οµή Επιφανειών Κρυσταλλογραφία Επιφανειών Ιδεώδης Επιφάνεια-Τερµατισµός Τα 5 δι-περιοδικά πλέγµατα Αναδόµηση-Χαλάρωση

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "οµή Επιφανειών Κρυσταλλογραφία Επιφανειών Ιδεώδης Επιφάνεια-Τερµατισµός Τα 5 δι-περιοδικά πλέγµατα Αναδόµηση-Χαλάρωση"

Transcript

1 οµή Επιφανειών Κρυσταλλογραφία Επιφανειών Ιδεώδης Επιφάνεια-Τερµατισµός Τα 5 δι-περιοδικά πλέγµατα Αναδόµηση-Χαλάρωση

2 Συµµετρία Μεταθέσεως 1δ δ

3 3δ: Κρυσταλλικό Πλέγµα

4 Ιδεώδης κρυσταλλική επιφάνεια Σε πρώτη προσέγγιση (αν αγνοηθούν τα φαινόµενα επιφανειακής αναδόµησης) µπορούµε να θεωρήσουµε ένα επιφανειακό πλέγµα σαν το διδιάστατο δίκτυο που προκύπτει όταν ένας τρισδιάστατος κρύσταλλος κοπεί κατά µήκος συγκεκριµένου κρυσταλλογραφικού επιπέδου

5 Ιδεώδης κρυσταλλική επιφάνεια sc fcc cc (100) (110) (111)

6 Τερµατισµός Επιφάνειας Παράδειγµα BTiO 3 (001) Τερµατισµός σε επίπεδα TiO Τερµατισµός σε επίπεδα BO B + Ti 4+ O -

7 BTiO 3 (001) Τερµατισµός σε επίπεδα BO Τερµατισµός σε επίπεδα TiO

8 Τερµατισµός Επιφάνειας Παράδειγµα BTiO 3 (111) Τερµατισµός σε επίπεδα BO 3 Τερµατισµός σε επίπεδα Ti B + Ti 4+ O -

9 BTiO 3 (111) Τερµατισµός σε επίπεδα BO 3 Τερµατισµός σε επίπεδα Ti

10 Κρυσταλλογραφία Επιφανειών R n1 + n + n3c 14 Πλέγµατα V ( c) Brvis c Στην περίπτωση ενός τρισδιάστατου πλέγµατος (lttice) η µεταφορική συµµετρία περιγράφεται από τρία ανύσµατα,,c που αντιστοιχούν στους κρυσταλλογραφικούς άξονες. Ο όγκος της µοναδιαίας κυψελίδας είναι V(xc) και µπορούµε ναέχουµε 14 διαφορετικά πλέγµατα Brvis.

11 Κρυσταλλογραφία Επιφανειών Τα 5 δι-περιοδικά πλέγµατα T S n1 + n 5 διπεριοδικά Πλέγµατα Στην περίπτωση ενός διδιάστατου επιφανειακού δικτύου (net) η µεταφορική συµµετρία περιγράφεται από δύο ανύσµατα, σε γωνία γ. Το εµβαδό του µοναδιαίου βρόχου (mesh) είναι S x sinγ, και µπορεί έχουµε 5 διαφορετικά δισδιάστατα περιοδικά πλέγµατα: Τετραγωνικό, γ90 Ορθογώνιο απλό, γ90 Ορθογώνιο κεντρωµένο, γ90 Εξαγωνικό, γ60 Πλάγιο, γ τυχαίο. γ60 0 γ

12 Στοιχεία Συµµετρίας

13 Γραµµή Ολίσθησης

14 P

15 Ειδικές και Γενικές Θέσεις (mm)

16 10 Στοιχεία Συµµετρίας Σε Επιφάνεια

17 P3

18 P3m1

19 P31m

20 Οι 17 οµάδες συµµετρίας χώρου στο επίπεδο

21 Penrose Tiling

22 Χαλάρωση και αναδόµηση σε επιφάνειες

23 Ιδεώδης Επιφάνεια

24 Αναδόµηση Μπορούµε να θεωρήσουµε ότι η δηµιουργία «ελεύθερων δεσµών» στην επιφάνεια του κρυστάλλου έχει σαν αποτέλεσµα την αύξηση της επιφανειακής ενέργειας και µπορεί να οδηγήσει σε αναδιάταξη των επιφανειακών ατόµων σε τρόπο ώστε να «ικανοποιούνται» αυτοί οι δεσµοί.

25 Ιδεώδης Αναδοµηµένη Αναδόµηση σε επιφάνειες Κατά την αναδόµηση έχουµε µετακίνηση των ατόµων του επιφανειακού στρώµατος κατά µήκος της επιφάνειας ώστε να διαφοροποιείται η διάταξη των ατόµων σε σχέση µε αυτή των αντίστοιχων παράλληλων κρυσταλλογραφικών επιπέδων στο εσωτερικό του κρυστάλλου. Έχουµε αλλαγή της περιοδικότητας παράλληλα στην επιφάνεια. Στο παράδειγµα διπλασιασµός της πλεγµατικής σταθεράς.

26 Χαλάρωση σε επιφάνειες Κατά την χαλάρωση έχουµε οµοιόµορφη κίνηση των ατόµων του επιφανειακού στρώµατος κάθετα στο επίπεδο της επιφάνειας χωρίς να διαφοροποιείται η διάταξη των ατόµων πάνω σε αυτό το επίπεδο από αυτή των αντίστοιχων παράλληλων κρυσταλλογραφικών επιπέδων στο εσωτερικό του κρυστάλλου. Αυτή η περίπτωση είναι συνηθέστερη στα µέταλλα. Ιδεώδης Χαλαρωµένη

27 Χρόνος Σχηµατισµού Μονοατοµικού Στρώµατος 3Å 1 τοµ o 10 ( 3A) 15 τοµα cm τ τοµα Φ cm 10 P Torr 6 ( ) sec RV (760 1 Torr ) Φ 3nsec µsec MV ( Torr ) Φ µsec 0.msec HV ( Torr) Φ0.msec 00sec UHV (<10-8 Torr ) Φ>00sec UHV (10-10 Torr ) Φ5hrs 1 Α/sec 0.33 ατοµικά στρ./sec 3 sec

