Osnovi elektronike. Savet: Lakše preko kolokvijuma. Sadržaj. Osnovi pojačavačke tehnike (ELE EKM) 3 od 3

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Osnovi elektronike. Savet: Lakše preko kolokvijuma. Sadržaj. Osnovi pojačavačke tehnike (ELE EKM) 3 od 3"

Transcript

1 Onv pačavačke tehnke ELE EKM 3 d 3 Onv elektrnke redptne baveze: U JNUU OSTLO edvn phađane natave predavanavežbe 0% 0% Odbranene labratrke vežbe 0% 0% Klkvm I % 0% Klkvm II % 0% % 60% Šta m d ada načl? Elementarn Ulga pačavača azlka zmeđ frekvenckh prenne karaktertke pačavača Savet: Lakše prek klkvma 3 Sadrža. Uvd a. Defnca pačana b. Obne pačavača c. Smbl pačavača d. Klafkaca pačavača prema tp gnala e. Mdel pačavača f. Uzrc zblčena gnala g. renna karaktertka pačavača h. Frekvencke karaktertke. larzaca pačavača. Klafkaca pačavača prema namen, tp aktvng elementa, knfgrac, plža radne tačke, trktr. Šta m d ada načl? Onvn. Karaktertke prtperdčng gnala vremenkm frekvenckm dmen ampltda, efektvna vrednt, perda, faza, frekvenca, kržna frekvenca, frekvenck pektar.. Smbl pačavača 3. Mdel dealnh realnh pačavača 4. Uzrc zblčena zlazng gnala pačavača 5. Frekvencke karaktertke pačavača 4

2 Onv pačavačke tehnke ELE EKM 3 d 3 Iptna ptana. Šta trander?. Odredt vrednt parametara ekvvalentng Tevenenvg Nrtnvg mdela generatra na kme e zmeren napn prazng hda d 0 tra kratkg pa d 500m. 3. Klk e napn na zlaz nepterećeng realng generatra nmnalng napna 0 k ma ntrašn tprnt 0Ω prazng hda? Klk zn tra kratkg pa? 4. Klk e napn na zlaz generatra nmnalng napna 0 k ma ntrašn tprnt 00Ω, ak e pterećen tprnšć d 00Ω? 5. Karaktertke lženperdčng gnala vremenkm frekvenckm dmen. 6. Karaktertke aperdčng gnala vremenkm frekvenckm dmen. tana za pt: Elementarna Obavezna 5 Iptna 5 U vm trentk Na kra ve nedele bće h 3 Uklk š nte pčel da čte - grešte!!! l š vek ne vše kan Hade da e prptam!!! 0. ktbar 07. Uvd 5 7 Iptna ptana. Utca knačne lazne zlazne tprnt pačavača napna na kpn pačane.. Skcrat prenn karaktertk dealng pačavača napna Nelnearna ampltdka zblčena. Uzrk pledce. 4. Šta e prenna fnkca? Kak e dređ md faza? 5. Defnca ampltdke karaktertke načn predtavlana. 6. Lnearna ampltdka zblčena. Uzrk pledce. 7. Fazna karaktertka. 8. Lnearna fazna zblčena. Uzrk pledce. 9. Elektrčna šema, prenna fnkca frekvencke karaktertke C prpnka nkh/vkh frekvenca grančna frekvenca, ampttk nagb Onv elektrnke Kak e pačava gnal? Kakv pačavač pte? Ke m bne? 6 8

3 Onv pačavačke tehnke ELE EKM 3 d 3 Da e pdetm: renna karaktertka pačavača renna karaktertka predtavla grafčk nterpretac zavnt zlazne d lazne velčne renna karaktertka lnearng pačavača napna e prava lnearna fnkca p v z v z zlaz laz Da e pdetm: Frekvencke karaktertke vema važn T ; T. Grafčka nterpretaca zavnt d frekvence - mdla prenne fnkce nazva e MLITUDSK KKTEISTIK - argmenta prenne fnkce nazva e FZN KKTEISTIK pačavača Zaedn, ne predtavla FEKENCIJSKE KKTEISTIKE pačavača dale 9 Da e pdetm: Frekvencke karaktertke vema važn Elektrčne velčne na zlaz pačavača kmplekne, I. Fnkca ka pveze zlazn lazn velčn dređe pnašane dzva na frekvenc zve e ENOSN FUNKCIJ pačavača, T: X T X. ϕ T T e Da e pdetm: Frekvencke karaktertke realng pačavača mpltdka karaktertka Šta e kak e dređe prpn peg? Šta e dekada? Šta e ktava? Nagb p dekad/ktav? Fazna karaktertka π/ π/ ϕ[rad] 0. ktbar 03. Uvd 3

4 Onv pačavačke tehnke ELE EKM 3 d 3 Da e pdetm: Da e pdetm: a 0 a mpltdka karaktertka vema važn mpltdka karaktertka realng pačavača ne kntantna. T znač da gnal razlčth frekvenca neće bt pdednak pačan. ledca? Lnearna ampltdka zblčena. Ulga pačavača: Da pača lazn gnal BEZ IZOBLIČENJ Kak mže dć d zblčena?. azlčt pačane malh velkh laznh gnala zrk: nelnearna prenna karaktertka. azlčt pačane na razlčtm frekvencama pektralne kmpnente zrk: ampltdka karaktertka ne kntantna 3. azlčt kašnene na razlčtm frekvencama pektralne kmpnente zrk: fazna karaktertka ne kntantna n lnearna 3 5 Da e pdetm: ealna fazna karaktertka važn π/ φ ϕ[rad] φ π/ Fazna karaktertka realng pačavača ne kntantna n lnearna celm peg. T znač da gnal razlčth frekvenca neće bt pdednak zakašnen. ledca? Lnearna fazna zblčena Da e pdetm: azlčt pačane malh velkh laznh gnala Ulazn gnal 0. n t 0.05 nt Izlaz v v v 4 v za za v 0. v >

