Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες)

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες)"

Transcript

1 Συστηµατικές κατασβέσεις (Περιορισµοί-Απουσίες) Μοναδιαία κυψελίδα Καθορισµός Ο.Σ.Χ. Υπό τον όρο ότι δεν υπάρχει κανένα πρόβληµα στη δοµή, όπως διδυµίες αταξίες κ.λ.π., έχουµε την δυνατότητα να δηµιουργήσουµε την εικόνα του αντιστρόφου πλέγµατος του υπό εξέταση κρυστάλλου και µε την βοήθεια του µπορούµε να υπολογίσουµε την µοναδιαία κυψελίδα. Βέβαια για τις ορθογώνιες κυψελίδες το πρόβληµα της µετατροπής από το αντίστροφο πλέγµα στο πραγµατικό είναι σχεδόν ασήµαντο, αλλά για τα µη-ορθογώνια συστήµατα χρειάζεται συνήθως ορισµένη σκέψη. Το επόµενο βήµα είναι να εξετάσουµε εάν στο αντίστροφο πλέγµα της υπό µελέτη δοµής, υπάρχουν συστηµατικές απουσίες (κατασβέσεις) ορισµένων ανακλάσεων. Εάν π.χ. έχουµε δοµή µε ενδοκεντροµένο πλέγµα τότε εξετάζοντας όλες τις ανακλάσεις hkl (όχι όµως αυτές που έχουν h, k, l =0) θα δούµε ότι δίνουν ένταση µόνο αυτές που υπακούνε στον κανόνα h+k+l=2n. Άρα εξετάζοντας τις ανακλάσεις hkl µπορούµε, από τις συστηµατικές κατασβέσεις (απουσίες) που παρουσιάζονται να καθορίσουµε τον τύπο του πλέγµατος στον οποίο ανήκει ένας κρύσταλλος. Κατά τον ίδιο τρόπο οι συστηµατικές απουσίες ανακλάσεων µόνο από ορισµένα στρώµατα ή σειρές του αντιστρόφου πλέγµατος δηλώνουν την ύπαρξη επιπέδων ολίσθησης και αξόνων στροφής ή ελίκωσης.(πίνακας 1.1). Η πλήρεις µαθηµατική απόδειξη των παραπάνω γίνεται µε την χρήση της εξίσωσης που εκφράζει τον Παράγοντα Δοµής. Η ανάλυση του τύπου µας δίνει την έκφραση Επειδή όµως οι ανακλάσεις στους κρυστάλλους, λόγω του φαινοµένου Friedel, παρουσιάζουν συµµετρία (hkl=-h-k-l) ο δεύτερος όρος isin2π(hx+ky+lz) µηδενίζεται [sin(x)=-sin(-x)] και η παραπάνω εξίσωση γίνεται Όταν λοιπόν έχουµε ένα ενδοκεντροµένο πλέγµα Ι, όπου όπως είναι γνωστό, έχουµε θέσεις για άτοµα ή συγκροτήµατα ατόµων στα σηµεία 000 (αρχή αξόνων πλέγµατος) και στα σηµεία ½, ½, ½ (στο κέντρο του πλέγµατος), η παραπάνω εξίσωση γίνεται ] ή ]

2 Όµως το cos2π(0) = 1. Άρα για να έχουµε ανακλάσεις από ένα ενδοκεντροµένο πλέγµα Ι θα πρέπει στον όρο το h+k+l να είναι άρτιος αριθµός δηλαδή θα πρέπει να ισχύει ο περιορισµός h+k+l = 2n. Ένα άλλο παράδειγµα δίνετε παρακάτω για επίπεδο ολίσθησης a κάθετο στον άξονα c. Όπως φαίνεται και από το παραπλεύρως σχήµα για κάθε άτοµο µε συντεταγµένες x,y,z λόγω της ολίσθησης του επιπέδου a θα έχουµε και την παραγωγή πανοµοιότυπου ατόµου µε συντεταγµένες ½+x,y,-z. Εποµένως χρησιµοποιώντας πάλι τον παραπάνω τύπο του Παράγοντα Δοµής για τις ανακλάσεις hk0 προκύπτει: Άρα για τις ανακλάσεις hk0 η σχέση απλοποιείται ως εξής: Παρατηρούµε εδώ ότι οι δύο όροι των συνηµιτόνων είναι ίσοι στο µέγεθος αλλά διαφέρουν στη φάση κατά hπ. Άρα µηδενίζονται όταν το h είναι µονός αριθµός και ενισχύονται όταν το h είναι άρτιος. Εποµένως, ο Παράγον Δοµής F hk0 είναι µηδέν όταν το h είναι περιττός και διάφορος του µηδενός όταν είναι άρτιος. Η συνθήκη λοιπόν για την ύπαρξη επιπέδου a καθέτου στον άξονα c είναι οι ανακλάσεις hk0 να έχουν το δείκτη h=2n. Παρόµοιες συνθήκες κατασβέσεων µπορούµε να βρούµε και για άλλα στοιχεία συµµετρίας. Για παράδειγµα ένας άξονας ελικόσεως 4 1 παράλληλος στον άξονα c υπάρχει όταν οι ανακλάσεις 00l έχουν τον περιορισµό l=4n, ενώ για να υπάρχει ένας άξονας ελικόσεως 2 1 παράλληλος στον άξονα a θα πρέπει οι ανακλάσεις h00 να υπακούουν στο περιορισµό h=2n. Τα αποτελέσµατα που προκύπτουν από την επεξεργασία της εξίσωσης του Παράγοντα Δοµής για τους διαφόρους τύπους των στοιχείων συµµετρίας συνοψίζονται στον Πίνακα 1.1. Όταν λοιπόν έχουµε µια πλειάδα από ανακλάσεις από την µελέτη των συστηµατικών κατασβέσεων µπορούµε να βρούµε την Οµάδα Συµµετρίας Χώρου (Ο.Σ.Χ.) στην οποία ανήκει ένας κρύσταλλος. Δηλαδή να βρούµε το Πλέγµα και τα επίπεδα ή τους άξονες συµµετρίας που πράγµατι έχει η δοµή µας. Είναι ωστόσο σηµαντικό να σιγουρευτούµε ότι οι παρατηρούµενες συνθήκες κατάσβεσης είναι πραγµατικές και όχι απλώς µια ειδική περίπτωση των κατασβέσεων του πλέγµατος. Ένα παράδειγµα θα δούµε αµέσως παίρνοντας το µεροεδρικά κεντρωµένο πλέγµα C.όπου οι ανακλάσεις hkl έχουν τον περιορισµό h+k =2n. Λόγω της πιο πάνω γενικής κατάσβεσης συνεπάγεται ότι υποχρεωτικά οι ανακλάσεις h0l θα έχουν h=2n και οι 0kl θα k=2n. Αυτό όµως δεν αποδεικνύει τίποτα σχετικά µε την παρουσία των αντιστοίχων επιπέδων ολίσθησης a και b. Οµοίως, άπαξ και αποδειχθεί ότι στις ανακλάσεις h0l το h=2n, η απουσία των h00 ανακλάσεων µε h µονό αριθµό δεν µας λέει τίποτα σχετικά µε το αν υπάρχει ή όχι άξονας ελικώσεως παράλληλος στον άξονα a. ] ] ]