28 Κρυσταλλικές Επιφάνειες: ΧηµικήΠροσρόφησηκαιΦυσικήΠροσρόφηση Η Ο Ο Η Η Ο

29 Αριθµός Σύνταξης Προσροφούµενων Ατόµων

30 Αναδόµηση σε καθαρή επιφάνεια / Αναδόµηση λόγω προσρόφησης Si Si Si Si Si Si Si H H H H Si Si Si H H Si Si Si Si Si Si Si Si Si Si Si Si

31 Συµβολισµός επιφανειακής αναδόµησης- Ανάπτυξης επιστρωµάτων Έστω ότι πάνω σε επιφάνεια που χαρακτηρίζεται από τα, α) έχω επιφανειακή αναδόµηση ή β) αναπτύσσεται επίστρωση ή γ) προσρροφάται επιφανειακό στρώµα ατόµων που µπορεί να χαρακτηρισθεί από τα S, S. Ησχέσητων, µε τα s, s µπορεί να περιγραφεί από την µήτρα µετασχηµατισµού S S m m 11 1 m m 1 ή πιο σύντοµα S S M S. Για τα εµβαδά των µοναδιαίων βρόχων S S, B, S B det[ M]

32 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων S s [ ] ( ) 1,, det B S M S S [ ] 3 1, , 3 det B S M S S s s

33 Εµβαδόν Μοναδιαίας Κυψελίδας S S m m 11 1 m m 1 S S S, B, S B det[ M] 1S S ( m111 + m1 ) ( m11 + m ) ( m11m1( 1 1 ) + m11m( 1 ) + m1m1( 1 ) + m1m( )) ( 0 + m11m( 1 ) m1m1( 1 ) + 0) m11m m1m1 1 det[ M] B S

34 Συµβολισµός Wood s s 0 S( hkl) κ Rϕ Sχηµική σύνθεση hkl κρυσταλλογραφικός προσανατολισµός κp ή c (στοιχειώδες, κεντρωµένο) (m n)λόγοι των µέτρων διανυσµάτων πλέγµατος επιφάνειας/µάζας Rφ 0 Γωνία σχετικής στροφής πλέγµατος επιφάνειας/µάζας

35 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων S S 0 0 fcc(100)c(x) S S fcc(100) ( X )R45 S S 0 0 Wood s: fcc(100) (X) S S S S S S

36 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων fcc(111) (x1) fcc(110) (x1)

37 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων S S fcc(111) ( 3x 3)R30 s s s s cos cos60 r r r r r r

38 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων S S 1 1 [ ] R Pt Woods B S S S ν 0 45 ) (100)(, : 4 4, det M s S s s s s r r r r r r

39 Παραδείγµατα Συµβολισµού Ανάπτυξης Επιστρωµάτων ( ) ( ) ( ) ( ) ( ) 5 3 tn cos cos60 3, φ φ φ Sin Cos Cos s s s s s s r r r r r r r r r r r r r S -+3 S + Grphite(001) ( 7x 7)Rrctn[ 3/5] S S 3 1 1

40 Αναδόµηση σε επιφάνειες µονοκρυστάλλων Χρυσού

41 Αναδόµηση σε επιφάνειες µονοκρυστάλλων Χρυσού

42 Αναδόµηση σε επιφάνειες µονοκρυστάλλων Χρυσού

43 Si(111) (7x7)

44 οµή Επιφανειών Τεχνικές Χαρακτηρισµού Επιφανειών: Ευαισθησία και Επιλεκτικότητα Γεωµετρίες Σκεδάσεως Τεχνικές Ανάστροφο Πλέγµα Περίθλαση από επιφάνειες Σφαίρα Ewld Εφαρµογή σε LEED/RHEED

45 Επιφανειακές Τεχνικές: Ευαισθησία 1cm άτοµα, 1% άτοµα 1cm άτοµα, / pp

46 Επιφανειακές Τεχνικές: Επιφανειακή Επιλεκτικότητα, Βάθος ανίχνευσης Depth in Fe trget (nm) X-Rys 10 5 CuK electrons Hydrogen Ions K 10 4 Cron Ions Argon Ions L Energy (kev)

47 Επιφανειακή Επιλεκτικότητα Ιόντα Ηλεκτρόνια nm Ακτίνες-Χ Νετρόνια Ηλεκτρόνια Υψηλής Ενέργειας GID,RHEED µm

48 Ελαστική σκέδαση και περίθλαση Ελαστική σκέδαση k 1 k k 1 Μη Ελαστική σκέδαση Συλλογικές διεγέρσεις ω(k) + Συµβολή Περίθλαση Πληροφορία για δοµή Φωτόνια (XRD) Ηλεκτρόνια (ED) Νετρόνια (Neutron Diffrction) Ιόντα k k 1 k,ħω Rmn, Inelstic Neutron Scttering ιέγερση ατόµων Χηµική ανάλυση+τοπική οµή ΧPS,UPS,EELS

49 Το άνυσµα σκέδασης k ΕΛΑΣΤΙΚΗ 0 k π λ Qk 0 -k -k 0 θ Q k 4π sin θ λ k 0 θ θ k

50 Τι µεγέθους δοµές βλέπουµε µε την σκέδαση; nλ d d 0.nm sinθ, d 5nm θ λ 0.154nm 45.3 θ , Q, Q 31.4nm 1.5nm 1 1 Reflectd Intensity XRR [Ru(1.5 nm)/ni(4.5 nm)] 8 Counts GIXRD Ru θ θ (deg)

51 Γεωµετρίες Σκεδάσεως - Τεχνικές Q Σκέδαση Μικρής Γωνίας Πρόσπτωσης (GID Grzing Incidence Diffrction) GIXD, GIND Q k 0 θ θ k k 0 k k 0 Ανακλαστικότητα (Reflectivity) XRR Neutron Reflectivity, PNR Q k k 0 Q Q k k Σκέδαση Μικρής Γωνίας (SAS Smll Angle Scttering) SAXS, SANS

52 Περίθλαση και ανακλαστικότητα ακτίνων-x

53 Περίθλαση ακτίνων-x από πολυστρωµατικά υµένια XRR [YB Cu 3 O 7 (1)/PrB Cu 3 O 7 (6)] 1 XRD 0 [Fe 30 /Cr 1 ] λ sin θ n + sin θ C Λ sinθ 1 n ± λ d Λ x