5 Onv pačavačke tehnke ELE EKM 3 d 3 Da e pdetm: renna karaktertka Šta ak ne lnearna? v Da e pdetm:. azlčt pačane na razlčtm frekvencama Ulazn gnal t 0. n t 0.05 nt zlaz Ulazn gnal 0. n t v v v 4 v za za v 0. v > 0. Talan blk napna v : zblčene gnala 7 Izlazn gnal v t v t vt v t 0. n t 0.05 nt Na zalaz lnearng pačavača k razlčt pačava gnale razlčth frekvenca avla e lnearna ampltdka zblčena. 9 Da e pdetm: Da e pdetm:. azlčt pačane malh velkh laznh gnala v v za v 0. v 4 v za v > azlčt kašnene na razlčtm frekvencama Ulazn gnal 0. n t 0.05 nt Izlazn gnal v v v t v t π/4 0. n t 0.05 nt π/4 Na zalaz pačavača k razlčt pačava gnale razlčth ampltda ma nelnearn prenn karaktertk avla e nelnearna ampltdka zblčena. Na zalaz lnearng pačavača k razlčt kan gnale razlčth frekvenca avla e lnearna fazna zblčena

6 Onv pačavačke tehnke ELE EKM 3 d 3 Da e pdetm: Da e pdetm: Ulga pačavača: Da pača lazn gnal bez zblčena Kakve karaktertke treba da ma da b bav t lg? a Lnearnt: zlazn gnal pta već d lazng. b It pačane na vm frekvencama pektar c Zadržat t dn faza kašnene vm pektralnm kmpnentama frekvencama O vem vme bće vše reč kane tkm kra. Za pčetak pdrazmevam da dealzvan pačavač pnava ve navedene zahteve. Ulga pačavača: Da pača lazn gnal bez zblčena Očekem da naga gnala na zlaz bde veća neg na laz. Da l e t realn? 3 Da e pdetm: Zašt m v pnavlal? ZTO ŠTO JE ŽNO rmer.: Mkrfn k dae na zlaz napn efektvne vrednt d 0m ma zlazn tprnt d 600Ω treba prklčt na ptršač d 8Ω. Izračnat napnk pačane nage kada e prklč: a drektn b prek pačavača a 00/, 0Ω z MΩ c prek baferkg pačavača a, MΩ z 0Ω p p.4μw 4 0 pw [W/W] > 4 6

7 Onv pačavačke tehnke ELE EKM 3 d 3 ODKLE e dba pačane? Da l e prekršen zakn čvan energe? Nephdn e bezbedt ednmerne zvre za napaane pačavača d ada h nm prkazval 5 Jednmern napaane pačavača v z Trš e, dpra, neptrebn al nephdn naga na amm pačavač Efkant tepen kršćena pačavača p p I I DC I Ulžena energa z generatra I DC p? dpace? DC p? η p DC tršena energa 00 7 d [%] Napaane pačavača ednmernm napnm v z p v z 6 p rmer 3. ačavač k e napaa a /-0 pbđe nnm napnm ampltde, dae napn ampltde 9 na ptršač d k. Izmerena e tra krz vak zvr napaana d p 9,5m lazna tra ampltde 0.m. Odredt: a pačane napna, b ačane tre, c pačane nage, d nag DC zvra napaana, e dpran nag f tepen kršćena 8 7

8 Onv pačavačke tehnke ELE EKM 3 d 3 ešene : a pačane napna, b pačane tre, v v I 9 kω 9 9 / 0 lg 9 9. db p I I 9 m 0.m 9 m 0lg / db 9 ešene : d naga zvra za napaane DC e naga dpace 0 9,5m 0 9,5m 90 mw d DC p 90mW 0.05mW 49.5mW 49.6 mw f tepen kršćena η p DC 00.3% 80% nage ptrš e van ptršača na pačavač 3 ešene : c pačane nage ktvna naga na ptršač p eff Ieff ktvna naga na laz I 0.m eff Ieff 0.05 mw ačane nage p 40.5 p 80 W/W 0.05 p 0lg80 9. db I 9 9 m 40.5 mw Napaane prenna karaktertka pačavača raktčn, čak dealzvan pačavač e lnearan am grančenm peg lazng, dnn zlazng napna. Da ne tak, napn na zlaz rata b negrančen a pratm lazng napna

9 Onv pačavačke tehnke ELE EKM 3 d 3 Napaane prenna karaktertka pačavača v z dečen - lmtran Kd pačavača k e napaa metrčnm napnm /-, zlazn napn ne mže bt već Izlazn -/ d, nt man d. gnal Napaane prenna karaktertka pačavača Lmtrane gnala zblčene. v z Izlazn gnal / - *Obant talane blke dečen lmtran Ulazn gnal 33 Ulazn gnal 35 Napaane prenna karaktertka pačavača v z dečen - lmtran Občn e zlaz lmtran na vednt L< Izlazn -/ gnal > > - / Napaane prenna karaktertka pačavača renna karaktertka pačavača k brć faz - nvertć. v z Izlazn gnal a laz lmtran na - -/ < < / *Obant talane blke dečen lmtran Ulazn gnal 34 Ulazn gnal 36 9

10 Onv pačavačke tehnke ELE EKM 3 d 3 Napaane prenna karaktertka pačavača renna karaktertka pačavača k brć faz - nvertć. v z Izlazn gnal Napaane prenna karaktertka pačavača metrčn napaane tče na prenn karaktertk - 0, v z Ulazn gnal 37 Napaane prenna karaktertka pačavača ačavač e napaa ametrčn, a 0. Napaane prenna karaktertka pačavača Sredna prenne karaktertka vše ne krdnatnm pčetk v z M v I I v t retplarzaca pačavača U Napn dtv gnala DC Mrna radna tačka M t U