3 ΠΙΝΑΚΑΣ 1.1 Συστηµατικές κατασβέσεις για τα πλέγµατα Εύρεση τύπου πλέγµατος Οµάδα ανακλάσεων: Περιορισµοί ανακλάσεων h+k+l=2n h+k=2n, ή k+l=2n, ή h+l=2n h+k=2n, k+l=2n, h+l=2n Χωρίς περιορισµό hkl O τύπος πλέγµατος είναι: Ενδοκεντρωµένο I Μεροεδρικά κεντρωµένο C, A, B Ολοεδρικά κεντρωµένο F Απλό P Συστηµατικές κατασβέσεις για τα στοιχεία συµµετρίας Εύρεση επιπέδων ολίσθησης Οµάδα ανακλάσεων: Το επίπεδο ολίσθησης είναι: 0kl κάθετο στον άξονα a h0l κάθετο στον άξονα b hk0 κάθετο στον άξονα c hhl* παράλληλο στην (1 1 0) Περιορισµοί ανακλάσεων: h=2n k=2n l=2n h+k=2n, ή k+l=2n, ή l+h=2n h+k=4n, ή k+l=4n, ή l+h=4n Χωρίς περιορισµό Υποδηλώνουν: επίπεδο ολίσθησης a επίπεδο ολίσθησης b επίπεδο ολίσθησης c επίπεδο ολίσθησης n (διαγώνιο επίπεδο) επίπεδο ολίσθησης d** (διαγώνιο επίπεδο) επίπεδο κατοπτρικό m Εύρεση αξόνων ελικόσεως Οµάδα ανακλάσεων: Άξονας ελίκοσης παράλληλος : h00 0k0 00l Περιορισµοί ανακλάσεων: στον άξονα a στον άξονα b στον άξονα c Υποδηλώνουν: h=2n, ή k=2n, ή l=2n άξονα ελίκοσης 2 1, ή 4 2, ή 6 3 l=3n άξονα ελίκοσης 3 1 (3 2 ), ή 6 2 (6 3 )*** h=4n, ή k=4n, ή l=4n άξονα ελίκοσης 4 1 (4 3 ) l=6n άξονα ελίκοσης 6 1 (6 5 )*** Χωρίς περιορισµό άξονες στροφής 2, 3, 4, 6

4 Σχήµα 1.1 Ανακλάσεις Ροµβικού Κρυστάλλου σε αντίστροφο πλέγµα Η µελέτη των συστηµατικών κατασβέσεων πρέπει συνεπώς να αρχίζει µε τις γενικές ανακλάσεις (hkl) και συνεχίζουµε µε τις µερικές (0kl κ.λ.π.). Μπορούµε εποπτικά να εξηγήσουµε την όλη διαδικασία µε την βοήθεια του σχήµατος 1.1 στο οποίο δείχνεται µέρος του αντιστρόφου πλέγµατος ενός ροµβικού κρυστάλλου µε σηµειωµένες όλες τις ανακλάσεις που µετρήθηκαν. Από την εξέταση των γενικών ανακλάσεων hkl παρατηρούµε ότι δεν υπάρχει κανένας περιορισµός στην ύπαρξη των ανακλάσεων και άρα η κυψελίδα στην οποία ανήκει ο κρύσταλλος είναι η απλή Ρ. Εξετάζοντας µετά τις ανακλάσεις 0kl, h0l, hk0 βρίσκουµε ότι: στις 0kl k+l = 2n στις h0l h = 2n στις hk0 χωρίς περιορισµό. Από αυτές τις κατασβέσεις βγαίνει το συµπέρασµα ότι κάθετα στον άξονα a έχουµε ένα διαγώνιο επίπεδο n, κάθετα στον άξονα b έχουµε επίπεδο ολισθήσεως a ενώ κάθετα στον άξονα c δεν υπάρχει κανένας περιορισµός και άρα έχουµε κατοπτρικό επίπεδο m. Τέλος εξετάζοντας τις αξονικές ανακλάσεις, παρόλο που εµείς βρίσκουµε ότι στις h00, το h=2n, στις 0k0, το k=2n και στις 00l, το l=2n, αυτές όλες είναι ειδικές υποπεριπτώσεις που βγαίνουν από τις κατασβέσεις των επιπέδων ολίσθησης και εποµένως δεν βοηθούν στο να αποφασιστεί αν ο κρύσταλλος έχει άξονες ελικώσεως ή όχι. Έτσι παρόλο που πρέπει να υπάρχει άξονας συµµετρίας 2 ας τάξεως κατά την διεύθυνση c (γιατί ο κρύσταλλος είναι ορθοροµβικός) η µόνη πληροφορία που έχουµε γι αυτή είναι ότι υπάρχει ένα επίπεδο ολισθήσεως. Άρα µπορούµε να γράψουµε µόνο µέρος της οµάδας συµµετρίας χώρου που συµβολίζεται ως Pnam. Η σωστότερη πορεία είναι να ελέγξουµε τις παρατηρούµενες κατασβέσεις µε τους Διεθνείς Πίνακες Κρυσταλλογραφίας (τόµος Ι). Τελικά οι συστηµατικές κατασβέσεις που βρέθηκαν παραπάνω είναι σύµφωνες είτε µε την Ο.Σ.Χ. Pna2 1, είτε µε την Pnam

5 αλλά το συνηθέστερο είναι να δουλέψουµε µε την ολοεδρική συµµετρία της Pnma. Στο ορθοροµβικό σύστηµα, λόγω τις δυνατότητας της ελεύθερης αντιµετάθεσης των κρυσταλλογραφικών αξόνων, υπάρχει κάποια δυσκολία στον προσδιορισµό της Ο.Σ.Χ.. Στο µονοκλινές, τετραγωνικό, τριγωνικό και εξαγωνικό σύστηµα, η συµµετρία ορίζει τον ένα άξονα και η Ο.Σ.Χ. ορίζεται µονοσήµαντα. Στο τρικλινές και στο κυβικό σύστηµα οι κρυσταλλογραφικοί άξονες a,b και c µπορούν να αντιµετατεθούν ελεύθερα χωρίς να αλλάξει η Ο.Σ.Χ.. Στους Διεθνείς Πίνακες Κρυσταλλογραφίας (τόµος Ι) υπάρχει ένας κατάλογος των ισοδυνάµων Ο.Σ.Χ. που σχετίζονται µε την αλλαγή των κρυσταλλογραφικών αξόνων. Η συµµετρία που λαµβάνουµε από το διάγραµµα περίθλασης µαζί µε τις συστηµατικές κατασβέσεις δεν είναι άρα πάντα αρκετή απόδειξη για να δώσει µονοσήµαντα την Ο.Σ.Χ., όπως στο παραπάνω παράδειγµα, και πολλές φορές υπάρχουν δύο ή περισσότερες πιθανές Ο.Σ.Χ.. Αυτό συµβαίνει εν µέρει επειδή οι ειδικές οµάδες κατασβέσεων µπορεί να επικαλυφθούν από τις γενικές, αλλά κυρίως επειδή η απεικόνιση που µας δίνει τη συµµετρίας περίθλασης δεν µπορεί να διακρίνει ανάµεσα στους άξονες 2 ας τάξεως και τα επίπεδα κατοπτρισµού στον κρύσταλλο ή δεν µπορεί να δώσει κάποια πληροφορία για την υπάρξει ή µη κέντρου συµµετρίας. Μερικές φορές άλλες φυσικές µέθοδοι µπορεί να βοηθήσουν στο να διακρίνουµε ανάµεσα στις ποικίλες πιθανότητες των στοιχείων συµµετρίας. Αν π.χ. οι κρύσταλλοι είναι καλά σχηµατισµένοι, η µορφολογία τους µπορεί να µας δώσει την Οµάδα Συµµετρίας Σηµείου (Ο.Σ.Σ.) από την οποία µπορούµε συνήθως να καθορίσουµε µε ακρίβεια την Ο.Σ.Χ.. Αν επίσης οι κρύσταλλοι παρουσιάζουν πιεζοή πυρο-ηλεκτρικές ιδιότητες (όταν υποβάλλονται σε συµπίεση ή θέρµανση-ψύξη, αναπτύσσουν πολικό χωρισµό φόρτισης) τότε αυτοί δεν έχουν κέντρο συµµετρίας. Βέβαια το αντίστροφο δεν ισχύει, µιας και πολλοί µη-κεντροσυµµετρικοί κρύσταλλοι δεν παρουσιάζουν το φαινόµενο αυτό. Επίσης οι κρύσταλλοι που παρουσιάζουν οπτική δράση (π.χ. περιστρέφουν το επίπεδο του πολωµένου φωτός) µπορούν να ανήκουν µόνο σε ορισµένες κρυσταλλικές τάξεις (οπτικά µονάξονες ή διάξονες κρύσταλλοι). Είναι δυνατόν να βρούµε την σωστή Ο.Σ.Χ., µεταξύ των διαφόρων πιθανών, µε την βοήθεια του περιεχοµένου της κυψελίδας. Θεωρούµε, για παράδειγµα, ένα µονοκλινή κρύσταλλο γνωστού µοριακού τύπου, του οποίου το διάγραµµα των ακτίνων Χ δεν δείχνει καθόλου συστηµατικές κατασβέσεις. Οι τρεις πιθανές Ο.Σ.Χ. που υπάρχουν είναι οι Ρ2, Pm, και P2/m προβολή των οποίων βλέπουµε στο σχήµα 1.2 µαζί µε τις γενικές θέσεις των ασύµµετρων µονάδων.