54 Μη κατοπτρική Σκέδαση φ Q x 0, θ θ i 0, Q y f 0 0, Q z k sinθ ( 4π λ) sinθ

55 Μη κατοπτρική Σκέδαση

56 Ανάστροφο πλέγµα Τρισδιάστατο-Επιφάνειας ( ) ( ) ( ) π π π l k h hkl * * * * * + +,cc*,c* c*,c*,* *,c*,* * c c* c c c c c G π π π c* * * * * π π π π 0 0 * * +,* *,* * n * n * g k h hk

57 Σχέση Ορθού-Ανάστροφου δισδιάστατου πλέγµατος * 90-γ γ 90-γ * * * 0 0 * * π * π * cos γ * sin( γ ) π * π sin γ π * π * cos γ * sin( γ ) π * γ * 180 γ π sin γ

58 Συνθήκη περίθλασης: Σφαίρα του Ewld π/c Συνθήκη Σκέδασης kk-k 0 g hkl π/ k (hkl) θ k 0 G (000) π/ Η συνθήκη περίθλασης δέσµης (π.χ. ακτίνων-χ, ηλεκτρονίων) που περιγράφεται από κυµατάνυσµα k 0 από περιοδικό πλέγµα µπορεί να εκφραστεί σαν την απαίτηση το άνυσµα σκέδασηςk-k 0 να είναι άνυσµα του αντιστρόφου πλέγµατος k-k 0 G hkl. Κατά την ελαστική σκέδαση έχουµε k k 0. Η συνθήκη περίθλασης µπορεί να απεικονισθεί µε την γεωµετρική κατασκευή της σφαίρας του Ewld: Σχεδιάζουµε σφαίρα ακτίνας k 0 π/λ και κέντρο την αρχή του ανύσµατος k 0,όταν αυτό τοποθετείται έτσι ώστε η κορυφή του να συµπίπτει µε τοσηµείο (0,0,0) του ανάστροφου χώρου. Τότε η συνθήκη k-k 0 G hkl θα πληρείται για τα σηµεία της επιφάνειας της σφαίρας τα οποία συµπίπτουν µε κάποιο σηµείο του αντίστροφου πλέγµατος. Το κάθε ένα από αυτά θα δίνει περίθλαση προς την κατεύθυνση του k που προέρχεται από τα επίπεδα [hkl].

59 Σφαίρα Ewld και νόµος Brgg k θ G ( 00) k θ G hkl ΕΛΑΣΤΙΚΗ k k 0 π λ π/c k 0 ( 100) ( 001) ( 000) ( 101) ( 100) k 0 G π/ hkl π d hkl ( 101) ( 001) ( 101) G hkl sinθ π π sinθ d λ hkl λ d k 0 hkl sinθ

60 Συνθήκη περίθλασης από επιφανειακό πλέγµα (hkl) π/c k θ π/ k 0 G k k 0 (000) π/ c, c* 0 π/ π/ Ένα δισδιάστατο πλέγµα µπορεί να ληφθεί σαν οριακή περίπτωση του τρισδιάστατου,,c όταν c. Τότε το c* που είναι ανάλογο του π/c τείνει στο µηδέν. Αυτό σηµαίνει ότι κατά την διεύθυνση του άξονα c* τα σηµεία θα έλθουν σε απειροελάχιστη απόσταση µεταξύ τους σχηµατίζοντας συνεχείς γραµµές τις οποίες τις φανταζόµαστε σαν ένα δυσδιάστατο πλέγµα από «ράβδους» κάθετες στο επίπεδο των *, *. Η συνθήκηk-k 0 G hk πληρείται για τα σηµεία που οι ράβδοι τέµνουν την επιφάνεια της σφαίρας του Ewld.

61 Σφαίρα του Ewld για LEED Ράβδοι Προσπίπτουσα είγµα LEED spots

62 LEED Ράβδοι Προσπίπτουσα είγµα LEED spots

63 Σφαίρα του Ewld για LEED // d π είγµα Ράβδοι κ 0 θ θ φ // // // sin sin sin sin k h k h d d d + + λ θ λ θ λ λ π π π ϕ θ k

64 LEED Ni(111) λ0.086, Ε05eV Μετά από Απορρόφηση Η

65 Σφαίρα Ewld για ηλεκτρόνια χαµηλής και υψηλής ενέργειας Στην περίπτωση περίθλασης ηλεκτρονίων το µήκος κύµατος debroglie λh/p µπορεί να υπολογιστεί από την κινητική τους ενέργεια Εp /m που είναι ίση µε ev όπου V είναι το δυναµικό επιτάχυνσης της δέσµης. λh/ (mev). Για V της τάξης των 100keV οι ταχύτητες των ηλεκτρονίων φτάνουν τα km/sec και εποµένως γίνονται συγκρίσιµες µε την ταχύτητα του φωτός: Πρέπει να χρησιµοποιήσουµε τον αντίστοιχο σχετικιστικό τύπο για την ενέργεια E p c +m c 4. Η συνολική ενέργεια Ε πρέπει να θεωρηθεί σαν το άθροισµα της ενέργειας mc που αντιστοιχεί στην µάζα ηρεµίας και της κινητικής που αποκτούν επιταχυνόµενα από το δυναµικό, δηλαδή Εmc +ev. Με βάση αυτά µπορούµε να αποδείξουµε λ h p h ev mev 1 + mc

66 Σφαίρα Ewld για ηλεκτρόνια χαµηλής και υψηλής ενέργειας 100eV LEED λ 0.1nm, 50nm k 0 1 λ h p h mev 1 + ev mc 100keV RHEED, TEM λ nm, 1700nm k 0 1 k 0 φ π π 0nm 0.3nm 1 k 0 φ π/ η επιφάνεια της σφαίρας του Ewld είναι ουσιαστικά επίπεδη σε σχέση µε τις αποστάσεις του ανάστροφου πλέγµατος.