11 Onv pačavačke tehnke ELE EKM 3 d 3 Napaane prenna karaktertka pačavača renna karaktertka realnh pačavača e nelnearna U v v dv dv v I v t v t v t v z L I L - Nagb M t U v t Napaane prenna karaktertka pačavača Nelnearnt e veća kada e gnal već radna tačka dala d redne prenne karaktertke. Tada e gnal vše zblčen. Ka št e rane rečen na zalaz pačavača a nelnearnm prennm karaktertkm avla e nelnearna ampltdka zblčena Napaane prenna karaktertka pačavača ealna prenna karaktertka mže da e tretra ka lnearna am za male gnale. pravl radna tačka e pdešava tam gde e karaktertka nalnearna, gde e nagb naveć a t e na redn prenne karaktertke. Nelnearna ampltdka zblčena Zašt nelnearna zblčena n pželna? Utca na prtperdčn gnal > harmnc Harmnka zblčena 4 44

12 Onv pačavačke tehnke ELE EKM 3 d 3 Kak dredt kvantfkvat zblčene gnala? Ddatak Utca nelnearnh zblčena na lženperdčn v gnal v c t c t. IM v v v [m] 0 3 f 45 [m] 47 OJČČI ELIKIH SIGNL Izblčene e mer velčnm ka e nazva kpn faktr zblčena značava e a THD Ttal Harmnc Dtrtn: 3... m Napna THD gde e efektvna vrednt -tg harmnka I I3... I Stre THDI I gde e I efektvna vrednt -tg harmnka m 46 Ddatak Utca nelnearnh zblčena na lženperdčn gnal v c t c t. v IM v v v IM c t c t c t c t IM c t c t c t c t c t c t v 48

13 Onv pačavačke tehnke ELE EKM 3 d 3 Ddatak Utca nelnearnh zblčena na lženperdčn gnal v c t c t. v M v v v IM c t c t c / t c / t c t c t -0dB 0 3 v DC gnal 0 3 Intermdlacne kmpnente 49 f f Klafkaca pačavača rema namen rema tp aktvng elementa BJT, MOSFET, JFET rema knfgrac ZE, ZS, ZC, ZD, ZB, ZG rema radn tačk, B, B, C, -- D, E,... rema trktr edntepen, dvtepen, všetepen 8. ktbar 04. Uvd 5 Utca nelnearnh zblčena na lženperdčn gnal Om harmnkh kmpnent pavl e ntermdlacne na frekvencama zbra razlke frekvenca lženg gnala!!! T znač da mg da e ave metne drgm peg frekvenca prelkavane metn krn peg v Intermdlacne kmpnente Ddatak 0 3 f Klafkaca pačavača rema namen rema tp gnala vdel m,, G m, m rema frekvenck karaktertc NF, F, B, šrkpan, kpan rema velčn gnala za male/velke gnale -0dB

14 Onv pačavačke tehnke ELE EKM 3 d 3 Klafkaca pačavača rema namen rema frekvenck karaktertc NF, F, B Klafkaca pačavača rema tp aktvng elementa nmos v SB 0 NF F B O BJT pmos MOSFET v SB Klafkaca pačavača Klafkaca pačavača rema namen rema knfgrac rema velčn gnala za male/velke gnale ZE ZB ZC

15 Onv pačavačke tehnke ELE EKM 3 d 3 Klafkaca pačavača rema knfgrac Klafkaca pačavača rema trktr edntepen, dvtepen, všetepen, ZS ZG ZD Klafkaca pačavača rema radn tačk, B, B, C, -- D, E,... B B C B C B C B B 58 Onv elektrnke redptne baveze: edvn phađane natave predavanavežbe 0% Odbranene labratrke vežbe 0% Klkvm I % Klkvm II % K d dana ne dlaz na čave zgb e.% % Jš ne kan ak m neće bt an mng pmv ke m pmnal Savet: Ne bdte gbtnc Ne gbte lak n št mate! 60 5

16 Onv pačavačke tehnke ELE EKM 3 d 3 Onv elektrnke redptne baveze: edvn phađane natave predavanavežbe 0% Odbranene labratrke vežbe 0% Klkvm I % Klkvm II % rpšten predavane ne am zgblenh 0.7% pena t e zgblena šana da e blagvremen č n št ne an. Šta m načl? am ednmerne radne tačke renna karaktertka pačavača a ametrčnm napaanem Kak e mere nelnearna zblčena? Klafkaca pačavača 6 63 Onv elektrnke Šta m za ve tr vdne nedele načl? Sam nabrte nve pmve ke te čl: ačavač napna, tre, nage, trankndktann, mdel pačavača, prenna karaktertka, prenna fnkca, frekvencke karaktertke, defnca db, ktava, dekada, prpn peg, grančne frekvence, zrc zblčena gnala, lnearna/nelnearna zblčena, ampltdka/fazna zblčena, klr faktr, napaane pačavača, tepen kršćena, dpaca nage, metrčn/ametrčn napaane, mrna radna tačka, klaa, B, B, C, klafkaca pačavača prema tp velčn gnala, prema tp aktvng elementa, knfgrac, trktr,... k mžete da h defnšete - mžem dale. U prtnm, bće teže da pratte n št led. Iptna ptana?. Blan nage kd pačavača: lžena, ptršena, krna naga dpace.. renna karaktertka realng pačavača a metrčnm napaanem. 3. Utca plžaa mrne radne tačke na talan blk gnala na zlaz realng pačavača napna a ametrčnm napaanem. 4. Obant kak nata nelnearna zblčena na zlaz pačavača. 5. Klafkaca pačavača prema vrt gnala. 6. Klafkaca pačavača prema frekvenckm peg. 7. Klafkaca pačavača prema tp aktvng elementa. 8. Klafkaca pačavača prema knfgrac. 9. Klafkaca pačavača prema trktr