6 Σχήµα 1.2 Παρουσίαση Μονοκλινων Ο.Σ.Χ. P2, Pm, P2/m Υποθέτουµε πρώτα ότι η κυψελίδα περιέχει µόνο ένα µόριο. Από το σχ. 1.2 φαίνεται ότι οι δύο πρώτες Ο.Σ.Χ. έχουν δύο ασύµµετρες µονάδες και η τελευταία τέσσερις. Άρα δεν είναι δυνατό να τοποθετήσουµε ένα µόνο µόριο πάνω σε γενική θέση αλλά πρέπει να τοποθετηθεί σε µια ειδική θέση, πάνω σε ένα ή περισσότερα στοιχεία συµµετρίας. Με τον συλλογισµό αυτό το µόριο µπορεί να τοποθετηθεί στον άξονα 2 ας τάξης στην οµάδα Ρ2, ή στο επίπεδο κατοπτρισµού στην οµάδα Pm ή στο κέντρο συµµετρίας στην οµάδα P2/m. Σε όλα αυτά τα παραδείγµατα την ασύµµετρη µονάδα δεν καταλαµβάνει όλο το µόριο αλλά µέρος της. Αν είναι γνωστό από άλλες ενδείξεις (π.χ. φασµατοσκοπικές) ότι το µόριο έχει κατοπτρική συµµετρία τότε το µόριο δεν µπορεί να βρίσκεται πάνω στον άξονα 2 ας τάξεως και άρα η µόνη επιλογή είναι η οµάδα Pm και η Ο.Σ.Χ. είναι σαφώς ορισµένη. Υποθέτουµε στη συνέχεια ότι η κυψελίδα περιέχει δύο µόρια. Αυτά µπορούν να τοποθετηθούν είτε σε µια γενική θέση στην P2 ή στο κατοπτρικό επίπεδο στη Pm ή στον άξονα 2 ας στην οµάδα P2/m, είτε µπορεί πιθανότατα να υπάρχουν δύο ανεξάρτητα µόρια το καθένα να βρίσκεται σε µια από τις ειδικές θέσεις κατάλληλες για ένα µόνο µόριο. Εδώ ξανά µπορεί να βοηθήσει η γνώση της χηµείας του µορίου. Αν για παράδειγµα τα µόρια είναι οπτικά ενεργά τότε αποκλείεται να είναι η οµάδα Ρ2 (αυτή µπορεί να έχει δύο δεξιόστροφα ή δύο αριστερόστροφα µόρια αλλά όχι ένα από το καθένα) κ.λ.π.. Αν η κυψελίδα περιέχει τέσσερα µόρια γίνεται πιο δύσκολο να βγάλουµε συµπεράσµατα. Μέχρι τον πλήρη καθορισµό της δοµής είναι αβέβαιος ο καθορισµός της πραγµατικής οµάδας χώρου. Υπάρχουν µάλιστα αρκετά παραδείγµατα στη βιβλιογραφία όπου οι οµάδες χώρου παραµένουν αβέβαιες µέχρι και τα τελικά στάδια της ανάλυσης της δοµής. Ο καθορισµός της οµάδας συµµετρίας χώρου µερικές φορές περιπλέκεται λόγω του φαινοµένου της (διπλής ανάκλασης). Αυτή οφείλεται στο παρακάτω

7 γεγονός. Εάν η ανακλώµενη δέσµη από µια σειρά επιπέδων (h1k1l1) συναντήσει υπό κατάλληλη γωνία µια άλλη σειρά επιπέδων (h2k2l2) µπορεί να επανανακλαστεί. Αυτή η διπλά ανακλώµενη δέσµη ακτινοβολίας θα εµφανιστεί σαν να προήλθε από ένα επίπεδο (h k l ) του κρυστάλλου όπου: h = h1±h2 k = k1±k2 l = l1±l2 Η διπλά ανακλώµενη ακτινοβολία θα είναι προφανώς λίγο αδύναµη, αλλά µερικές φορές, αν οι (h1k1l1) και (h2k2l2) είναι και οι δύο δυνατές ανακλάσεις τότε θα έχει αρκετή ένταση. Αν λοιπόν από το πραγµατικά υπάρχων επίπεδο (h k l ) η ανάκλαση τυχαίνει να είναι κατάσβεση τότε το αποτέλεσµα θα είναι µια ψεύτικη ανάκλαση. Συνεπώς αν σε ένα δείγµα συστηµατικών κατασβέσεων παραβιάζετε ο κανόνας από µια ή δύο δυνατές ανακλάσεις, τότε θα πρέπει να εξεταστεί η πιθανότητα της διπλής ανάκλασης προτού υποθέσουµε την ύπαρξη κάποιου επίπεδου ολίσθησης ή άξονα ελικώσεως. Πάνω στο φιλµ, οι διπλές ανακλάσεις µπορεί να διακρίνονται από την εµφάνιση τους, γιατί µε τον τρόπο που είναι σχηµατισµένες φαίνονται περισσότερο έντονες από τις πραγµατικές ανακλάσεις. Αυτές εξαφανίζονται αν αλλάξει το µήκος κύµατος των ακτίνων Χ. Μπορούν επίσης να χαθούν αν ο κρύσταλλος αποκτήσει διαφορετικό προσανατολισµό. Ο τελικός έλεγχος είναι να ψάξουµε το διάγραµµα περίθλασης για ένα ζευγάρι δυνατών ανακλάσεων των οποίων οι δείκτες σχετίζονται κατάλληλα. Ο έλεγχος πρέπει φυσικά να γίνει σε τρεις διαστάσεις, αφού µια ψεύτικη 110 ανάκλαση µπορεί να προκύψει από τον συνδυασµό των 211 και -10-1, όσο και από τον συνδυασµό των 210 µε την Ευτυχώς η διπλή ανάκλαση δεν εµφανίζεται συχνά. Πυκνότητα και περιεχόµενο Μοναδιαίας Κυψελίδας Η σχέση µεταξύ του όγκου V, της µοναδιαίας κυψελίδας, µετρηµένου σε Α 3, και της πυκνότητας D µετρηµένης σε g*cm -3 είναι: Όπου Μ είναι το Μοριακό Βάρος της ένωσης και Ζ είναι ο αριθµός των µονάδων του χηµικού τύπου εντός της κυψελίδας. Οι πυκνότητες των ενώσεων µπορούν να προσδιορισθούν µε διάφορους τρόπους. Αν είναι διαθέσιµο άφθονο υλικό, ίσως η πιο ικανοποιητική µέθοδος είναι µε την βοήθεια ενός πυκνόµετρου εκτοπισµού αέρα ή υγρού (µέθοδος ληκύθου), το οποίο συγκρίνει τον όγκο του αέρα (υγρού) που εκτοπίζεται όταν µέσα στη συσκευή θέσουµε µια προζυγισµένη ποσότητα του υπό εξέταση υλικού. Για µικρές ποσότητες ουσίας (~ 1γρ.) µπορεί να χρησιµοποιηθεί η κλασική µέθοδος των προρυθµισµένων πυκνωτικών διαλυµάτων και τις αιώρησης τις ένωσης µέσα σε αυτά αρκεί αυτή να µη διαλύεται ή απορροφάτε από το διάλυµα. Μια πλέον συνηθισµένη µέθοδος είναι αυτή που αναφέρεται ως µέθοδος της βύθισης ή επίπλευσης και όπου η επίπλευσης του κρυστάλλου ισούται µε την πυκνότητα του υγρού. Σε αυτή χρησιµοποιείτε ένα µείγµα υγρών γνωστής σύστασης πυκνότητας. Μια πιο περίπλοκη εκδοχή αυτής της µεθόδου η χρήση µιας βαθµολογηµένης στήλης υγρών µεταβλητής πυκνότητας. Η πυκνότητα του κρυστάλλου καθορίζεται από το ύψος στο οποία βυθίζεται αυτός. Αν και οι µετρήσεις µπορούν να γίνουν γρήγορα, οι στήλες είναι προβληµατικές για να στηθούν και η ποικιλία της πυκνότητας που καλύπτεται από κάθε στήλη είναι