67 φ 1 0 Γεωµετρία RHEED

68 Σφαίρα του Ewld για RHEED Ewld Ράβδοι RHEED streks Προσπίπτουσα είγµα

69 RHEED και επιφανειακή τραχύτητα (surfce roughness) streking ulk scttering

70 In-situ RHEED

71 Γεωµετρία Περίθλασης RHEED t L G// t π d// t λ d// k L π λ L d 0 // L λ t

72 Παράδειγµα Αu(001)/MgO(001) Rickrd J. Phys. D: Appl. Phys. 38 (005)

73 Πολυκρυσταλλικά-Επιταξιακά Υµένια

74 Ανακλάσεις Υπερδοµής

75 Ανακλάσεις Υπερδοµής

76 Παραδείγµατα υπολογισµού αντίστροφου δικτύου σε υπερδοµές S S S S S S S * S * S * S * S * S * * * * * * *

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ Συζευγμένα ηλεκτρικά και μαγνητικά πεδία τα οποία κινούνται με την ταχύτητα του φωτός και παρουσιάζουν τυπική κυματική συμπεριφορά Αν τα φορτία ταλαντώνονται περιοδικά οι διαταραχές

Διαβάστε περισσότερα

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση

Διαβάστε περισσότερα

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος

Διαβάστε περισσότερα

7α Γεωμετρική οπτική - οπτικά όργανα

7α Γεωμετρική οπτική - οπτικά όργανα 7α Γεωμετρική οπτική - οπτικά όργανα Εισαγωγή ορισμοί Φύση του φωτός Πηγές φωτός Δείκτης διάθλασης Ανάκλαση Δημιουργία ειδώλων από κάτοπτρα Μαρία Κατσικίνη katsiki@auth.gr users.auth.gr/katsiki Ηφύσητουφωτός

Διαβάστε περισσότερα

Μελέτη Λεπτών Υµενίων MgCl2 Πάνω Στην Αναδοµηµένη Επιφάνεια Si(111)7x7 Με Επιφανειακά Ευαίσθητες Τεχνικές

Μελέτη Λεπτών Υµενίων MgCl2 Πάνω Στην Αναδοµηµένη Επιφάνεια Si(111)7x7 Με Επιφανειακά Ευαίσθητες Τεχνικές UNIVERSITY of PATRAS Μελέτη Λεπτών Υµενίων MgCl2 Πάνω Στην Αναδοµηµένη Επιφάνεια Si(111)7x7 Με Επιφανειακά Ευαίσθητες Τεχνικές ιπλωµατική εργασία ΣΥΚΑΡΗ ΒΙΟΛΕΤΑ Επιβλέπων καθηγητής ΛΑ ΑΣ ΣΠΥΡΙ ΩΝ ΠΑΤΡΑ

Διαβάστε περισσότερα

Ύλη ένατου µαθήµατος. Οπτικό µικροσκόπιο, Ηλεκτρονική µικροσκοπία σάρωσης, Ηλεκτρονική µικροσκοπία διέλευσης.

Ύλη ένατου µαθήµατος. Οπτικό µικροσκόπιο, Ηλεκτρονική µικροσκοπία σάρωσης, Ηλεκτρονική µικροσκοπία διέλευσης. ιάλεξη 9 η Ύλη ένατου µαθήµατος Οπτικό µικροσκόπιο, Ηλεκτρονική µικροσκοπία σάρωσης, Ηλεκτρονική µικροσκοπία διέλευσης. Μέθοδοι µικροσκοπικής ανάλυσης των υλικών Οπτική µικροσκοπία (Optical microscopy)

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης

ΗλιακήΓεωµετρία. Γιάννης Κατσίγιαννης ΗλιακήΓεωµετρία Γιάννης Κατσίγιαννης ΗηλιακήενέργειαστηΓη Φασµατικήκατανοµήτηςηλιακής ακτινοβολίας ΗκίνησητηςΓηςγύρωαπότονήλιο ΗκίνησητηςΓηςγύρωαπότονήλιοµπορεί να αναλυθεί σε δύο κύριες συνιστώσες: Περιφορά

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 35 ΠερίθλασηκαιΠόλωση ΠεριεχόµεναΚεφαλαίου 35 Περίθλαση απλής σχισµής ή δίσκου Intensity in Single-Slit Diffraction Pattern Περίθλαση διπλής σχισµής ιακριτική ικανότητα; Κυκλικές ίριδες ιακριτική

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΤΕΥΘΥΝΣΗ ΜΑΘΗΜΑΤΙΚΟΥ ΕΦΑΡΜΟΓΩΝ ΡΟΕΣ ΣΤΑΤΙΣΤΙΚΗΣ ΑΝΑΛΥΣΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ του Γεωργίου Π. Νίνη «Η Θεωρία Ομάδων και

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ ΜΕΡΟΣ ΕΥΤΕΡΟ ΜΕΛΕΤΗ ΜΟΝΟΚΡΥΣΤΑΛΛΩΝ ΥΛΙΚΩΝ ΟΡΓΑΝΑ ΜΕΘΟ ΟΙ

ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ ΕΙΣΑΓΩΓΗ ΜΕΡΟΣ ΕΥΤΕΡΟ ΜΕΛΕΤΗ ΜΟΝΟΚΡΥΣΤΑΛΛΩΝ ΥΛΙΚΩΝ ΟΡΓΑΝΑ ΜΕΘΟ ΟΙ 5 ΠΡΟΛΟΓΟΣ Σκοπός του βιβλίου " ΜΕΘΟ ΟΙ ΚΡΥΣΤΑΛΛΟ ΟΜΗΣ " είναι να δώσει στον µελετητή µια συνολική εικόνα της πορείας που ακολουθείται, συνήθως, όταν γίνεται προσπάθεια προσδιορισµού της δοµής ενός κρυσταλλικού

Διαβάστε περισσότερα

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ

ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ ΠΑΙ ΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ: ΓΕΩΜΕΤΡΙΚΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΕΝΟΤΗΤΑ: ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ [Κ. ΠΑΠΑΜΙΧΑΛΗΣ ρ ΦΥΣΙΚΗΣ] Τίτλος του Σεναρίου ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΚΑΤΟΠΤΡΙΚΗΣ ΣΥΜΜΕΤΡΙΑΣ Μελέτη των µετασχηµατισµών

Διαβάστε περισσότερα

Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων

Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων Φασματοσκοπία SIMS (secondary ion mass spectrometry) Φασματοσκοπία μάζης δευτερογενών ιόντων Ιόντα με υψηλές ενέργειες (συνήθως Ar +, O ή Cs + ) βομβαρδίζουν την επιφάνεια του δείγματος sputtering ουδετέρων