17 Onv pačavačke tehnke ELE EKM 3 d 3 Sledeće nedele: Operacn pačavač ešene. Zadatak: Izračnat kpn napnk pačane nage trtepeng pačavača a lke pbđeng zvrm ča e zlazna tprnt 00k pterećeng ptršačem d 00Ω Na web adre > EDUCTION > OSNOI ELEKTONIKE lad pdf frmat ,9 /; 57,4 db; 66,9 0 8 W/W; 98,3dB 67 ešene. Zadatak: ačavač a pačanem 40dB, 0k, z k, pbđe ptršač d p k. Izračnat kpn napnk pačane pačane nage kazan db. gledat ladve.5;.6;.44 40dB 00 / p k p / z p p k k p p p p p k W / W p k a 0lg 44dB 66 ešene v v v v v 3 v v3 v v v 00Ω 00 v v3 v3 00Ω 0Ω 0 0k 0 00 v3 00 v v 0k k 00k 00 0 v 0 v v 00k k 0 M v v v M 0.M. v / v 0 0. a 0lg 57.4dB v v v v v v v v p p 00 v v v 7 v v ; v W / W v 8 a 0lg dB v 6 v v v W / W v 8 a 0lg dB 68 7

18 Onv pačavačke tehnke ELE EKM 3 d Zadatak: Odredt prenn fnkc kla a lke. / / / / / / C C T C C C Z C C z ešene.3 70 Zadatak: Odredt prenn fnkc kla a lke. z / / / / C T ešene.3 Odredt prenn fnkc kpn napnk pačane kla a lke. k e 0k, 00k, C 60pF, µ44 /, 00Ω L k a Odredt pačane pr 0rad/ ednmern 00 / b Grančn frekvenc 3dB 0 6 rad/, f 59,kHz c Odredt frekvenc pr k padne na 0dB 0 8 rad/ ešene.4 C C C C Z Z L L L L µ µ k k k k C C C L L L L / ; 6 µ µ rad rad rad db db db db db / 0 / 0 00 /

Trigonometrijski oblik kompleksnog broja

Trigonometrijski oblik kompleksnog broja Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.

Διαβάστε περισσότερα

Literatura: Основна литература: 1. В. Литовски, Основи електронике, Академска. Osnovi elektronike. Literatura: Predispitne obaveze: Ispit: Zadaci 20%

Literatura: Основна литература: 1. В. Литовски, Основи електронике, Академска. Osnovi elektronike. Literatura: Predispitne obaveze: Ispit: Zadaci 20% Ono elekronke rof. dr redrag ekoć, red. prof. dr Srđan Đorđeć, aen M.S. Dejan Mrkoć, aradnk naa Ono elekronke Lerara: Основна литература: 1. В. Литовски, Основи електронике, Академска мисао, 26, ISBN:

Διαβάστε περισσότερα

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori vri jednmerng napajanja Sadržaj vri jednmerng napna (nasvak) - Sbiliatri - regulatri napna 1. de - linearni regulatri 1. Uvd 2. Usmerači napna 2.1 Jedntran usmeravanje 2.2 Dvtran usmeravanje 2.3 Umnžavažavači

Διαβάστε περισσότερα

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ. ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ Οι κύκλοι κατεργασίας χρησιµοποιούνται για ξεχόνδρισµα - φινίρισµα ενός προφίλ χωρίς να απαιτείται να προγραµµατίζουµε εµείς τα διαδοχικά πάσα της κατεργασίας. Έτσι, στο πρόγραµµα περικλείουµε

Διαβάστε περισσότερα

Trigonometrijske nejednačine

Trigonometrijske nejednačine Trignmetrijske nejednačine T su nejednačine kd kjih se nepznata javlja ka argument trignmetrijske funkcije. Rešiti trignmetrijsku nejednačinu znači naći sve uglve kji je zadvljavaju. Prilikm traženja rešenja

Διαβάστε περισσότερα

ITU-R P (2012/02) &' (

ITU-R P (2012/02) &' ( ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS

Διαβάστε περισσότερα

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori

Izvori jednosmernog napona (nastavak) - Stabilizatori - regulatori napona 1. deo - linearni regulatori Ivri jednmerng napajanja Sadržaj Ivri jednmerng napna (nasvak) - Sbiliatri - regulatri napna 1. de - linearni regulatri 1. Uvd 2. Usmerači napna 2.1 Jedntran usmeravanje 2.2 Dvtran usmeravanje 2.3 Umnžavažavači

Διαβάστε περισσότερα

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é

Διαβάστε περισσότερα

Elementi energetske elektronike

Elementi energetske elektronike ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke

Διαβάστε περισσότερα

ITU-R P ITU-R P (ITU-R 204/3 ( )

ITU-R P ITU-R P (ITU-R 204/3 ( ) 1 ITU-R P.530-1 ITU-R P.530-1 (ITU-R 04/3 ) (007-005-001-1999-1997-1995-1994-199-1990-1986-198-1978)... ( ( ( 1 1. 1 : - - ) - ( 1 ITU-R P.530-1..... 6.3. :. ITU-R P.45 -. ITU-R P.619 -. ) (ITU-R P.55

Διαβάστε περισσότερα

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I

Rešenje: X C. Efektivne vrednosti struja kroz pojedine prijemnike su: I R R U I. Ekvivalentna struja se određuje kao: I . Otnik tnsti = 00, kalem induktivnsti = mh i kndenzat kaacitivnsti = 00 nf vezani su aaleln, a između njihvih kajeva je usstavljen steidični nan efektivne vednsti = 8 V, kužne učestansti = 0 5 s i četne