8 περιορισµένη και έτσι η µέθοδος είναι πραγµατικά χρήσιµη αν πρέπει να γίνουν µεγάλοι αριθµοί µετρήσεων σε σειρά υλικών παρόµοιας πυκνότητας. Οποιαδήποτε µέθοδος χρησιµοποιείται για την µέτρηση της πυκνότητας, τα λάθη κάνουν τη µέτρηση, όχι µεγάλης ακρίβειας. Όλες οι µέθοδοί µπορεί να διαφοροποιηθούν από κρυσταλλικές ατέλειες και επιπρόσθετα- αυτές που χρησιµοποιούν υγρά να επηρεαστούν υπερβολικά αν το δείγµα περιέχει µικρές ποσότητες εγκλωβισµένου αέρα. Η πυκνότητα µιας ένωσης µπορεί να υπολογιστή και από τον τύπο του περιεχοµένου της κυψελίδας. Γνωστού όντος του όγκου της κυψελίδας,του µοριακού βάρους και του περιεχοµένου υπολογίζουµε την πυκνότητα της ένωσης η οποία ονοµάζεται και ακτινογραφική πυκνότητα η τιµή της οποίας είναι ελαφρά υψηλότερη από την πειραµατική. Αποτελέσµατα πού δίνουν την ακτινογραφική πυκνότητα να είναι χαµηλότερη από την πειραµατική θα πρέπει να αντιµετωπίζεται µε υπερβολική καχυποψία. Ένα παράδειγµα της χρήσης του τύπου του περιεχοµένου της κυψελίδας για τον ακριβή προσδιορισµό της σύστασης της ένωσης δίνεται παρακάτω (Πίνακας 1.2). Έχουµε κρυστάλλους που παρασκευάσθηκαν από απουαλοποίηση άµορφου PbO (περιεκτικότητα 40% PbO). Η σύνθεση του αρχικού γυαλιού αν και γνωστή δεν µπορεί να οριστεί µε βεβαιότητα από χηµικά µέσα. Μετρήσαµε την πυκνότητα του κρυστάλλου και από τον προσδιορισµό των διαστάσεων της κυψελίδας βρήκαµε ότι αυτός ανήκει στο ροµβικό σύστηµα. Από την ανάλυση των συστηµατικών κατασβέσεων και µε την βοήθεια των φυσικών µεθόδων που έδειξαν ότι ο κρύσταλλος δεν είναι κεντροσυµµετρικός βγήκε η Ο.Σ.Χ. η οποία είναι η Pna2 1.

ΑΣΚΗΣΗ 1. Περίληψη. Θεωρητική εισαγωγή. Πειραματικό μέρος

ΑΣΚΗΣΗ 1. Περίληψη. Θεωρητική εισαγωγή. Πειραματικό μέρος ΑΣΚΗΣΗ 1 Περίληψη Σκοπός της πρώτης άσκησης ήταν η εξοικείωση μας με τα όργανα παραγωγής και ανίχνευσης των ακτίνων Χ και την εφαρμογή των κανόνων της κρυσταλλοδομής σε μετρήσεις μεγεθών στο οεργαστήριο.

Διαβάστε περισσότερα

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο.

Καταστάσεις της ύλης. Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Καταστάσεις της ύλης Αέρια: Παντελής απουσία τάξεως. Τα µόρια βρίσκονται σε συνεχή τυχαία κίνηση σε σχεδόν κενό χώρο. Υγρά: Τάξη πολύ µικρού βαθµού και κλίµακας-ελκτικές δυνάµεις-ολίσθηση. Τα µόρια βρίσκονται

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης

Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Βιοφυσική & Νανοτεχνολογία Εργαστηριακή Άσκηση Β3: Πειράματα περίθλασης από κρύσταλλο λυσοζύμης Ημερομηνία εκτέλεσης άσκησης... Ονοματεπώνυμα... Περίληψη Σκοπός της άσκησης είναι η εξοικείωση με την χρήση

Διαβάστε περισσότερα

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής

Επιστήμη των Υλικών. Πανεπιστήμιο Ιωαννίνων. Τμήμα Φυσικής Επιστήμη των Υλικών Πανεπιστήμιο Ιωαννίνων Τμήμα Φυσικής 2017 Α. Δούβαλης Κρυσταλλικά Συστήματα Κυβικό Εξαγωνικό Τετραγωνικό Ρομβοεδρικό ή Τριγωνικό Ορθορομβικό Μονοκλινές Τρικλινές Κρυσταλλική δομή των

Διαβάστε περισσότερα

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ

ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΟΡΥΚΤΟΛΟΓΙΑ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ - ΜΕΤΑΛΛΟΥΡΓΩΝ ΜΑΘΗΜΑ 3. ΟΙ 32 ΚΡΥΣΤΑΛΛΙΚΕΣ ΤΑΞΕΙΣ Ταξινόμηση των κρυστάλλων σαν στερεά σχήματα και οι συμμετρίες Ηλίας Χατζηθεοδωρίδης,

Διαβάστε περισσότερα

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών

Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ. Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων. Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Φυσική ΜΕΤΑΛΛΟΥΡΓΙΑ Ενότητα 2: Κρυσταλλική Δομή των Μετάλλων Γρηγόρης Ν. Χαϊδεμενόπουλος Πολυτεχνική Σχολή Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 1. ΓΕΝΙΚΑ Από τις καταστάσεις της ύλης τα αέρια και τα υγρά δεν παρουσιάζουν κάποια τυπική διάταξη ατόμων, ενώ από τα στερεά ορισμένα παρουσιάζουν συγκεκριμένη διάταξη ατόμων

Διαβάστε περισσότερα

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν

Μηχανική ΙI. Μετασχηµατισµοί Legendre. της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα). Εάν Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 7/5/2000 Μηχανική ΙI Μετασχηµατισµοί Legendre Έστω µια πραγµατική συνάρτηση. Ορίζουµε την παράγωγο συνάρτηση της : (η γραφική της παράσταση δίνεται στο ακόλουθο σχήµα).

