu Dr. sc. Dmir Sršić -7 Tm prdvnj Torij signl rof. dr. sc. Dmir Sršić hp://s.soi.fr.hr Moivcij vrmnso-frvncijs obrd STT ourirov rnsformcij n vrmnsom ovoru dfinicij, svojsv, primjri. Disrn STT, Gborov spnij

Διαβάστε περισσότερα