Διαβάστε περισσότερα

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα

Διαβάστε περισσότερα

Reverzibilni procesi

Reverzibilni procesi Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože

Διαβάστε περισσότερα

Jednostepeni MOSFET pojačavači

Jednostepeni MOSFET pojačavači Osnne sbne MOS tanzsta MOSFET tanskndktansn jačaač: Nan S kntlše S Jednsteen MOSFET jačaač ne zas d, > Tanzst ad blast zasćenja: S > t ; S > S - t Laka ealzacja IC Peđenje MOSFET BJT: kaaktestke Peđenje

Διαβάστε περισσότερα

Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u

Podloge za predavanja iz Mehanike 1 STATIČKI MOMENT SILE + SPREG SILA. Laboratori j z a m umerič k u m e h a n i k u Plge a preavanja i ehanike 1 STATIČKI OENT SILE + SPREG SILA Labratri j a m umerič k u m e h a n i k u 1 Statički mment sile Sila u insu 225 N jeluje na ključ prema slici. Oreiti mment sile birm na tčku

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović

RAČUNSKE VEŽBE IZ PREDMETA POLUPROVODNIČKE KOMPONENTE (IV semestar modul EKM) IV deo. Miloš Marjanović Univerzitet u Nišu Elektronski fakultet RAČUNSKE VEŽBE IZ PREDMETA (IV semestar modul EKM) IV deo Miloš Marjanović MOSFET TRANZISTORI ZADATAK 35. NMOS tranzistor ima napon praga V T =2V i kroz njega protiče

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.

Διαβάστε περισσότερα

1993 (Saunders College 1991). P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed.

1993 (Saunders College 1991). P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits, 4th ed. Πανεπιστήμιο Θεσσαλίας ΗΥ430: Εργαστήριο Αναλογικών Κυκλωμάτων Άνοιξη 2005 Εργαστηριακές Ασκήσεις Περιεχόμενα 1 Διπολικό και MOS τρανσίστορ................................... 2 2 Ενισχυτές με διπολικά

Διαβάστε περισσότερα

Jeux d inondation dans les graphes

Jeux d inondation dans les graphes Jeux d inondation dans les graphes Aurélie Lagoutte To cite this version: Aurélie Lagoutte. Jeux d inondation dans les graphes. 2010. HAL Id: hal-00509488 https://hal.archives-ouvertes.fr/hal-00509488

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

V I V I R. Επομένωςτοποσοστιαίοσφάλμαθαείναι. Παράδειγμα2 10 Γιατοσύστημαμεσυνάρτησημεταφοράς H. s ναβρεθείηπεριοχή. συχνοτήτωνλειτουργίας.

V I V I R. Επομένωςτοποσοστιαίοσφάλμαθαείναι. Παράδειγμα2 10 Γιατοσύστημαμεσυνάρτησημεταφοράς H. s ναβρεθείηπεριοχή. συχνοτήτωνλειτουργίας. Παράδειγμα ΑςυποθέσουμεότιημέτρησητάσηςγίνεταιμεέμμεσοτρόπομετρώνταςτορεύμαΙ καιτηναντίσταση.ανκαιστιςδύοπεριπτώσειςτοσχετικόσφάλμαισούταιμε 0,% υπολογίστετοσχετικόσφάλμαστημέτρησητηςτάσης. I d di d I

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

a; b 2 R; a < b; f : [a; b] R! R y 2 R: y : [a; b]! R; ( y (t) = f t; y(t) ; a t b; y(a) = y : f (t; y) 2 [a; b]r: f 2 C ([a; b]r): y 2 C [a; b]; y(a) = y ; f y ỹ ỹ y ; jy ỹ j ky ỹk [a; b]; f y; ( y (t)

Διαβάστε περισσότερα

Erkki Mäkinen ja Timo Poranen Algoritmit

Erkki Mäkinen ja Timo Poranen Algoritmit rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009

Διαβάστε περισσότερα

Aritmetički i geometrijski niz

Aritmetički i geometrijski niz Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.

Διαβάστε περισσότερα

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE

ELEKTROMOTORNI POGONI - AUDITORNE VJEŽBE veučilište u ijeci TEHNIČKI FAKULTET veučilišni preddiplomki tudij elektrotehnike ELEKTOOTONI OGONI - AUDITONE VJEŽBE Ainkroni motor Ainkroni motor inkrona obodna brzina inkrona brzina okretanja Odno n

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

doc. dr Stevan Stojadinović ELEKTRONIKA predavanja 2010/11

doc. dr Stevan Stojadinović ELEKTRONIKA predavanja 2010/11 dc. dr Stevan Stjadnvć ELEKTONIKA predavanja 00/ . ELEKTIČNA KOLA Elektrčn kl je sstem pvezanh elektrčnh elemenata kj nema nkakve veze sa klnm (autnmn sstem). Element elektrčng kla vrše dređene funkcje.

Διαβάστε περισσότερα

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković

Ekonometrija 4. Ekonometrija, Osnovne studije. Predavač: Aleksandra Nojković Ekonometrja 4 Ekonometrja, Osnovne studje Predavač: Aleksandra Nojkovć Struktura predavanja Nelnearne zavsnost Prmene u ekonomskoj analz Prmer nelnearne zavsnost Isptujemo zavsnost zmeđu potrošnje dohotka.