Διαβάστε περισσότερα

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V

Παραγωγή ακτίνων Χ. V e = h ν = h c/λ λ min = h c/v e λ min (Å) 12400/V Παραγωγή ακτίνων Χ Οι ακτίνες Χ είναι ηλεκτροµαγνητική ακτινοβολία µε µήκη κύµατος της τάξης των Å (=10-10 m). Στο ηλεκτροµαγνητικό φάσµα η ακτινοβολία Χ εκτείνεται µεταξύ της περιοχής των ακτίνων γ και

Διαβάστε περισσότερα

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange

Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrange 64 Ακρότατα υπό συνθήκη και οι πολλαπλασιαστές του Lagrage Ας υποθέσουµε ότι ένας δεδοµένος χώρος θερµαίνεται και η θερµοκρασία στο σηµείο,, Τ, y, z Ας υποθέσουµε ότι ( y z ) αυτού του χώρου δίδεται από

Διαβάστε περισσότερα

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012

Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 Ερωτησεις στη Βιοφυσική & Νανοτεχνολογία. Χειμερινό Εξάμηνο 2012 1) Ποιο φυσικό φαινόμενο βοηθάει στην αυτοσυναρμολόγηση μοριακών συστημάτων? α) Η τοποθέτηση μοριων με χρήση μικροσκοπίου σάρωσης δείγματος

Διαβάστε περισσότερα

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)

{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1) ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου αθηµατικών Προσαναταλισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβλίου

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.

ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος. ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται

Διαβάστε περισσότερα

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας

7. Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας 7 Ταλαντώσεις σε συστήµατα µε πολλούς βαθµούς ελευθερίας Συζευγµένες ταλαντώσεις Βιβλιογραφία F S Crawford Jr Κυµατική (Σειρά Μαθηµάτων Φυσικής Berkeley, Τόµος 3 Αθήνα 979) Κεφ H J Pai Φυσική των ταλαντώσεων

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville

Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Τµήµα Π. Ιωάννου & Θ. Αποστολάτου 16/5/2000 Μηχανική ΙI Ροή στο χώρο των φάσεων, θεώρηµα Liouville Στη Χαµιλτονιανή θεώρηση η κατάσταση του συστήµατος προσδιορίζεται κάθε στιγµή από ένα και µόνο σηµείο

Διαβάστε περισσότερα

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ

2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ 2.1 ΣΤΟΙΧΕΙΑ ΚΡΥΣΤΑΛΛΟΓΡΑΦΙΑΣ ΕΙΣΑΓΩΓΗ Ένας κρύσταλλος ή ακριβέστερα ένας µονοκρύσταλλος, µπορεί να οριστεί µακροσκοπικά ως ένα στερεό αντικείµενο µε οµοιόµορφη χηµική σύσταση που, όπως απαντάται στη φύση

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ ΘΕΜΑ ο 2.5 µονάδες ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ Τελικές εξετάσεις 7 Ιανουαρίου 2005 ιάρκεια εξέτασης: 5:00-8:00 Έστω ότι

Διαβάστε περισσότερα

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση)

Παραµόρφωση σε Σηµείο Σώµατος. Μεταβολή του σχήµατος του στοιχείου (διατµητική παραµόρφωση) Παραµόρφωση σε Σηµείο Σώµατος Η ολική παραµόρφωση στερεού σώµατος στη γειτονιά ενός σηµείου, Ο, δηλαδή η συνολική παραµόρφωση ενός µικρού τµήµατος (στοιχείου) του σώµατος γύρω από το σηµείο µπορεί να αναλυθεί

Διαβάστε περισσότερα

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων

5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων 5. Συμμετρία, Πολικότητα και Οπτική Ενεργότητα των μορίων ιδακτικοί στόχοι Μετά την ολοκλήρωση της μελέτης του κεφαλαίου αυτού θα μπορείτε να... o προβλέπετε με βάση τη συμμετρία αν ένα μόριο έχει μόνιμη

Διαβάστε περισσότερα

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ Οι ασκήσεις διαλυµάτων που αφορούν τις περιεκτικότητες % w/w, % w/v και % v/v χωρίζονται σε 3 κατηγορίες: α) Ασκήσεις όπου πρέπει να βρούµε ή να µετατρέψουµε διάφορες περιεκτικότητες.

Διαβάστε περισσότερα

x - 1, x < 1 f(x) = x - x + 3, x

x - 1, x < 1 f(x) = x - x + 3, x Σελίδα από 4 ΠΡΑΓΜΑΤΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΗΣΙΜΕΣ ΕΠΙΣΗΜΑΝΣΕΙΣ ΣΤΙΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Του Αντώνη Κυριακόπουλου Εισαγωγή Στην εργασία αυτή παραθέτω χρήσιµες επισηµάνσεις στις βασικές έννοιες των πραγµατικών συναρτήσεων

Διαβάστε περισσότερα

Πρακτική µε στοιχεία στατιστικής ανάλυσης

Πρακτική µε στοιχεία στατιστικής ανάλυσης Πρακτική µε στοιχεία στατιστικής ανάλυσης 1. Για να υπολογίσουµε µια ποσότητα q = x 2 y xy 2, µετρήσαµε τα µεγέθη x και y και βρήκαµε x = 3.0 ± 0.1και y = 2.0 ± 0.1. Να βρεθεί η ποσότητα q και η αβεβαιότητά

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 5 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii018/laii018html ευτέρα 3 Απριλίου 018 Αν C = x

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο

11. Η έννοια του διανύσµατος 22. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός πολλαπλασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου Μαθηµατικών Προσαναταισµού Β Λυκείου. Η έννοια του διανύσµατος. Πρόσθεση & αφαίρεση διανυσµάτων 33. Βαθµωτός ποαπασιασµός 44. Συντεταγµένες 55. Εσωτερικό γινόµενο Παραουσίαση βιβίου

Διαβάστε περισσότερα

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ

6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. ΔΙΑΝΥΣΜΑΤΙΚΟΙ ΧΩΡΟΙ ΚΑΙ ΑΝΤΙΣΤΡΟΦΑ ΠΡΟΒΛΗΜΑΤΑ 6. Διανυσματικοί χώροι παραμέτρων και μετρήσεων. Θα δανειστούµε για µία ακόµη φορά έννοιες της Γραµµικής Άλγεβρας προκειµένου να δούµε πως µπορούµε να χειριστούµε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

Βασικές διαδικασίες παραγωγής πολωμένου φωτός

Βασικές διαδικασίες παραγωγής πολωμένου φωτός Πόλωση του φωτός Βασικές διαδικασίες παραγωγής πολωμένου φωτός πόλωση λόγω επιλεκτικής απορρόφησης - διχρωισμός πόλωση λόγω ανάκλασης από μια διηλεκτρική επιφάνεια πόλωση λόγω ύπαρξης δύο δεικτών διάθλασης

Διαβάστε περισσότερα

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ. Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΥΛΙΚΑ Ενότητα 2: ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ ΛΙΤΣΑΡΔΑΚΗΣ ΓΕΩΡΓΙΟΣ ΤΗΜΜΥ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017

Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 2017 Γραπτή εξέταση προόδου στο μάθημα «Επιστήμη & Τεχνολογία Υλικών Ι»-Νοέμβριος 017 Ερώτηση 1 (5 μονάδες ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΩΝ

Διαβάστε περισσότερα

sin ϕ = cos ϕ = tan ϕ =

sin ϕ = cos ϕ = tan ϕ = Τ.Ε.Ι. ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΟΜΙΚΩΝ ΕΡΓΩΝ ΜΗΧΑΝΙΚΗ 1 ΠΑΡΑ ΕΙΓΜΑ 1 ΚΑΤΑΣΚΕΥΗ ΙΑΓΡΑΜΜΑΤΩΝ MQN ΣΕ ΟΚΟ ιδάσκων: Αριστοτέλης Ε. Χαραλαµπάκης Εισαγωγή Με το παράδειγµα αυτό αναλύεται

Διαβάστε περισσότερα

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.

< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε

Διαβάστε περισσότερα

Εφαρµογές (και Ερµηνεία) Μεθόδου Σκόνης. Μερικές «περιοχές» εφαρµογής της µεθόδου:

Εφαρµογές (και Ερµηνεία) Μεθόδου Σκόνης. Μερικές «περιοχές» εφαρµογής της µεθόδου: 11.3.3 Εφαρµογές (και Ερµηνεία) Μεθόδου Σκόνης Μερικές «περιοχές» εφαρµογής της µεθόδου: Ταυτοποίηση αγνώστων υλικών Προσδιορισµός της καθαρότητας του δείγµατος Προσδιορισµός πλεγµατικών σταθερών ιερεύνηση

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα

ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ. 4.1 Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα ΚΕΦΑΛΑΙΟ 4 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΥΡΕΣΗΣ ΠΡΑΓΜΑΤΙΚΩΝ Ι ΙΟΤΙΜΩΝ 4. Γραµµικοί µετασχηµατισµοί-ιδιοτιµές-ιδιοδιανύσµατα Εστω R είναι ο γνωστός -διάστατος πραγµατικός διανυσµατικός χώρος. Μία απεικόνιση L :

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

οµή των στερεών ιάλεξη 4 η

οµή των στερεών ιάλεξη 4 η οµή των στερεών ιάλεξη 4 η Ύλη τέταρτου µαθήµατος Οι καταστάσεις της ύλης, Γιατί τις µελετάµε; Περιοδική τοποθέτηση των ατόµων, Κρυσταλλική και άµορφη δοµή, Κρυσταλλικό πλέγµα κρυσταλλική κυψελίδα, Πλέγµατα

Διαβάστε περισσότερα

Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα

Ε Ι Σ Α Γ Ω Γ Η. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα Ε Ι Σ Α Γ Ω Γ Η Στο Κεφάλαιο αυτό δίνονται ορισμένες έννοιες που θεωρούνται χρήσιμες στην ενότητα 9 και 10 (Δομή των Υλικών-Ακτίνες Χ) του Μαθήματος Γενική Φυσική V. Ε1.1 Κρυσταλλικό Πλέγμα - Κυψελίδα

Διαβάστε περισσότερα

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή.

Στροφορµή. υο παρατηρήσεις: 1) Η στροφορµή ενός υλικού σηµείου, που υπολογίζουµε µε βάση τα προηγούµενα, αναφέρεται. σε µια ορισµένη χρονική στιγµή. Στροφορµή Έστω ένα υλικό σηµείο που κινείται µε ταχύτητα υ και έστω ένα σηµείο Ο. Ορίζουµε στροφορµή του υλικού σηµείου ως προς το Ο, το εξωτερικό γινόµενο: L= r p= m r υ Όπου r η απόσταση του υλικού σηµείου

Διαβάστε περισσότερα

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ.

ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. ΙΕΡΕΥΝΗΣΗ ΚΑΙ ΑΝΑΛΥΤΙΚΗ ΠΑΡΟΥΣΙΑΣΗ ΥΠΟΛΟΓΙΣΜΩΝ ΚΛΩΘΟΕΙ ΟΥΣ, Ι ΙΑΙΤΕΡΑ ΣΕ ΜΗ ΤΥΠΙΚΕΣ ΕΦΑΡΜΟΓΕΣ. Ν. Ε. Ηλιού Επίκουρος Καθηγητής Τµήµατος Πολιτικών Μηχανικών Πανεπιστηµίου Θεσσαλίας Γ.. Καλιαµπέτσος Επιστηµονικός

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων.5. Ορισµός. Έστω, f : Α συνάρτηση συσσώρευσης του Α και b σηµείο. Λέµε ότι η f έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li = ή f b f b αν και µόνο αν, για κάθε

Διαβάστε περισσότερα

5 Γενική µορφή εξίσωσης ευθείας

5 Γενική µορφή εξίσωσης ευθείας 5 Γενική µορφή εξίσωσης ευθείας Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρηµα Κάθε ευθεία έχει εξίσωση της µορφής: Ax + By +Γ= 0, µε Α 0 ηβ 0 () και αντιστρόφως κάθε εξίσωση της µορφής () παριστάνει ευθεία γραµµή.

Διαβάστε περισσότερα

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά?

Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? Πως διαδίδονται τα Η/Μ κύματα σε διαφανή διηλεκτρικά? (Μη-μαγνητικά, μη-αγώγιμα, διαφανή στερεά ή υγρά με πυκνή, σχετικά κανονική διάταξη δομικών λίθων). Γραμμικά πολωμένο κύμα προσπίπτει σε ηλεκτρόνιο

Διαβάστε περισσότερα

ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ

ΝΑΝΟΥΛΙΚΑ ΚΑΙ ΝΑΝΟΤΕΧΝΟΛΟΓΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ ΣΤΕΛΛΑ ΚΕΝΝΟΥ ΚΑΘΗΓΗΤΡΙΑ 1 ΚΡΥΣΤΑΛΛΙΚΗ ΔΟΜΗ Πλέγμα στο χώρο Πλέγμα Bravais Διάταξη σημείων στο χώρο έτσι ώστε κάθε σημείο να έχει ταύτοσημο περιβάλλον Αυτό προσδιορίζει δύο ιδιότητες των πλεγμάτων Στον

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο 3 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΠΕΡΙΤΤΟΙ) Λυσεις Ασκησεων - Φυλλαδιο ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/aeligia/linearalgerai/lai07/lai07html Παρασκευή Νοεµβρίου 07 Ασκηση Αν

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ΜΑΘΗΜΑΤΙΚΑ ÅÐÉËÏÃÇ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες Α1. Θεωρία. Σχολικό βιβλίο σελίδα 83 Α2. α) Σωστό β) Λάθος γ) Σωστό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής:

ΣΕΙΡΕΣ TAYLOR. Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων. Πολυώνυµο είναι κάθε συνάρτηση της µορφής: ΣΕΙΡΕΣ TAYLOR Στην Ενότητα αυτή θα ασχοληθούµε µε την προσέγγιση συναρτήσεων µέσω πολυωνύµων Πολυώνυµο είναι κάθε συνάρτηση της µορφής: p( ) = a + a + a + a + + a, όπου οι συντελεστές α i θα θεωρούνται

Διαβάστε περισσότερα

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού

Φυσική Γ Λυκείου. Ορμή. Ορμή συστήματος σωμάτων Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν. Θετικού προσανατολισμού Τ Υ Π Ο Λ Ο Γ Ι Ο Κ Ρ Ο Υ Σ Ε Ω Ν Φυσική Γ Λυκείου Θετικού προσανατολισμού Ορμή Ορμή Ρ ενός σώματος ονομάζουμε το διανυσματικό μέγεθος που έχει μέτρο το γινόμενο της μάζας m του σώματος επί την ταχύτητά

Διαβάστε περισσότερα

επßπεδο ανüκλασηò κüθετο στη σελßδα η σελßδα Απεικονίσεις της αχειρικής ένωσης 1,1- διχλωροαιθάνιο.

επßπεδο ανüκλασηò κüθετο στη σελßδα η σελßδα Απεικονίσεις της αχειρικής ένωσης 1,1- διχλωροαιθάνιο. rflsym1 1 Κατοπτρική συµµετρία και χειρικότητα. Κατοπτρική συµµετρία έχει µια δοµή όταν µια δεύτερη δοµή που δηµιουργείται (κατοπτρική δοµή, είδωλο) µε αντιστοίχηση όλων των σηµείων της πρώτης σε ισαπέχουσες

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ ΚΕΦΑΛΑΙΟ 8 ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΙΑ ΓΕΝΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ ΧΡΗΣΕΩΝ ΓΗΣ Όταν εξετάζουµε µία συγκεκριµένη αγορά, πχ. την αστική αγορά εργασίας, η ανάλυση αυτή ονοµάζεται µερικής ισορροπίας. Όταν η ανάλυση µας περιλαµβάνει

Διαβάστε περισσότερα

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό. Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο : Ακολουθίες πραγµατικών αριθµών Α Οµάδα Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς αιτιολογήστε πλήρως την απάντησή σας α Κάθε

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ

ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΥΝΤΟΜΕΣ ΛΥΣΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 4 o Κεφάλαιο ΑΝΑΛΥΣΗ Απαντήσεις στις ερωτήσεις του τύπου Σωστό-Λάθος. Σ 0. Σ 9. Λ. Λ. Σ 40. Σ. Σ. Σ 4. Λ 4. Λ. Σ 4. Σ 5. Σ 4. Σ 4. Λ 6. Σ 5. Λ 44.