Διαβάστε περισσότερα

Συστήματα συντεταγμένων

Συστήματα συντεταγμένων Κεφάλαιο. Για να δημιουργήσουμε τρισδιάστατα αντικείμενα, που μπορούν να παρασταθούν στην οθόνη του υπολογιστή ως ένα σύνολο από γραμμές, επίπεδες πολυγωνικές επιφάνειες ή ακόμη και από ένα συνδυασμό από

Διαβάστε περισσότερα

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα,

Διαβάστε περισσότερα

Χαρακτηρισμός υλικών με ιόντα

Χαρακτηρισμός υλικών με ιόντα Χαρακτηρισμός υλικών με ιόντα 1. Secondary ion mass spectroscopy (SIMS) Φασματοσκοπία μάζας δευτερογενών ιόντων. Rutherford backscattering (RBS) Φασματοσκοπία οπισθοσκέδασης κατά Rutherford Secondary ion

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΧΑΜΗΛΟ ΙΑΣΤΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΖΟΜΕΝΩΝ ΣΤΟ SiC

ΜΕΛΕΤΗ ΧΑΜΗΛΟ ΙΑΣΤΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΖΟΜΕΝΩΝ ΣΤΟ SiC ΤΙΤΛΟΣ Ι ΑΚΤΟΡΙΚΗΣ ΙΑΤΡΙΒΗΣ: ΜΕΛΕΤΗ ΧΑΜΗΛΟ ΙΑΣΤΑΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΒΑΣΙΖΟΜΕΝΩΝ ΣΤΟ SiC Λαφατζής ηµήτριος Υποψήφιος διδάκτωρ στο Α.Π.Θ. Τµήµα Φυσικής ΤΡΙΜΕΛΗΣ ΕΠΙΤΡΟΠΗ: Καθηγ. ΛΟΓΟΘΕΤΙ ΗΣ ΣΤΕΡΓΙΟΣ (Τµ. Φυσικής,

Διαβάστε περισσότερα

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 Κίνηση Κυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 Κίνηση Κυµάτων Περιεχόµενα Κεφαλαίου 15 Χαρακτηριστικά των Κυµάτων Είδη κυµάτων: Διαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της Διάδοσης κυµάτων Η Εξίσωση του Κύµατος

Διαβάστε περισσότερα

Νανοτεχνολογία και Ηλεκτρονική Μικροσκοπία

Νανοτεχνολογία και Ηλεκτρονική Μικροσκοπία ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ Ινστιτούτο Επιστήµης Υλικών Νανοτεχνολογία και Ηλεκτρονική Μικροσκοπία Ν. Μπούκος Αυτός ο κόσµος ο µικρός, ο µέγας. Περίγραµµα Εισαγωγή - Κίνητρα Νανοτεχνολογία Σχέση παρασκευής-µικροδοµήςιδιοτήτων

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 3 ο ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ημιτελείς προτάσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Νέα Οπτικά Μικροσκόπια

Νέα Οπτικά Μικροσκόπια Νέα Οπτικά Μικροσκόπια Αντίθεση εικόνας (contrast) Αντίθεση πλάτους Αντίθεση φάσης Αντίθεση εικόνας =100 x (Ι υποβ -Ι δειγμα )/ Ι υποβ Μικροσκοπία φθορισμού (Χρησιμοποιεί φθορίζουσες χρωστικές για το

Διαβάστε περισσότερα

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p

Υλικά κύματα. Οδηγούντα κύματα de Broglie. Τα όρια της θεωρίας Bohr. h pc p University of Ioannina Deartment of Materials Science & Engineering Comutational Materials Science τική Θεωρία της Ύλης ιδάσκων: Λευτέρης Λοιδωρίκης Π1, 7146, elidorik@cc.uoi.gr cmsl.materials.uoi.gr/elidorik

Διαβάστε περισσότερα

Ύλη έβδοµου µαθήµατος

Ύλη έβδοµου µαθήµατος ιάλεξη 7 η Ύλη έβδοµου µαθήµατος Φασµατοσκοπία απορρόφησης ακτίνων Χ, Φασµατοσκοπία οπισθοσκέδασης Rutherford, Φασµατοσκοπία ηλεκτρονίων Auger, Φασµατοσκοπία µάζας δευτερογενών ιόντων. Φασµατοσκοπία απορρόφησης

Διαβάστε περισσότερα

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 15 ΚίνησηΚυµάτων. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 15 ΚίνησηΚυµάτων ΠεριεχόµεναΚεφαλαίου 15 Χαρακτηριστικά Κυµατικής Είδη κυµάτων: ιαµήκη και Εγκάρσια Μεταφορά ενέργειας µε κύµατα Μαθηµατική Περιγραφή της ιάδοσης κυµάτων ΗΕξίσωσητουΚύµατος Κανόνας

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων.

Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Χώρος Διανύσματα Κεφάλαιο Χώρος, Διανύσματα, Διανυσματικές εξισώσεις, Συστήματα Συντεταγμένων. Καρτεσιανές συντεταγμένες και διανύσματα στο χώρο. Στο σύστημα καρτεσιανών (ή ορθογώνιων) συντεταγμένων κάθε

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή 13 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ 1. ύο µονοχρωµατικές ακτινοβολίες Α και Β µε µήκη κύµατος στο κενό

Διαβάστε περισσότερα

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι

Ο χρόνος που απαιτείται για να διανύσει το κύµα κάθε τµήµα της χορδής είναι ΜΑΘΗΜΑ 213 ΟΜΑ Α Β ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΡΙΘΜΟΣ ΤΑΥΤΟΤΗΤΑΣ: ΗΜΕΡΟΜΗΝΙΑ:6 ΕΚΕΜΒΡΙΟΥ 2010 ΘΕΜΑ 1 2 3 4 5 6 7 8 ΒΑΘΜΟΣ ΚΥΜΑΤΙΚΗ Θέµα 1 ο. Τρία κοµµάτια χορδής, καθένα µήκους L, δένονται µεταξύ τους από άκρο σε

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

Άσκηση 1. 1s 2s 2p (δ) 1s 3 2s 1. (ε) 1s 2 2s 1 2p 7 (στ) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2