Διαβάστε περισσότερα

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

!  #! $ %&! '( #)!' * +#,  -! %&! !! !  #$ % #  &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**. ! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;

Διαβάστε περισσότερα

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. 1. Ο ΠΕΡΙΟ ΙΚΟΣ ΠΙΝΑΚΑΣ Οι άνθρωποι από την φύση τους θέλουν να πετυχαίνουν σπουδαία αποτελέσµατα καταναλώνοντας το λιγότερο δυνατό κόπο και χρόνο. Για το σκοπό αυτό προσπαθούν να οµαδοποιούν τα πράγµατα

Διαβάστε περισσότερα

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab

Κεφάλαιο 2 ο. Γ. Τσιατούχας. VLSI Systems and Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Πανεπιστήμιο Ιωαννίνων CMOS Αναστροφέας Κεφάλαιο ο Τμήμα Μηχανικών Η/Υ και Πληροφορικής Γ. Τσιατούχας VLSI Systems ad Computer Architecture Lab ΚΥΚΛΩΜΑΤΑ VLSI Διάρθρωση 1. I V χαρακτηριστική

Διαβάστε περισσότερα

Jednostavne nelinearne zavisnosti

Jednostavne nelinearne zavisnosti Prfesr Zrca Mladenvć Jednstavne nelnearne zavsnst 1 Uvd Prmena metda ONK zahteva da mdel bude lnearan, št znač da parametr mdela fguršu na lnearan načn ( 0 ). Mdel ne mra da bude lnearan p prmenljvma (

Διαβάστε περισσότερα

& : $!" # RC : ) %& & '"( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( :

& : $! # RC : ) %& & '( RL : ), *&+ RLC : - # ( : $. %! & / 0!1& ( : : : C : : C : : : .. ).. (................... ٢ ( - ). :.... S MP. T S..... -. (... ) :. :. : :. - - - - ٣ sweep :X. :Y. :. CCD.. ( - ) ( - ) ( - ) ( ) ( ) ( ) X : gnd -.... ٤ DC AC - AC DC DC - Y ( )

Διαβάστε περισσότερα

m i N 1 F i = j i F ij + F x

m i N 1 F i = j i F ij + F x N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,

Διαβάστε περισσότερα

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije

transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (

Διαβάστε περισσότερα

Chương 2: Đại cương về transistor

Chương 2: Đại cương về transistor Chương 2: Đại cương về transistor Transistor tiếp giáp lưỡng cực - BJT [ Bipolar Junction Transistor ] Transistor hiệu ứng trường FET [ Field Effect Transistor ] 2.1 KHUYẾCH ĐẠI VÀ CHUYỂN MẠCH BẰNG TRANSISTOR

Διαβάστε περισσότερα

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté Alexis Nuttin To cite this version: Alexis Nuttin. Physique des réacteurs

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh

Διαβάστε περισσότερα

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke

pismeni br.4 4.2: Izračunati yds, gdje je K luk parabole y 2 = 2 px od ishodišta to točke Prakkm Maemaka III Prredo DJočć smen br : Raz Forero red nkc eroda dan ormom za < za < : Izračna ds gde e k araboe od shodša o očke M : Izračna koordnae ežsa homogenog ka ckode a sn a ; : Izračna I e [

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΙΟΙΚΗΣΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΙΠΛΩΜΑ ΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΜΕ. Ι..Ε. ΑΣΚΗΣΗ 1 ΟΜΑ Α 2 Στην ακόλουθη άσκηση σας δίνονται τα έξοδα ανά µαθητή και οι ετήσιοι µισθοί (κατά µέσο όρο) των δασκάλων για 51 πολιτείες της Αµερικής. Τα δεδοµένα είναι για τη χρονιά 1985. Οι µεταβλητές

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l) ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,

Διαβάστε περισσότερα

MICROMASTER Vector MIDIMASTER Vector

MICROMASTER Vector MIDIMASTER Vector s MICROMASTER Vector MIDIMASTER Vector... 2 1.... 4 2. -MICROMASTER VECTOR... 5 3. -MIDIMASTER VECTOR... 16 4.... 24 5.... 28 6.... 32 7.... 54 8.... 56 9.... 61 Siemens plc 1998 G85139-H1751-U553B 1.

Διαβάστε περισσότερα

#%" )*& ##+," $ -,!./" %#/%0! %,!

#% )*& ##+, $ -,!./ %#/%0! %,! -!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3

Διαβάστε περισσότερα

Osnovni sklopovi pojačala sa bipolarnim tranzistorom

Osnovni sklopovi pojačala sa bipolarnim tranzistorom Osnovn sklopov pojačala sa bpolarnm tranzstorom Prrodno-matematčk fakultet u Nšu Departman za fzku dr Dejan S. Aleksd Elektronka dr Dejan S. Aleksd Elektronka - Pojačavač polarn tranzstor kao pojačavač

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

Reflection & Transmission

Reflection & Transmission Rflc & Tasmss 4 D. Ray Kw Rflc & Tasmss - D. Ray Kw Gmc Opcs (M wavs flc fac - asmss cdc.. Sll s Law: s s 3. Ccal agl: s c / 4. Tal flc wh > c ly f > Rflc & Tasmss - D. Ray Kw Pla Wav λ wavfs λ λ. < ;

Διαβάστε περισσότερα

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα

Διαβάστε περισσότερα

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2 F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t

Διαβάστε περισσότερα

Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. MITSUBISHI MIC-M3019 MD MIC-2002 MD MIC-2002 MD MIC-2002 MD110166

Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. MITSUBISHI MIC-M3019 MD MIC-2002 MD MIC-2002 MD MIC-2002 MD110166 REFERENCE Ref No. New-Era No. Ref No. New-Era No. Ref No. New-Era No. HONDA/ACURA 099700-061 MIC-H3017 099700-070 MIC-H3014 099700-101 MIC-H3016 099700-102 MIC-H3016 099700-115 MIC-H3014 099700-147 MIC-H3015

Διαβάστε περισσότερα

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ :

( ) BROJNI PRIMER 4. Temeljni nosač na sloju peska. Slika 6.3. Rešenje: Ekvivalentni modul reakcije podloge/peska k i parametar krutosti λ : BROJNI PRIMER 4 Armrano etonsk temeljn nosač (slka 63), fundran je na dun od D f =15m, u sloju poto-pljenog peska relatvne zjenost D r 75% Odredt sleganje w, nag θ, transverzalnu slu T, moment savjanja

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr . Παναγιώτης Αθανασόπουλος Χηµικός ιδάκτωρ Παν. Πατρών. Οξειδοαναγωγή Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών 95 Χηµικός ιδάκτωρ Παν. Πατρών 96 Χηµικός ιδάκτωρ Παν. Πατρών. Τι ονοµάζεται