Διαβάστε περισσότερα

14 Εφαρµογές των ολοκληρωµάτων

14 Εφαρµογές των ολοκληρωµάτων 14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.

Διαβάστε περισσότερα

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος

Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 3. 3.9 ΘΕΩΡΙ. Στοιχεία τριγώνου Κύρια στοιχεία : Πλευρές και γωνίες ευτερεύοντα στοιχεία : ιάµεσος, διχοτόµος, ύψος 2. Είδη τριγώνων Ως προς τις πλευρές : Σκαληνό, ισοσκελές, ισόπλευρο. Ως προς τις γωνίες

Διαβάστε περισσότερα

Περίθλαση από µία σχισµή.

Περίθλαση από µία σχισµή. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 71 7. Άσκηση 7 Περίθλαση από µία σχισµή. 7.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την συµπεριφορά των µικροκυµάτων

Διαβάστε περισσότερα

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3.

Μηχανισµοί & Εισαγωγή στο Σχεδιασµό Μηχανών Ακαδηµαϊκό έτος: Ε.Μ.Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 3. ΜΗΧΑΝΙΣΜΟΙ & ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕ ΙΑΣΜΟ ΜΗΧΑΝΩΝ - 3.1 - Cpright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 2012. Με επιφύλαξη παντός δικαιώµατος. All rights reserved. Απαγορεύεται

Διαβάστε περισσότερα

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη

Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Εργαστήριο Εφαρμοσμένης Φυσικής Γενική Φυσική V (Σύγχρονη Φυσική) Φυσική Ακτίνων-Χ και Αλληλεπίδραση Ακτίνων-Χ και Ηλεκτρονίων με την Ύλη Περιεχόμενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΜΑΘΗΜΑΤΙΚΑ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1o Α. Αν α, ν είναι δύο διανύσµατα του επιπέδου µε α 0 και η προβολή του ν στο α συµβολίζεται µε προβ α ν, τότε

Διαβάστε περισσότερα

Κανόνες παραγώγισης ( )

Κανόνες παραγώγισης ( ) 66 Κανόνες παραγώγισης Οι κανόνες παραγώγισης που ισχύουν για συναρτήσεις µιας µεταβλητής, ( παραγώγιση, αθροίσµατος, γινοµένου, πηλίκου και σύνθετων συναρτήσεων ) γενικεύονται και για συναρτήσεις πολλών

Διαβάστε περισσότερα

Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός

Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Σχεδιασμός Υλοποίηση: Αλκιβιάδης Γ. Τζελέπης, M.Sc Mathematics, Model High School Evangeliki of Smirni. Η Αρχή του Ήρωνος και η Ανάκλαση του Φωτός Το Πρόβλημα Να αποδειχθεί ο νόμος της ανάκλασης: Μία φωτεινή

Διαβάστε περισσότερα

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές

Κεφάλαιο 2. Παραγοντοποίηση σε Ακέραιες Περιοχές Κεφάλαιο Παραγοντοποίηση σε Ακέραιες Περιοχές Γνωρίζουµε ότι στο Ÿ κάθε στοιχείο εκτός από το 0 και τα ± γράφεται ως γινόµενο πρώτων αριθµών κατά τρόπο ουσιαστικά µοναδικό Από τη Βασική Άλγεβρα ξέρουµε

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

Περίθλαση από ακµή και από εµπόδιο.

Περίθλαση από ακµή και από εµπόδιο. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 63 6. Άσκηση 6 Περίθλαση από ακµή και από εµπόδιο. 6.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης αυτής, καθώς και των δύο εποµένων, είναι η γνωριµία των σπουδαστών

Διαβάστε περισσότερα

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης

Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών - Τμήμα Φυσικής Εργαστήριο Ακτίνων-Χ, Οπτικού Χαρακτηρισμού και Θερμικής Ανάλυσης ΑΣΚΗΣΗ Σκοπός της άσκησης είναι ο υπολογισμός των μηκών

Διαβάστε περισσότερα

Στροβιλισµός πεδίου δυνάµεων

Στροβιλισµός πεδίου δυνάµεων Στροβιλισµός πεδίου δυνάµεων Θεωρείστε ένα απειροστό απλό χωρίο στο χώρο τόσο µικρό ώστε να µπορεί να θεωρηθεί ότι βρίσκεται σε ένα επίπεδο Έστω ότι το χωρίο αυτό περικλείει εµβαδόν µέτρου Το έργο που

Διαβάστε περισσότερα

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών

Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Μηχανική ΙΙ Τµήµα Ιωάννου-Αποστολάτου 6 Μαϊου 2001 Προσδιορισµός των χαρακτηριστικών (ιδιο-)συχνοτήτων και κανονικών τρόπων ταλάντωσης µε χρήση συµµετριών Θεωρούµε ότι 6 ίσες µάζες συνδέονται µε ταυτόσηµα

Διαβάστε περισσότερα

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου

Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου Παράρτηµα Β Υπολογισµός των υδροστατικών δυνάµεων που ασκούνται στη γάστρα του πλοίου 1. Πρόγραµµα υπολογισµού υδροστατικών δυνάµεων Για τον υπολογισµό των κοµβικών δυνάµεων που οφείλονται στις υδροστατικές

Διαβάστε περισσότερα

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL

Experiments are the only means of knowledge. Anyother is poetry and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWELL ΚΥΜΑΤΙΚΗ-ΟΠΤΙΚΗ 7 xpeiments ae the only means o knowledge. Anyothe is poety and imagination. M.Plank 2 ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ MAXWLL Σε µια πρώτη παρουσίαση του θέµατος δίνονται οι εξισώσεις του Maxwell στο

Διαβάστε περισσότερα

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2

1.i) 1.ii) v 2. v 1 = (2) (1) + ( 2) ( 1) + (-2) (2) + (0) (-4) v 3. Βρίσκουµε πρώτα µία ορθογώνια βάση: u 1. . u 1 u. u 2 http://elearn.maths.gr/, maths@maths.gr, Τηλ: 979 Ενδεικτικές απαντήσεις ης Γραπτής Εργασίας ΠΛΗ 7-8: Οι φοιτητές θα κάνουν την δική τους εργασία σκεπτόµενοι πάνω στις ενδεικτικές απαντήσεις. Σε περίπτωση

Διαβάστε περισσότερα

M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3

M V n. nm V. M v. M v T P P S V P = = + = σταθερή σε παραγώγιση, τον ορισµό του συντελεστή διαστολής α = 1, κυκλική εναλλαγή 3 Τµήµα Χηµείας Μάθηµα: Φυσικοχηµεία Ι Εξέταση: Περίοδος εκεµβρίου 04- (//04. ίνονται οι ακόλουθες πληροφορίες για τον διθειάνθρακα (CS. Γραµµοµοριακή µάζα 76.4 g/mol, κανονικό σηµείο ζέσεως 46 C, κανονικό

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss

Γραµµική Άλγεβρα. Εισαγωγικά. Μέθοδος Απαλοιφής του Gauss Γραµµική Άλγεβρα Εισαγωγικά Υπάρχουν δύο βασικά αριθµητικά προβλήµατα στη Γραµµική Άλγεβρα. Το πρώτο είναι η λύση γραµµικών συστηµάτων Aλγεβρικών εξισώσεων και το δεύτερο είναι η εύρεση των ιδιοτιµών και

Διαβάστε περισσότερα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα

ΦΥΕ 14 Διανύσματα. 1 Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα ΦΥΕ 4 Διανύσματα Περιγραφή διανυσμάτων στο χώρο Γεωμετρική περιγραφή: Τα διανύσματα περιγράφονται σαν προσανατολισμένα ευθύγραμμα τμήματα Δύο διανύσματα θα θεωρούμε ότι είναι ίσα, εάν έχουν το ίδιο μήκος

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!!

ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ. Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΑΝΑΛΥΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΠΕΡΙΕΧΕΙ: ΘΕΩΡΙΑ ΤΥΠΟΥΣ ΜΕΘΟ ΟΛΟΓΙΑ ΠΑΡΑ ΕΙΓΜΑΤΑ Τώρα τα κατάλαβα όλα...και τα θυµάµαι όλα!!! ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info τηλ. 6977-85-58 1 ΛΑΖΑΡΙ Η ΦΡΟΝΤΙΣΤΗΡΙΑ www.lzridi.info

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ Ι (ΘΕ ΠΛΗ ) ΑΠΑΝΤΗΣΕΙΣ Α ΕΡΓΑΣΙΑΣ. ( 8 µον.) Η άσκηση αυτή αναφέρεται σε διαιρετότητα και ρίζες πολυωνύµων. a. Να λυθεί η εξίσωση

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ

Thanasis Xenos ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΗΜΑΘΙΑΣ thanasisenos@yahoo.gr Thanasis Xenos )Αν µια συνάρτηση f είναι, τότε είναι γνησίως µονότονη; Η πρόταση δεν αληθεύει, διότι για παράδειγµα η συνάρτηση, f ( ) = είναι - και δεν είναι γνησίως µονότονη., >

Διαβάστε περισσότερα

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0) Όρια συναρτήσεων 5 Ορισµός Έστω, : Α συνάρτηση συσσώρευσης του Α και b σηµείο Λέµε ότι η έχει ως όριο το διάνυσµα b καθώς το τείνει προς το και συµβολίζουµε li ή b b αν και µόνο αν, για κάθε ε > υπάρχει

Διαβάστε περισσότερα

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση

α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση Λύση ΑΣΚΗΣΗ 1 α) Η γενική εξίσωση του αρµονικού κύµατος είναι. Συγκρίνοντάς την µε µία από τις δύο εξισώσεις των τρεχόντων κυµάτων, έστω την εξίσωση, προκύπτει: και Με αντικατάσταση στη θεµελιώδη εξίσωση

Διαβάστε περισσότερα

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γιώργος Πρέσβης ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΚΕΦΑΛΑΙΟ Ο : ΕΞΙΣΩΣΗ ΕΥΘΕΙΑΣ ΕΠΑΝΑΛΗΨΗ Φροντιστήρια Φροντιστήρια ΜΕΘΟΔΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ 1η Κατηγορία : Εξίσωση Γραμμής 1.1 Να εξετάσετε

Διαβάστε περισσότερα

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i,

p& i m p mi i m Με τη ίδια λογική όπως αυτή που αναπτύχθηκε προηγουµένως καταλήγουµε στην έκφραση της κινητικής ενέργειας του ρότορα i, Κινητική Ενέργεια Κινητήρων Περνάµε τώρα στη συνεισφορά κινητικής ενέργειας λόγω της κίνησης & ϑ m του κινητήρα που κινεί την άρθρωση µε q& και, προφανώς όπως φαίνεται στο παρακάτω σχήµα, ευρίσκεται στον

Διαβάστε περισσότερα

I λ de cos b (8.3) de = cos b, (8.4)

I λ de cos b (8.3) de = cos b, (8.4) Κεφάλαιο 8 Φωτισµός (Illumination) 8.1 Βασικοί ορισµοί και παραδοχές Με τον όρο Φωτισµός εννοούµε τι διαδικασία υπολογισµού της έντασης της ϕωτεινής ακτινοβολίας που προσλαµβάνει ο ϑεατής (π.χ. µία κάµερα)

Διαβάστε περισσότερα

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά.

ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. Μέρος 1ον : ιάδοση κυµάτων σε διηλεκτρικά. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 53 ιάδοση κυµάτων σε διηλεκτρικά. Απορρόφυση ακτινοβολίας. 5. Άσκηση 5 5.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε την

Διαβάστε περισσότερα

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση 8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός

Διαβάστε περισσότερα

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η

1. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η Ερωτήσεις ανάπτυξης. ** Αν F είναι µια παράγουσα της f στο R, τότε να αποδείξετε ότι και η συνάρτηση G () = F (α + β) είναι µια παράγουσα της h () = f (α + β), α α στο R. β + γ α+ γ. ** α) Να δείξετε ότι

Διαβάστε περισσότερα

Περίληψη Κεφαλαίων 6 & 7

Περίληψη Κεφαλαίων 6 & 7 Περίληψη Κεφαλαίων 6 & 7 Αλκένια: υδρογονάνθρακες µε 1 ή περισσότερους διπλούς δεσµούς Παρεµπόδιση περιστροφής γύρω από δ.δ. cis-trans ισοµέρεια (Ε ή Ζ) Αλκένια δίνουν αντιδράσεις ηλεκτρονιόφιλης προσθήκης

Διαβάστε περισσότερα

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο

Διαβάστε περισσότερα

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση:

Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Μετά το τέλος της µελέτης του 1ου κεφαλαίου, ο µαθητής θα πρέπει να είναι σε θέση: Να γνωρίζει το ατοµικό πρότυπο του Bohr καθώς και τα µειονεκτήµατά του. Να υπολογίζει την ενέργεια που εκπέµπεται ή απορροφάται

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης

ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ

Διαβάστε περισσότερα

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y

Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y 5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και

Διαβάστε περισσότερα

και ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και

και ω η γωνία που σχηµατίζει το διάνυσµα OA (1) x = ρσυν(ω+ θ) = ρσυνωσυνθ ρηµωηµθ και και ΣΤΡΟΦΗ ΙΝΥΣΜΤΟΣ Νίκος Ιωσηφίδης, Μαθηµατικός Φροντιστής, έροια e-mail: iossifid@yahoo.gr Στο άρθρο που ακολουθεί, όλα τα αναφερόµενα σηµεία θα θεωρούµε ότι βρίσκονται στο ίδιο επίπεδο. Ορισµοί: 1) Ονοµάζουµε

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3

Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου 3 Γραµµικη Αλγεβρα Ι Επιλυση Επιλεγµενων Ασκησεων Φυλλαδιου ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml

Διαβάστε περισσότερα

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j

f x = f a + Df a x a + R1 x, a, x U και από τον ορισµό της 1 h f a h f a h a h h a R h a i i j Το θεώρηµα Tor στις πολλές µεταβλητές Ο σκοπός αυτής της παραγράφου είναι η απόδειξη ενός θεωρήµατος τύπου Tor για συναρτήσεις πολλών µεταβλητών Το θεώρηµα για µια µεταβλητή θα είναι ειδική περίπτωση του

Διαβάστε περισσότερα

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com

Επίλυση Προβλημάτων με Χρωματισμό. Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com Επίλυση Προβλημάτων με Χρωματισμό Αλέξανδρος Γ. Συγκελάκης asygelakis@gmail.com 1 Η αφορμή συγγραφής της εργασίας Το παρακάτω πρόβλημα που τέθηκε στο Μεταπτυχιακό μάθημα «Θεωρία Αριθμών» το ακαδημαϊκό

Διαβάστε περισσότερα

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό.

ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. ρ. Χ. Βοζίκης Εργαστήριο Φυσικής ΙΙ 91 9. Άσκηση 9 ιάθλαση. Ολική ανάκλαση. ιάδοση µέσα σε κυµατοδηγό. 9.1 Σκοπός της εργαστηριακής άσκησης Σκοπός της άσκησης είναι η γνωριµία των σπουδαστών µε τα φαινόµενα

Διαβάστε περισσότερα