Άσκηση 1. 1s 2s 2p (δ) 1s 3 2s 1. (ε) 1s 2 2s 1 2p 7 (στ) 1s 2 2s 2 2p 6 3s 2 3p 6 3d 8 4s 2 Άσκηση 1 Ποια από τα ακόλουθα διαγράµµατα τροχιακών και τις ηλεκτρονικές δοµές είναι επιτρεπτό και ποιο αδύνατο, σύµφωνα µε την απαγορευτική αρχή του Pauli; Εξηγήστε. (α) (β) (γ) 1s 2s 2p (δ) 1s 3 2s 1

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003

EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1 EΡΓΑΣΙΑ 5 η Καταληκτική ηµεροµηνία παράδοσης: 20 Ιουλίου 2003 1. Από την ίδια γραµµή αφετηρίας(από το ίδιο ύψος) ενός κεκλιµένου επιπέδου αφήστε να κυλήσουν, ταυτόχρονα προς τα κάτω, δύο κυλίνδροι της

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9

ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/2011 ΚΕΦ. 9 ΚΕΦΑΛΑΙΟ 9 ΠΕΡΙΣΤΡΟΦΗ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ 18/11/011 ΚΕΦ. 9 1 ΓΩΝΙΑΚΗ ΚΙΝΗΣΗ: ΟΡΙΣΜΟΙ Περιστροφική κινηματική: περιγράφει την περιστροφική κίνηση. Στερεό Σώμα: Ιδανικό μοντέλο σώματος που έχει τελείως ορισμένα

Διαβάστε περισσότερα

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς

Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Ελεύθερα ηλεκτρόνια στα μέταλλα-σχέση διασποράς Στόχος : Να εξηγήσουμε την επίδραση του δυναμικού του κρυστάλλου στις Ε- Ειδικώτερα: Το δυναμικό του κρυστάλλου 1. εισάγονται χάσματα στα σημεία όπου τέμνονται

Διαβάστε περισσότερα

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Επικ. καθηγητής ΦΩΤΟΒΟΛΤΑΪΚΑ Γ. Λευθεριώτης Επικ. καθηγητής Αγωγοί- μονωτές- ημιαγωγοί Ενεργειακά διαγράμματα ημιαγωγού Ηλεκτρόνια (ΖΑ) Οπές (ΖΣ) Ενεργειακό χάσμα και απορρόφηση hc 1,24 Eg h Eg ev m max max Χρειάζονται

Διαβάστε περισσότερα

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014 Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία Ιωάννης Γκιάλας 7 Μαρτίου 14 Άσκηση: Ηλεκτρικό πεδίο διακριτών φορτίων Δύο ίσα θετικά φορτία q βρίσκονται σε απόσταση α μεταξύ τους. Να βρεθεί η ακτίνα του κύκλου,

Διαβάστε περισσότερα

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή:

Α1. Πράσινο και κίτρινο φως προσπίπτουν ταυτόχρονα και µε την ίδια γωνία πρόσπτωσης σε γυάλινο πρίσµα. Ποιά από τις ακόλουθες προτάσεις είναι σωστή: 54 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ 2014 ΘΕΜΑ Α Α1. Πράσινο και κίτρινο φως

Διαβάστε περισσότερα

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα.

συνίστανται από πολωτή που επιτρέπει να περνούν µόνο τα κατακόρυφα πολωµένα κύµατα. Γραµµικά πολωµένο ηλεκτροµαγνητικό κύµα. Νόµος του Malus Η κλασσική κυµατική θεωρία του φωτός µοντελοποιεί το φως (ή ένα τυχόν ηλεκτροµαγνητικό κύµα κατ επέκταση), στον ελεύθερο χώρο, ως ένα εγκάρσιο ηλεκτροµαγνητικό

Διαβάστε περισσότερα

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή

Η Γεωμετρία της Αντιστροφής Η βασική θεωρία. Αντιστροφή Αντιστροφή Υποθέτουμε ότι υπάρχει ένας κανόνας ο οποίος επιτρέπει την μετάβαση από ένα σχήμα σε ένα άλλο, με τέτοιο τρόπο ώστε το δεύτερο σχήμα να είναι τελείως ορισμένο όταν το πρώτο είναι δοσμένο και

Διαβάστε περισσότερα

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική

Ο15. Κοίλα κάτοπτρα. 2. Θεωρία. 2.1 Γεωμετρική Οπτική Ο15 Κοίλα κάτοπτρα 1. Σκοπός Σκοπός της άσκησης είναι η εύρεση της εστιακής απόστασης κοίλου κατόπτρου σχετικά μεγάλου ανοίγματος και την μέτρηση του σφάλματος της σφαιρικής εκτροπής... Θεωρία.1 Γεωμετρική

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ 1. Κατά την ηλέκτριση με τριβή μεταφέρονται από το ένα σώμα στο άλλο i. πρωτόνια. ii. ηλεκτρόνια iii iν. νετρόνια ιόντα. 2. Το σχήμα απεικονίζει

Διαβάστε περισσότερα

Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 27 Μαγνητισµός. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 27 Μαγνητισµός Περιεχόµενα Κεφαλαίου 27 Μαγνήτες και Μαγνητικά πεδία Τα ηλεκτρικά ρεύµατα παράγουν µαγνητικά πεδία Μαγνητικές Δυνάµεις πάνω σε φορτισµένα σωµατίδια. Η ροπή ενός βρόχου ρεύµατος.

Διαβάστε περισσότερα

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 :

ΦΥΕ 14 5η ΕΡΓΑΣΙΑ Παράδοση 19-05-08 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Aσκηση 2 : ΦΥΕ 14 5 η ΕΡΓΑΣΙΑ Παράδοση 19-5-8 ( Οι ασκήσεις είναι βαθµολογικά ισοδύναµες) Άσκηση 1 : Συµπαγής κύλινδρος µάζας Μ συνδεδεµένος σε ελατήριο σταθεράς k = 3. N / και αµελητέας µάζας, κυλίεται, χωρίς να

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014 ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 214 Ασκηση συνολικό φορτίο λεκτρικό φορτίο Q είναι κατανεμημένο σε σφαιρικό όγκο ακτίνας R με πυκνότητα ορτίου ανάλογη του

Διαβάστε περισσότερα

2. Οι ενεργειακές στάθµες του πυρήνα ενός στοιχείου είναι της τάξης α)µερικών ev γ)µερικών MeV