Διαβάστε περισσότερα

16 Electromagnetic induction

16 Electromagnetic induction Chatr : Elctromagntic Induction Elctromagntic induction Hint to Problm for Practic., 0 d φ or dφ 0 0.0 Wb. A cm cm 7 0 m, A 0 cm 0 cm 00 0 m B 0.8 Wb/m, B. Wb/m,, dφ d BA (B.A) BA 0.8 7 0. 00 0 80 0 8

Διαβάστε περισσότερα

WinMate Communication Inc. 9F, No Hsing Teh Road, San-Chung, Taipei, Taiwan, R.O.C TEL: FAX:

WinMate Communication Inc. 9F, No Hsing Teh Road, San-Chung, Taipei, Taiwan, R.O.C TEL: FAX: www.winmate.com.tw WinMate Communication Inc. 9F, No. 111-6 Hsing Teh Road, San-Chung, Taipei, Taiwan, R.O.C TEL:886-2-6635-5758 FAX:886-2-6635-5859 MTBF Test Report Product Model Product cription Issue

Διαβάστε περισσότερα

Ενισχυτής κοινής πηγής (common source amplifier)

Ενισχυτής κοινής πηγής (common source amplifier) Εισαγωγή στην Ηλεκτρονική Βασικά κυκλώµατα ενισχυτών µε transstr MOS Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Transstr ως ενισχυτής Ενισχυτής κοινής πηγής (cmmn surce amplfer (κύκλωµα αντιστροφέα

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET

PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v

Διαβάστε περισσότερα

Standard Calibrations, Inc. Address 681 Anita Street, Suite 103 Chula Vista, CA Contact Name

Standard Calibrations, Inc. Address 681 Anita Street, Suite 103 Chula Vista, CA Contact Name IAS Accreditation Number CL-121 Accredited Entity Address 681 Anita Street, Suite 103 Chula Vista, CA 91911 Contact Name Louis Ruggeri Metrology Director Telephone (619) 477-1668 Effective Date of Scope

Διαβάστε περισσότερα

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama

JMAK の式の一般化と粒子サイズ分布の計算 by T.Koyama MAK by T.Koyama MAK MAK f () = exp{ fex () = exp (') v(, ') ' () (') ' v (, ') ' f (), (), v (, ') f () () f () () v (, ') f () () v (, ') f () () () = + {exp( A) () f () = exp( K ) () K,,, A *** ***************************************************************************

Διαβάστε περισσότερα

Metoda najmanjih kvadrata

Metoda najmanjih kvadrata Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj

Διαβάστε περισσότερα

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa

a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa. a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 2 1 2 3 4 5 0.24 0.24 4.17 4.17 6 a m a -80.6MPa, m =49.4MPa a =80.6MPa, m =-49.4MPa a =49.4MPa, m =-80.6MPa a =-49.4MPa, m =-80.6MPa 1 7 max min m a r 8 9 1 ] ] S [S] S [S] 2 ] ] S [S] S [S] 3 ] ] S

Διαβάστε περισσότερα

M p f(p, q) = (p + q) O(1)

M p f(p, q) = (p + q) O(1) l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA

OSNOVI ELEKTRONIKE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA ELEKTROTEHNIČKI FAKULTET U BEOGRADU KATEDRA ZA ELEKTRONIKU OSNOVI ELEKTRONIKE SVI ODSECI OSIM ODSEKA ZA ELEKTRONIKU LABORATORIJSKE VEŽBE VEŽBA BROJ 1 OSNOVNA KOLA SA DIODAMA Autori: Goran Savić i Milan

Διαβάστε περισσότερα

Analiza în regim dinamic a schemelor electronice cu reacţie Eugenie Posdărăscu - DCE SEM 6 electronica.geniu.ro

Analiza în regim dinamic a schemelor electronice cu reacţie Eugenie Posdărăscu - DCE SEM 6 electronica.geniu.ro nlz în regm dnmc scemelr electrnce c recţe Egene Psdărăsc - DCE EM 6 electrnc.gen.r emnr 6 6 NLI ÎN EGIM DINMIC CHEMELO ELECTONICE C ECŢIE 6. Nţn teretce generle de ter trprţlr H s ntrre eşre Fg. 6. În

Διαβάστε περισσότερα

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC.

5ppm/ SOT-23 AD5620/AD5640/AD5660. nanodac AD5660 16 AD5640 14 AD5620 12 12 1.25V/2.5V 5ppm/ 8 SOT-23/MSOP 480nA 5V 200nA 3V 3V/5V 16 DAC. 5ppm/ SOT-23 12/14/16nanoDAC AD562/AD564/AD566 nanodac AD566 16 AD564 14 AD562 12 12 1.25V/2.5V 5ppm/ 8SOT-23/MSOP 48nA 5V 2nA 3V 3V/5V 16 DAC 3 to SYNC 1. 1212/14/16nanoDAC 2. 1.25V/2.5V 5ppm/ 3. 8SOT-23

Διαβάστε περισσότερα

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA

OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

-! " #!$ %& ' %( #! )! ' 2003

-!  #!$ %& ' %( #! )! ' 2003 -! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!

Διαβάστε περισσότερα

Ιστοσελίδα:

Ιστοσελίδα: ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel4 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Αποκωδικοποιηση Γραμμικων Κωδικων Μπλοκ Soft-Decision Decoding ψ(t),

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min.

ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6. I z. nia 2 2 3/2. ni a 3/2 3/2. I,min. I,max. = 511 A/m, ( HII,max HII,min)/ HII,max. II,min. ΠΑΡΑΡΤΗΜΑ Ι ΠΑΡΑΡΤΗΜΑ Ι AΠΑΝΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 6 I 6/ ( + π) 4πa 6/ I nia + + / / ( a + ) a ( d ) ni a II a + ( d/ ) ai I a + ( d/) / / I,ma 75 A/m, I,min 676 A/m, ( I,ma I,min )/ I,ma,545 II,ma 75 A/m, II,min

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

Χαρακτηρισµός Κυκλώµατος και Εκτίµηση Απόδοσης 2. Χαρακτηρισµός Κυκλώµατος

Χαρακτηρισµός Κυκλώµατος και Εκτίµηση Απόδοσης 2. Χαρακτηρισµός Κυκλώµατος 4 η Θεµατική Ενότητα : Χαρακτηρισµός Κυκλώµατος και Εκτίµηση Απόδοσης Επιµέλεια διαφανειών:. Μπακάλης Εισαγωγή Μια δοµή MOS προκύπτει από την υπέρθεση ενός αριθµού στρώσεων από µονωτικά και αγώγιµα υλικά

Διαβάστε περισσότερα

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών

Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

ITU-R P (2012/02)

ITU-R P (2012/02) ITU-R P.56- (0/0 P ITU-R P.56- ii.. (IPR (ITU-T/ITU-R/ISO/IEC.ITU-R ttp://www.itu.int/itu-r/go/patents/en. (ttp://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M P RA RS S SA SF SM SNG TF V 0.ITU-R ITU 0..(ITU

Διαβάστε περισσότερα

Radivoje Đurić, Zbirka zadataka iz osnova elektronike DIODA. Elektrotehnički fakultet, Odsek za elektroniku

Radivoje Đurić, Zbirka zadataka iz osnova elektronike DIODA. Elektrotehnički fakultet, Odsek za elektroniku adoje Đurć brka zadataka z osnoa elektronke OA Elektrotehnčk fakultet Odsek za elektronku oda 3 Slka U kolu sa slke dode maju razlčte nerzne struje zasćenja S = S dok je t = kt / q= 5m T = 93K Ukolko

Διαβάστε περισσότερα

MEHANIKA FLUIDA. Isticanje kroz velike otvore

MEHANIKA FLUIDA. Isticanje kroz velike otvore MEANIKA FLUIDA Isticnje krz velike tvre 1.zdtk. Krz veliki ptvr u bčn zidu rezervr blik rvnkrkg trugl snve i keficijent prtk µ, ističe vd. Odrediti prtk krz tvr k su pznte veličine 1 i (v.sl.). Eleentrni

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

φ(t) TE 0 φ(z) φ(z) φ(z) φ(z) η(λ) G(z,λ) λ φ(z) η(λ) η(λ) = t CIGS 0 G(z,λ)φ(z)dz t CIGS η(λ) φ(z) 0 z

Διαβάστε περισσότερα

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI.

HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI. HY330 Ψηφιακά Κυκλώματα - Εισαγωγή στα Συστήματα VLSI Διδάσκων: Χ. Σωτηρίου, Βοηθοί: θα ανακοινωθούν http://inf-server.inf.uth.gr/courses/e330 1 Περιεχόμενα Διαισθητική λειτουργία Χαρακτηριστικά Αντιστροφέα

Διαβάστε περισσότερα

Αλληλεπίδραση ακτίνων-χ με την ύλη

Αλληλεπίδραση ακτίνων-χ με την ύλη Άσκηση 8 Αλληλεπίδραση ακτίνων-χ με την ύλη Δ. Φ. Αναγνωστόπουλος Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων Ιωάννινα 2013 Άσκηση 8 ii Αλληλεπίδραση ακτίνων-χ με την ύλη Πίνακας περιεχομένων

Διαβάστε περισσότερα

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET)

Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET) Τρανζίστορ Επίδρασης Πεδίου Field-effect transistors (FET) Χρησιµοποιούνται σε κλίµακα υψηλής ολοκλήρωσης VLSI Χρησιµοποιούνται και σε αναλογικούς ενισχυτές καθώς και στο στάδιο εξόδου ενισχυτών Ισχύος-

Διαβάστε περισσότερα

Analysis of a discrete element method and coupling with a compressible fluid flow method

Analysis of a discrete element method and coupling with a compressible fluid flow method Analysis of a discrete element method and coupling with a compressible fluid flow method Laurent Monasse To cite this version: Laurent Monasse. Analysis of a discrete element method and coupling with a

Διαβάστε περισσότερα

ENCO Μ.Ε.Π.Ε. - Νίκαιας 9, 55132 Καλαμαριά - Θεσσαλονίκη. Επαγωγικοί Λαμπτήρες (Induction Lamps) EnCo ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ENCO Μ.Ε.Π.Ε. - Νίκαιας 9, 55132 Καλαμαριά - Θεσσαλονίκη. Επαγωγικοί Λαμπτήρες (Induction Lamps) EnCo ΣΥΣΤΗΜΑΤΑ ΕΞΟΙΚΟΝΟΜΗΣΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Επαγωγικοί Λαμπτήρες (Induction Lamps) Η εταιρεία μας εμπορεύεται φωτιστικά με Επαγωγικούς Λαμπτήρες (Induction Lamps). Η λειτουργία τους είναι παρόμοια με αυτή των λαμπτήρων φθορισμού, με μία όμως σημαντική

Διαβάστε περισσότερα

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v

DC BOOKS. H-ml-c-n-s-b- -p-d-n- -v A-d-n-b-p-w-a-p-¼-v BÀ. tdmj³ Xn-cp-h-\- -]p-cw kz-tz-in. 2004 ap-xâ [-\-Im-cy ]-{X-{]-hÀ- -\cw-k v. XpS- w Zo-]n-I- Zn-\- -{X- nâ. C-t mä am-xr-`q-an Zn-\- -{X- n-sâ {]-Xnhmc _n-kn\-kv t]pm-b "[-\-Im-cy-' n-sâbpw ssz-\w-zn-\

Διαβάστε περισσότερα