2. Οι ενεργειακές στάθµες του πυρήνα ενός στοιχείου είναι της τάξης α)µερικών ev γ)µερικών MeV ΙΑΓΩΝΙΣΜΑ Γ ΓΕΝΙΚΗΣ ΘΕΜΑ 1 ο 1. Αν ένα οπτικό µέσο Α µε δείκτη διάθλασης n Α είναι οπτικά πυκνότερο από ένα άλλο οπτικό µέσο Β µε δείκτη διάθλασης n Β και τα µήκη κύµατος του φωτός στα δυο µέσα είναι λ

Διαβάστε περισσότερα

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή φράση, η οποία

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ

ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΓΕΝΙΚΟ ΤΜΗΜΑ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ Lab. MEchanics Applied TECHNICAL UNIVERSITY OF CRETE ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι -ΣΤΑΤΙΚΗ 1 η Συνέχεια διαλέξεων B Μέρος 1 ΒΑΣΙΚΑ ΙΑΝΥΣΜΑΤΙΚΑ ΜΕΓΕΘΗ

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Μία μη μαθηματική εισαγωγή στην κρυσταλλογραφία πρωτεϊνών. Νικολαος Μ. Γλυκος

Μία μη μαθηματική εισαγωγή στην κρυσταλλογραφία πρωτεϊνών. Νικολαος Μ. Γλυκος Μία μη μαθηματική εισαγωγή στην κρυσταλλογραφία πρωτεϊνών Νικολαος Μ. Γλυκος Αλεξανδρούπολη, Φθινόπωρο 2015 -2- Πίνακας περιεχομένων Μέρος 1ο : Θεμέλιο 0 Don't panic...5 1 Ποια είναι η ερώτηση ;...7 2

Διαβάστε περισσότερα

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ

3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ 3α. ΣΧΕΤΙΚΙΣΤΙΚΗ ΚΙΝΗΜΑΤΙΚΗ ΠΑΡΑ ΕΙΓΜΑΤΑ «ΠΑΡΑ ΟΞΑ» ΑΣΚΗΣΕΙΣ Παράδειγµα: Το τρένο του Άινστάιν Ένα τρένο κινείται ως προς έναν αδρανειακό παρατηρητή Ο µε σταθερή ταχύτητα V. Στο µέσο ακριβώς του τρένου

Διαβάστε περισσότερα

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2

Ροπή αδράνειας. q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: I = m(2r) 2 = 4mr 2 ΦΥΣ 131 - Διαλ.22 1 Ροπή αδράνειας q Ας δούµε την ροπή αδράνειας ενός στερεού περιστροφέα: m (α) m (β) m r r 2r 2 2 I =! m i r i = 2mr 2 1 I = m(2r) 2 = 4mr 2 Ø Είναι δυσκολότερο να προκαλέσεις περιστροφή

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΥΘΕΙΑ ΑΣΚΗΣΕΙΣ Πηγή: KEE 1. Να βρείτε τον συντελεστή διεύθυνσης µιας ευθείας ε, που σχηµατίζει µε τον άξονα x x γωνία: α) ω = 3 π β) ω = π 3 γ) ω = π. Να βρείτε τη γωνία ω που σχηµατίζει µε τον άξονα x x µια ευθεία ε, η οποία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

F r. www.ylikonet.gr 1

F r. www.ylikonet.gr 1 3.5. Έργο Ενέργεια. 3.5.1. Έργο δύναµης- ροπής και Κινητική Ενέργεια. Το οµοαξονικό σύστηµα των δύο κυλίνδρων µε ακτίνες R 1 =0,1m και R =0,5m ηρεµεί σε οριζόντιο επίπεδο. Τυλίγουµε γύρω από τον κύλινδρο

Διαβάστε περισσότερα

7.14 Προβλήματα για εξάσκηση

7.14 Προβλήματα για εξάσκηση 7.14 Προβλήματα για εξάσκηση 7.1 Το ορυκτό οξείδιο του αλουμινίου (Corundum, Al 2 O 3 ) έχει κρυσταλλική δομή η οποία μπορεί να περιγραφεί ως HCP πλέγμα ιόντων οξυγόνου με τα ιόντα αλουμινίου να καταλαμβάνουν

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

2015 ii. iii. 8 ii. iii. 9

2015 ii. iii. 8 ii. iii. 9 ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέµα Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την ηµιτελή πρόταση.

Διαβάστε περισσότερα

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ

1.5 ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ.. ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΔΙΑΝΥΣΜΑΤΩΝ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Αν είναι δυο μη μηδενικά διανύσματα τότε ονομάζουμε εσωτερικό γινόμενο των και τον αριθμό : όπου φ είναι η γωνία των

Διαβάστε περισσότερα

11. Υγρά και Στερεά ΣΚΟΠΟΣ

11. Υγρά και Στερεά ΣΚΟΠΟΣ 11. Υγρά και Στερεά ΣΚΟΠΟΣ Σκοπός αυτού του κεφαλαίου είναι να γνωρίσουμε τις άλλεςδύοκαταστάσειςτηςύλης, την υγρή και τη στερεά, να μελετήσουμε και να ερμηνεύσουμε τις ιδιότητες των υγρών, να δούμε τους

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις

ΚΕΦΑΛΑΙΟ 2. Τρισδιάστατες κινήσεις ΚΕΦΑΛΑΙΟ Τρισδιάστατες κινήσεις Οι µονοδιάστατες κινήσεις είναι εύκολες αλλά ζούµε σε τρισδιάστατο χώρο Θα δούµε λοιπόν τώρα πως θα αντιµετωπίζοµε την κίνηση υλικού σηµείου στις τρεις διαστάσεις Ας θεωρήσοµε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΙΓΩΝΙΣΜ ΘΕΜ 1 Ο Να επιλέξετε την σωστή απάντηση. ) Η απόσταση µεταξύ δύο διαδοχικών δεσµών το στάσιµο κύµα είναι: 1/ λ/4 / λ/6 3/ λ/ 4/ λ όπου λ είναι το µήκος κύµατος των τρεχόντων

Διαβάστε περισσότερα

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev.

Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε λ [10-9 -10-12 m] (ή 0,01-10Å) και ενέργεια φωτονίων kev. To ορατό καταλαµβάνει ένα πολύ µικρό µέρος του ηλεκτροµαγνητικού φάσµατος: 1,6-3,2eV. Page 1

Διαβάστε περισσότερα

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ Θέµατα από το βιβλίο µου: Οι ασκήσεις των εξετάσεων φυσικής γενικής παιδείας γ λυκείου (υπό έκδοση ) (Περιέχει 111 ασκήσεις πιθανά θέµατα εξετάσεων µε απαντήσεις) ΚΕΦΑΛΑΙΟ 1 ο ΘΕΜΑ 1 ο Πόση είναι η ενέργεια

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

Δυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα

Δυναμική Ανάλυση Κατασκευών - Πειράματα Μονοβαθμίων Συστημάτων (ΜΒΣ) σε Σεισμική Τράπεζα ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ, Πειράματα ΜΒΣ σε Σεισμική Τράπεζα Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 5: Ανάλυση Κατασκευών με Η/Υ Δυναμική

Διαβάστε περισσότερα

Μηχανική του στερεού σώματος

Μηχανική του στερεού σώματος Κεφάλαιο 1 Μηχανική του στερεού σώματος 1.1 Εισαγωγή 1. Το θεώρημα του Chales Η γενική κίνηση του στερεού σώματος μπορεί να μελετηθεί με τη βοήθεια του παρακάτω θεωρήματος το οποίο δίνουμε χωρίς απόδειξη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και, δίπλα, το γράμμα που αντιστοιχεί στη σωστή φράση η οποία συμπληρώνει σωστά την ημιτελή

Διαβάστε περισσότερα

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος; ΙΝΥΣΜΤ ΘΕΩΡΙ ΘΕΜΤ ΘΕΩΡΙΣ Τι ονοµάζουµε διάνυσµα; AB A (αρχή) B (πέρας) Στη Γεωµετρία το διάνυσµα ορίζεται ως ένα προσανατολισµένο ευθύγραµµο τµήµα, δηλαδή ως ένα ευθύγραµµο τµήµα του οποίου τα άκρα θεωρούνται

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ taexeiolag ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΗ 1 uuuu uuuu uuuu Αν OA OB 3O 0 και ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ uuuu uuuu uuuu OA OB 1, O α Να δείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

Θέµατα που θα καλυφθούν

Θέµατα που θα καλυφθούν Ηµιαγωγοί Semiconductors 1 Θέµατα που θα καλυφθούν Αγωγοί Conductors Ηµιαγωγοί Semiconductors Κρύσταλλοι πυριτίου Silicon crystals Ενδογενείς Ηµιαγωγοί Intrinsic semiconductors ύο τύποι φορέων για το ρεύµασεηµιαγωγούς

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 0 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 19 Μαρτίου, 006 Ώρα: 10:30-13:30 Θέµα 1 0 (µονάδες 10) α ) Το βέλος δέχεται σταθερή επιτάχυνση για όλη τη διάρκεια της κίνησης (

Διαβάστε περισσότερα

ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ Χ

ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ Χ ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ Χ Ορισµός ΦΑΣΜΑΤΟΣΚΟΠΙΑ ΑΚΤΙΝΩΝ Χ - Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µικρού µήκους κύµατος (10-5 - 100 Å) - Συνήθως χρησιµοποιούνται ακτίνες Χ µε µήκος κύµατος 0.1-25

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΚΑΘ. κ. ΚΟΥΠΑΡΡΗ 1 2 3 4 5 6 7 8 ΣΗΜΕΙΩΣΕΙΣ ΚΑΘΗΓΗΤΟΥ κ. ΚΟΥΝΤΟΥΡΕΛΛΗ 9 10 11 ΦΑΣΜΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗΣ ΑΚΤΙΝΟΒΟΛΙΑΣ Ακτινοβολία Συχνότητα Μήκος κύµατος Ενέργεια Τύπος φασµατοσκοπίας ν(hertz)

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης

Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης 3 Διάθλαση φωτός και ολική ανάκλαση: Εύρεση του δείκτη διάθλασης και της γωνίας ολικής ανάκλασης Μέθοδος Σε σώμα διαφανές ημικυλινδρικού σχήματος είναι εύκολο να επιβεβαιωθεί ο νόμος του Sell και να εφαρμοστεί

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ

ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΕΝΟΤΗΤΑ 14: ΣΤΟΙΧΕΙΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΜΗΧΑΝΙΚΗΣ ΕΠΙΣΤΗΜΗΣ 159 Εισαγωγή: Μηχανική ονομάζεται το τμήμα της Φυσικής, το οποίο εξετάζει την κίνηση και την ισορροπία των σωμάτων. Επειδή η σημασία της είναι μεγάλη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2002 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 6 ΙΟΥΝΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ): ΦΥΣΙΚΗ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΒΙΒΛΙΟΓΡΑΦΙΑ H.D. H.D. Young Πανεπιστημιακή Φυσική Εκδόσεις Παπαζήση Alonso Alonso / Finn Θεμελιώδης Πανεπιστημιακή Φυσική Α. Φίλιππας, Λ. Ρεσβάνης (Μετ.) R. A. Seway Φυσική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Σύστημα Κοκκομετρίας ANALYSETTE 22 MicroTec Plus. Ν. ΑΣΤΕΡΙΑΔΗΣ Α.Ε. FRITSCH GmbH

Σύστημα Κοκκομετρίας ANALYSETTE 22 MicroTec Plus. Ν. ΑΣΤΕΡΙΑΔΗΣ Α.Ε. FRITSCH GmbH Σύστημα Κοκκομετρίας ANALYSETTE 22 MicroTec Plus Ν. ΑΣΤΕΡΙΑΔΗΣ Α.Ε. FRITSCH GmbH Μέγεθος σωματιδίων και Φως Περίθλαση φωτός για τη μέτρηση του μεγέθους σωματιδίων Διερχόμενα από δέσμη φωτός σωματίδια σχηματίζουν

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α. 1. Ένα σφαιρικό κέλυφος που θεωρούμε ότι έχει αμελητέο πάχος έχει ακτίνα α και φέρει φορτίο Q, ομοιόμορφα κατανεμημένο στην επιφάνειά του. Βρείτε την ένταση του ηλεκτρικού πεδίου στο εξωτερικό και στο

Διαβάστε περισσότερα

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Hλεκτρικό Πεδίο Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ Προτεινόμενη βιβλιογραφία: SRWY, Physics fo scientists and enginees YOUNG H.D., Univesity

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα