Elementul de întârziere de ordinul doi, T 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Elementul de întârziere de ordinul doi, T 2"

Transcript

1 5..04 u Fig Elemeul de îârziere de ordiul doi, Elemeul de îârziere de ordiul doi coţie douǎ elemee cumulore de eergie su subsţǎ. Peru elemeul de ordi doi ecuţi difereţilǎ se oe scrie î mi mule forme, c de exemlu () () ()+ ()+ 0 () b0u(), 0, > 0,b0, b0, + k (.565) 0 () () ()+( + ) ()+ () k u () (.567) () +, () ()+ ()+ () k u(). (.569), su cosele de im, k ese fcorul de mlificre, ω - ulsţi urlǎ, ξ - fcorul de morizre. Fucţi de rsfer elemeului ese H(s) k s +( + ) s+ k s + s+. (.570) Ecui crcerisic si rǎdǎciile ei su:

2 5..04 s + s+ 0 ; s +(+ s, (- - ) su s, -, ) s+0 (.57) Î fucţie de vlore fcorului de morizre ξ se disig ru czuri ) elemeul eriodic: ξ >. - ; s -, > >0. s h( ) L H ( s) L s k e e h(0 ) 0; h () ( ) k (0) k ( 3 ) s k ; lim h() 0. Rǎsusul l imuls re exresi (.574) Rǎsusul l imuls ese rereze î fig..85. h() h() Fig..85 Rǎsusul idicil se obţie cu relţi (.575) si ese rereze grfic i fig..85

3 5..04 w() L - H(s) L s - k - - k s s +( + )s + - e e () (.575) ) elemeul eriodic criic: ξ. s - -, s h() L w( 0 ) 0,w - + { H(s) } L w() L >0. ( h(0 ) 0, h - k + () (0 ) 0 ; lim w() k. - + () k s+ ) k (0+ ) H(s) L s k e. e - (). () k s ( s+ ) - () w( 0+ )0,w (0+ )0 ; lim w() k. 3) Elemeul oscil: 0 < ξ <. s, - j -. h() L k - k - w() L { H(s) } L - - { e H(s) s - } L - - e si - - si s ( s k s + s+ - (). k + s+ ) - + rcg - (). Pucele de exrem reliv le fucţiei (.584) u bscisele si ordoele: 3

4 5..04 Fig..86 l,l 0,,,... - l - + l k e w( l ) - - l k e,l,3,5,...,l 0,,4..587) Vlore mximǎ rǎsusului se obţie eru l w( ) k +e - wm mx - - s e mx - - s Deorece î regim sţior w() () s k, se deermiǎ surreglre rǎsusului idicil, coform relţiei (.456) - mx s - e (.589) - s Se defieşe decremeul oscilţiilor λ c fiid rorul mliudiilor douǎ ulsuri de ceişi sem le regimului rzioriu. w ( ) l+ - e -, l. (.590) w ( ) l- Di relţi (.590) se oe deermi fcorul de morizre ξ l 4 + l Se u i evide douǎ regimuri limiǎ: (.59) 4

5 5..04 eru ξ 0, λ, oscilţiile u se morizezǎ şi di (.584) rezulǎ u regim oscil w() k ( - ), 0 cos (.59) - eru ξ, se obţie regimul eriodic criic: w() d de (.578) Dur regimului rzioriu, coform relţiilor (.458) - (.46), eru o bere Δ 0.0k 0.0w, rezulǎ cǎ ese dǎ de relţi 4 4 ; w()- w() <0,0k,( ). 4) Elemeul coserviv, ξ 0. (.593) Peru ξ 0 rǎdǎciile ecuţiei crcerisice su ur imgire s j. (.594), Rǎsusul l imuls se obţie di (.580) eru ξ 0 h() k si ( ) () (.595) Rǎsusul idicil ese d de ecuţi (.59). Fucţiile h() şi w() eru ξ 0 su oscilţii emorize, cu ulsţi eglǎ cu ulsţi urlǎ ω. Peru 0 ξ < elemeul u mi oe fi descomus î elemee de ordiul uu ( ) coiuid el îsuşi u eleme i. Î fig..88.,b. se reziǎ rǎsusul l imuls h() reseciv rǎsusul idicil w() le elemeului eru ξ ε [0,]. Rǎsusul l frecveţǎ l elemeului se obţie îlocuid s jω î fucţi de rsfer. k k H(j ) ; - + j - + j Exresiile eru crcerisicile de frecveţǎ su: (.596) 5

6 5..04 H H k ( - ) k (- ) R( ) ( - ) + 4 (- ) k - k ) ( - ) + 4 (- ) + 4 I ( (.598) (.599) M( ) k ( - ) + 4 k (- ) + 4 (.600) ( ) - rcg - rcg - - (.60) Crcerisic H R (ω) rezeǎ î fig..89, dmie u mxim, eru ξ < /, de coordoe k - ; H R ( ) mx 4 - (.60) ir eru orice ξ 0 dmie u miim de coordoe k + ; H R ( ) - mi 4 + (.603) Crcerisic H I (ω) rezeǎ î fig..89 ese egivǎ şi re u miim de bscisǎ , < 3 < (.604) 3 Fig..89 6

7 5..04 Crcerisic M(ω), fig..90, eru ξ < /, re u mxim, de coordoe (r,mr), cre evideiz u feome de rezo k r - ; M mx ( ) M r M( r ) - (.605) Pulsţi de rezoţǎ rezulǎ di relţi (.605) r r - < Se defieşe fcorul de rezoţǎ Q, Fig..90 M( r ) M mx ( ) Q M(0) M(0) - (.607) Crcerisicile M(ω) şi φ(ω) su rezee î fig..90. Peru locul de rsfer l elemeului se uilizezǎ o rerezere grficǎ dimesiolǎ, fig..9; eru k si diferie vlori le fcorului de morizre ξ, eru ulsţi ormǎ η (0, + ) se rsezǎ Fig..9 7

8 5..04 Crcerisic eure-frecveţǎ ese dǎ de relţi AdB( ) 0 lg M( ) 0 lg 0 lg k - 0 lg (- ) + 4 (.608) k (-) + 4 Crcerisic re simoele, ele AdB( AdB( ) 0 lg k ) 0 lg k eru» - 0 lg 0 lg k - 40 lg - 40 lg m 0 0 db/dec; m m 0-40 db/dec - 40 db/dec Pulsţi de frâgere, eru cre cele douǎ simoe se iersecezǎ ese f, Asimoele crcerisicii fzǎ - frecveţǎ se obţi di relţi (.60) ( ) 0 eru» ; ( ) - eru «(.6) L ulsţi de frâgere η, fz re vlore - π/. - π/. - π/. Fig..9 - π 8

9 5..04 Exemle de elemee :. Moorul de cure coiuu. Ecuţiile de fuciore moorului su d i u - k R i + L d (.56) d mm k i J. d Elimiâd cureul i di ecuţiile (.66) şi oâd () ω() şi u() u se obţie ecuţi L J k () R J ()+ k () ()+ k Se iroduc oţiile () u() m () ()+ R L () k k () k ()+ u() L J L J JR L kk ; ; ; k k R L J m R J ; k k k L k m (.68) (.69) ude m ese cos de im elecromecicǎ moorului; ese cos de im circuiului rooric. Ecuţi (.68) devie () ()+ () ()+ () k u() (.60) Peru ξ, m 4, rǎdǎciile ecuţiei crcerisice le ecuţiei (.60) su rele egive, deci moorul de cure coiuu ese u eleme eriodic; eru ξ <, m < 4, moorul de cure coiuu ese u eleme oscil. 3) Fie sisemul hidrulic reze î fig..93 form di douǎ rezervore lege î serie rir-o reziseţǎ hidrulicǎ. Se resuue cǎ ri robieele V 0, V, V curgere ese lmirǎ, ir reziseţele hidrulice le cesor robiee su R 0, R, R. 9

10 5..04 Fig..93 Ecuţiile de echilibru de msǎ eru cele douǎ rezervore su A d h( q - q ) d gh gh q ; q3 A d h ( q - q ) d R R 3 (.6) Elimiâd vribilele iermedire se obţie ecuţi geerlǎ smblului celor rezervore vâd c mǎrime de ieşire ivelul h (), deci () h () şi c mǎrime de irre debiul q ; deci u() q (). R g A R g A ()+ R g A + R g A () () () () ()+( + ) ()+ () k ()+ () R u(). g u() (.63) (.65) A R A R >0 >0 ; R ; k >0 g g g Rǎdǎciile ecuţiei crcerisice socie ecuţiei (.65) su rele, disice, egive şi, deci, smblul celor douǎ rezervore se comorǎ c u eleme eriodic. 0

11 Elemeul rece-o Ese u eleme descris de o ecuţie difereţilǎ de form () ()+ () - u () ()+ u() (.654) reseciv de fucţi de rsfer H(s) - s+ s+ Rǎsusurile l imuls si idicil su - - h() L { H(s)} L - + s + - -()+ e (),h(0+ ),h(+ ) 0 (.655) (.656) - H(s) - w() - - L L - e s s s + w( 0 ) -,w(+ ). + (), (.657) Acese rǎsusuri su rerezee grfic î fig..0. Fig..0 Peru s jω di (.655) se obţie rǎsusul l frecveţǎ - j j - - j H(j ), j (.658)

12 5..04 Crcerisicile de frecveţǎ u exresiile - - H R( ) ; I ( ) H + + (.659) M( ); ( ) - rcg - rcg. - - Dcǎ se elimiǎ η îre H R (ω) şi H I (ω) di (.659) se obţie ecuţi locului de rsfer H R ( )+ H ( ) I η ω (.66) cre ese u cerc cu cerul î origie lului H R (ω), jh I (ω) şi de rzǎ uirǎ, fig..0. Elemeul rece-o ermie recere uiformǎ uuror frecveţelor cu iroducere uor defzje fucţie de frecveţǎ. Di ces moiv se mi umeşe şi eleme defzor ur. Fig..0 Exemle de siseme fizice cre se comorǎ c u eleme rece- o. ) Se cosiderǎ u ermomeru cu mercur. L o creşere bruscǎ emerurii mediului exerior (cre cosiuie mǎrime de irre), re loc mi îâi dilre ubului de siclǎ, cee ce roduce iiţil o scǎdere ivelului mercurului. Aoi e mǎsurǎ ce mercurul se îcǎlzeşe, ivelul cesui creşe, urmǎrid creşere emerurii.

13 Elemee de fzǎ miimǎ şi emiimǎ Se ue îrebre î ce codiţii îre M(ω) şi φ(ω) exisǎ o relţie bie deermiǎ, sfel c sisemul sǎ oǎ fi crceriz umi de u di cese douǎ crcerisici de frecveţǎ. Fie rǎsusul l frecveţǎ uui sisem dimic H(j ) H ( )+ j H ( ). (.66) R I Dcǎ H(s) ese o fucţie de rsfer cre re oli şi zerouri umi î Re s < 0, uci su verifice rsformele Hilber H I ( ) - - H R( ) - H R( ) d - rsformre direc - H I ( ) d - rsformre ivers - (.663) î cre ω ese ulsţi î [rd/s] Di exresi rǎsusului l frecveţǎ, scrisǎ sub form olrǎ rezulǎ j ( ) H(j ) M( )e (.664) j ( ) H l(j ) l H(j ) l M( )e l M( )+ j ( ) A( )+ j ( ); A( ) l M( ) (.665) A(ω) se umeşe eure. H l (s) coresude fucţiei de rsfer Q(s) H l(s) l H(s) l l Q(s)- l P(s) (.666) P(s) Zerourile oliomelor Q(s) şi P(s) su sigulriǎţi eru fucţi H l (s). Acesǎ fucţie ese olomorfǎ dc cese rǎdcii se fl î Re s<0. 3

14 5..04 Peru sisemele liire cre sisfc rsformre (.667), deci cre u fucţii de rsfer cu zerouri şi oli umi î Re s < 0, H l (s) sisfce relţiile rsformei Hilber (.663) cre devi ( ) - - A( ) ( ) d ; A( ) (.668) Relţiile (.668) se umesc codiţiile lui Bode şi sisfc o legǎurǎ biuivocǎ îre A(ω) şi φ(ω) eru o umiǎ clsǎ de siseme umie siseme de fzǎ miim. Defiiie. Sisemele moovribile le cǎror fucţii de rsfer u oli şi zerouri umi î Re s < 0 se umesc siseme de fzǎ miimǎ. Sisemele moovribile le cǎror fucţii de rsfer u oli umi î Re s < 0 şi zerouri î o lul s se umesc siseme de fzǎ emiimǎ. 4

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire

4.7. Stabilitatea sistemelor liniare cu o intrare şi o ieşire 4.7. Sbilie sisemelor liire cu o irre şi o ieşire Se spue că u sisem fizic relizbil ese sbil fţă de o siuţie de echilibru sţior, dcă sub cţiue uei perurbţii eeriore (impuls Dirc) îşi părăseşe sre de echilibru

Διαβάστε περισσότερα

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA,

TEORIA SISTEMELOR AUTOMATE. Prof. dr. ing. Valer DOLGA, TEORIA SISTEMELOR AUTOMATE Prof. dr. ig. Vler DOLGA, Curi_7_ Aliz i ruul iemelor liire i domeiul im II. Sieme de ordiul. Ruul iemului l emle drd imul uir re uir rm 3. Noiui rivid clie iemului de ordiul

Διαβάστε περισσότερα

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1

3.4 Integrarea funcţiilor trigonometrice. t t. 2sin cos 2tg. sin + cos 1+ cos sin 1 tg t cos + sin 1+ x 1 3.4 Iegrre fucţiilor rigoomerice ) R( si,cos ) d Susiuţi recomdă ese: uei fucţii rţiole. g =, (, ) şi iegrl dă se reduce l iegrre si cos si cos g si + cos + g = = = + cos si g cos + si + g = = = + = rcg

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare.

2. CONVOLUTIA. 2.1 Suma de convolutie. Raspunsul sistemelor discrete liniare si invariante in timp la un semnal de intrare oarecare. . CONVOLUIA. Sum de covoluie. Rspusul sisemelor discree liire si ivrie i imp l u seml de irre orecre. [ ] δ [ ] [ ] δ[ ] x x δ[ ] [ ] x x [ ] δ[ ] x x [ ] δ[ ] [ ] δ[ ] [ ] [ ] δ[ ] x x Rspusul sisemelor

Διαβάστε περισσότερα

Sisteme de ordinul I şi II

Sisteme de ordinul I şi II Siseme de ordiul I şi II. Scopul lucrării Se sudiază comporarea î domeiul imp şi frecveţă a sisemelor de ordiul II. Siseme de ordiul I. Comporarea î domeiul imp a sisemelor de ordiul I U sisem de ordiul

Διαβάστε περισσότερα

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu

Transformata z (TZ) TZ este echivalenta Transformatei Laplace (TL) in domeniul sistemelor discrete. In domeniul sistemelor continui: Sistem continuu Prelucrre umeric semlelor Trsformt Trsformt este echivlet Trsformtei Lplce TL i domeiul sistemelor discrete. I domeiul sistemelor cotiui: xt s Sistem cotiuu yt Ys ht; Hs I domeiul sistemelor discrete:

Διαβάστε περισσότερα

4. Analiza în timp a sistemelor liniare continue şi invariante

4. Analiza în timp a sistemelor liniare continue şi invariante RA C5 4. Aaliza î im a iemelor liiare coiue şi ivariae Aaliza î im rereziă deermiarea răuului î im a iemelor coiderae, la divere iuri de emale de irare şi deermiarea ricialelor rorieăţi (abiliae, erformaţe

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective:

TEMA 9: FUNCȚII DE MAI MULTE VARIABILE. Obiective: TEMA 9: FUNCȚII DE MAI MULTE VARIABILE 77 TEMA 9: FUNCȚII DE MAI MULTE VARIABILE Obiective: Deiirea pricipalelor proprietăţi matematice ale ucţiilor de mai multe variabile Aalia ucţiilor de utilitate şi

Διαβάστε περισσότερα

Sisteme de ordinul 2: model, funcţie de transfer, simulare, identificarea parametrilor

Sisteme de ordinul 2: model, funcţie de transfer, simulare, identificarea parametrilor Lucrre nr. 4 Teori siemelor uome. Scopul lucrării Sieme de ordinul : model, funcţie de rnsfer, simulre, idenificre prmerilor În ceă lucrre se vor nliz comporre în domeniul rel şi complex unui siem linir

Διαβάστε περισσότερα

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă

6 n=1. cos 2n. 6 n=1. n=1. este CONV (fiind seria armonică pentru α = 6 > 1), rezultă Semiar 5 Serii cu termei oarecare Probleme rezolvate Problema 5 Să se determie atura seriei cos 5 cos Soluţie 5 Şirul a 5 este cu termei oarecare Studiem absolut covergeţa seriei Petru că cos a 5 5 5 şi

Διαβάστε περισσότερα

cele mai ok referate

cele mai ok referate Permur www.refereo.ro cele m o refere.noue de permure. Fe A o mulme f de elemee, dc A{,, 3,, }. O fuce becv σ:aàa e umee permure ubue de grdul. P:Numrul uuror permurlor de ord ee egl cu!..produul compuere

Διαβάστε περισσότερα

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D

Cap. IV Serii Fourier. 4.1 Serii trigonometrice. (1) Numărul T se numeşte perioadă pentru funcţia f ( x )., x D, x ± T D Cp. IV Serii Fourier 4. Serii trigoometrice Defiiţie: O fucţie f ( ) defiită pe o muţime ifiită D se umeşte periodică dcă eistă u umăr T stfe îcât: f ( ± T) = f ( ), D, ± T D () Număru T se umeşte periodă

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cap PRIMITIVE 5 CAPITOLUL PRIMITIVE METODE GENERALE DE CALCUL ALE PRIMITIVELOR Î aces paragraf vom reamii oţiuea de primiivă, proprieăţile primiivelor şi meodele geerale de calcul ale acesora Defiiţia

Διαβάστε περισσότερα

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a

SEMINARUL 3. Cap. II Serii de numere reale. asociat seriei. (3n 5)(3n 2) + 1. (3n 2)(3n+1) (3n 2) (3n + 1) = a Capitolul II: Serii de umere reale. Lect. dr. Lucia Maticiuc Facultatea de Hidrotehică, Geodezie şi Igieria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucia MATICIUC SEMINARUL 3. Cap. II Serii

Διαβάστε περισσότερα

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE

METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE Elea Chirilă METODE AVANSATE DE MASURARE COMANDA SI AUTOMATIZARE NOTE DE CURS . NOTIUNI DE TEORIA AUTOMATIZARII.. Elemee ip ale sisemelor de reglare auomaa Relaţiile maemaice care exprimă feomeele fizice

Διαβάστε περισσότερα

1. ŞIRURI ŞI SERII DE NUMERE REALE

1. ŞIRURI ŞI SERII DE NUMERE REALE . ŞIRURI ŞI SERII DE NUMERE REALE. Eerciţii rezolvte Eerciţiul Stbiliţi dcă următorele şiruri sut fudmetle: ), N 5 b) + + + +, N * c) + + +, N * cos(!) d), N ( ) e), N Soluţii p p ) +p - < şi mjortul este

Διαβάστε περισσότερα

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ

Curs 9. Teorema limită centrală. 9.1 Teorema limită centrală. Enunţ Curs 9 Teorema limiă cerală 9 Teorema limiă cerală Euţ Teorema Limiă Cerală TLC) ese ua dire cele mai imporae eoreme di eoria probabiliăţilor Iuiiv, orema afirmă că suma uui umăr mare de v a idepedee,

Διαβάστε περισσότερα

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

Convergenţa uniformă a şirurilor de funcţii

Convergenţa uniformă a şirurilor de funcţii Convergenţ uniformă şirurilor de funcţii Considerăm un inervl închis orecre [, b ] R şi noăm cu F [,b ] mulţime uuror funcţiilor definie pe [, b ] cu vlori în R, F [,b ] = {x : [, b ] R ; x funcţie orecre}.

Διαβάστε περισσότερα

4. Integrale improprii cu parametru real

4. Integrale improprii cu parametru real 4. Itegrle improprii cu prmetru rel Fie f: [ b, ) [ cd, ] y [, itegrl improprie R cu < b +, stfel îcât petru fiecre b cd ] f (, ) ydeste covergetă. Atuci eistă o fucţie defiită pritr-o itegrlă improprie

Διαβάστε περισσότερα

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi.

Polinoame.. Prescurtat putem scrie. sunt coeficienţii polinomului cu a. este mulţimea polinoamelor cu coeficienţi complecşi. Poliome ) Form lgebrică uui poliom Pri form lgebrică su form coică îţelegem f X X X Prescurtt putem scrie f X,,, sut coeficieţii poliomului cu, se umeşte coeficiet domit şi X terme domit tuci poliomul

Διαβάστε περισσότερα

0 z z < r ea admite o dezvoltare în serie Laurent. n n. din dezvoltarea în serie Laurent în vecinătatea punctului z. z (notat { } { } = ρ

0 z z < r ea admite o dezvoltare în serie Laurent. n n. din dezvoltarea în serie Laurent în vecinătatea punctului z. z (notat { } { } = ρ CAPITOLUL ME5 5 eiduuri Teore reiduurilor Defiiţi reiduului Fie w o fucţie litică vâd î u puct sigulr iolt Atuci îtr-o coroă circulră < r e dite o devoltre î serie Luret < w c Se ueşte reiduu l fucţiei

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI a XI-a A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

REZIDUURI ŞI APLICAŢII

REZIDUURI ŞI APLICAŢII Mtemtici specile şi metode umerice EZIDUUI ŞI APLICAŢII. Formule petru reiduuri Câd sigulrităţile du vlore şi uţ. Teorem reiduurilor Defiiţi. Fie f() o fucţie cre re î C u pol su u puct sigulr eseţil iolt.

Διαβάστε περισσότερα

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1

Olimpiada Naţională de Matematică Etapa locală Clasa a IX-a M 1 Calea 13 Septembrie, r 09, Sector 5, 0507, București Tel: +40 (0)1 317 36 50 Fax: +40 (0)1 317 36 54 Olimpiada Naţioală de Matematică Etapa locală -00016 Clasa a IX-a M 1 Fie 1 abc,,, 6 şi ab c 1 Să se

Διαβάστε περισσότερα

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN

Şiruri recurente. Mircea Buzilă. 2009, Editura Neutrino Titlul: Şiruri recurente Autor: Mircea Buzilă ISBN Mirce Buzilă Şiruri recurete Editur eutrio 9 9 Editur eutrio Titlul: Şiruri recurete utor: Mirce Buzilă SB 978-97-896-7-9 Descriere CP Bibliotecii ţiole Roâiei BUZLĂ MRCE Şiruri recurete / Mirce Buzilă.

Διαβάστε περισσότερα

Matematici Speciale. Conf.Dr. Dana Constantinescu Departamentul de Matematici Aplicate Universitatea din Craiova

Matematici Speciale. Conf.Dr. Dana Constantinescu Departamentul de Matematici Aplicate Universitatea din Craiova Maemaici Seciale CofDr Daa Cosaiescu Dearameul de Maemaici Alicae Uiversiaea di Craiova Curis Ecuaţii difereţiale Cosideraţii geerale 3 Ecuaţii difereţiale de ordiul I 5 Ecuaţii cu variabile searabile

Διαβάστε περισσότερα

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ

COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ COLEGIUL NAȚIONAL MIHAI VITEAZUL SF. GHEORGHE, COVASNA SĂ ȘTII MAI MULTE, SĂ FII MAI BUN LA MATEMATICĂ LUCRARE CONCEPUTĂ ȘI REALIZATĂ DE COLECTIVUL CLASEI XII- A, PROFIL REAL, SPECIALIZAREA MATEMATICĂ-INFORMATICĂ.

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

ANEXA., unde a ij K, i = 1, m, j = 1, n,

ANEXA., unde a ij K, i = 1, m, j = 1, n, ANEXA ANEXĂ MATRICE ŞI DETERMINANŢI Fie K u corp şi m N* = N \ {} Tbloul dreptughiulr A = ude ij K i = m j = m m m se umeşte mtrice de tip (m ) cu elemete di corpul K Mulţime mtricelor cu m liii şi coloe

Διαβάστε περισσότερα

Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson

Modele dinamice de conducere optimală a activităţii firmei 9. Modelul Jorgenson Modele dinmice de conducere opimlă civiăţii firmei 9 Modelul Jorgenson Ese un model în cre ese urmăriă sregi firmei în cee ce priveşe efecure invesiţiilor şi efecele deprecierii cpilului supr evoluţiei

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

INTRODUCERE IN TEORIA SISTEMELOR

INTRODUCERE IN TEORIA SISTEMELOR INTRODUCERE IN TEORIA SISTEMELOR Teoria sisemelor repreziă u asamblu de cocepe cuoşiţe meode şi pricipii idepedee de aplicaţii ecesare şi uile sudiului srucurii proprieăţilor şi caracerisicilor diamice

Διαβάστε περισσότερα

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare

9. Polinoamele Taylor asociate unor funcţii (I. Boroica) 9.1. Formulele lui Taylor şi polinoamele Taylor asociate funcţiilor elementare lgeră Cupris Mtrice de ordi doi şi plicţii (IDicou VPop Mtrice de ordi doi Proleme rezolvte Teorem lui Cle- Hmilto 4 Proleme rezolvte 5 Determire puterilor turle le uei mtrice de ordi doi 6 Proleme rezolvte

Διαβάστε περισσότερα

Exerciţii de Analiză Matematică

Exerciţii de Analiză Matematică Exerciţii de Aliză Mtemtică October, 5 Şiruri si serii de umere rele. Să se stbilescă dcă şirul cu termeul geerl x =... este su u fudmetl.. Petru răt că şirul este fudmetl: Petru răt că şirul este fudmetl:

Διαβάστε περισσότερα

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora.

CAPITOLUL 1. În acest paragraf vom reaminti noţiunea de primitivă, proprietăţile primitivelor şi metodele generale de calcul ale acestora. Cp PRIMITIVE 5 CAPITOLUL PRIMITIVE METOE GENERALE E CALCUL ALE PRIMITIVELOR Î cest prgrf vom remiti oţiue de primitivă, proprietăţile primitivelor şi metodele geerle de clcul le cestor efiiţi Fie f : I,

Διαβάστε περισσότερα

Formula lui Taylor. 25 februarie 2017

Formula lui Taylor. 25 februarie 2017 Formula lui Taylor Radu Trîmbiţaş 25 februarie 217 1 Formula lui Taylor I iterval, f : I R o fucţie derivabilă de ori î puctul a I Poliomul lui Taylor de gradul, ataşat fucţiei f î puctul a: (T f)(x) =

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

DRUMURI, ARCE ŞI LUNGIMILE LOR

DRUMURI, ARCE ŞI LUNGIMILE LOR Drumuri, rce, lugimi Virgil-Mihil Zhri DRUMURI, ARCE ŞI LUNGIMILE LOR FucŃiile cu vrińie mărgiită u fost itroduse de Jord Cmille (88-9) şi utilizte de el cu oczi studiului prolemei rectificilităńii curelor,

Διαβάστε περισσότερα

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D;

lim lim lim lim (criteriul cu şiruri); lim lim = lim ; Limite de funcńii NotaŃii: f :D R, D R, α - punct de acumulare a lui D; Limit d fucńii Aliz mtmtică, cls XI- Limit d fucńii NotŃii: f :D R, D R, α - puct d cumulr lui D DfiiŃii l iti DfiiŃi f ( = l, l R, dcă ptru oric vciătt V lui l istă o vciătt α U lui α stfl îcât D U, α,

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii

Tema 4. Primitiva şi integrala Riemann. Aplicaţii. Modulul Primitiva. Aplicaţii Tem 4 Primitiv şi itegrl Riem. Alicţii. Modulul 4. - Primitiv. Alicţii Noţiue de rimitivă s- degjt di licţiile mtemticii î situţii cocrete, cre costă î determire modelului mtemtic l uui roces tuci câd

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura;

Punţi de măsurare. metode de comparaţie: masurandul este comparat cu o mărime etalon de aceeaşi natura; Punţi de măsurre metode de comprţie: msurndul este comprt cu o mărime etlon de ceeşi ntur; punte: reţe complet cu 4 noduri: brţe: 4 impednţe digonl de limentre: surs (tensiune, curent) digonl de măsurre:

Διαβάστε περισσότερα

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE

CAPITOLUL 4 REZOLVAREA ECUAŢIILOR NELINIARE Tri CICNE Metode umerice î igieri ecoomică CAPITLUL 4 REZLVAREA ECUAŢIILR NELINIARE Rezolvre uei ecuţii eliire pre prctic î orice modelre mtemtică uei proleme fizice. Cu ecepţi uor czuri forte prticulre,

Διαβάστε περισσότερα

Universitatea,,Constantin Brâncuşi Tg-Jiu Facultatea de Inginerie

Universitatea,,Constantin Brâncuşi Tg-Jiu Facultatea de Inginerie Uiversie Cosi Brâcşi Tg-Ji Fcle de Igierie Prof iv dr MIODRAG IOVANOV Tg Ji - 6 - C U P R I N S CAPITOLUL I ECUAŢII DIFERENŢIALE Ecţii difereţile Solţi geerlăsolţii riclre Ierrere geomerică Eemle Problem

Διαβάστε περισσότερα

m (2.384) (ω), jh I b) Se reprezinta grafic separat functiile M(ω) si φ(ω) pentru ω [0, ) sau functiile H R (ω) si H I

m (2.384) (ω), jh I b) Se reprezinta grafic separat functiile M(ω) si φ(ω) pentru ω [0, ) sau functiile H R (ω) si H I Y U = M( = ( ; ( = arg (j (.384 Deci oduu raspusuui a frecveta este ega cu raportu ditre apitudiea osciatiei de a iesire si apitudiea osciatiei de a itrare, iar arguetu sau este ega cu faza osciatiei de

Διαβάστε περισσότερα

Inegalitati. I. Monotonia functiilor

Inegalitati. I. Monotonia functiilor Iegalitati I acest compartimet vor fi prezetate diverse metode de demostrare a iegalitatilor, utilizad metodele propuse vor fi demostrate atat iegalitati clasice precum si iegalitati propuse la diferite

Διαβάστε περισσότερα

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU

6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6. INTEGRALA SIMPLĂ. INTEGRALA SIMPLĂ CU PARAMETRU 6.1. Noţiui teoretice şi rezultte fudmetle 6.1.1. Metod lui Droux de defii itegrl simplă Fie [, ] u itervl. Descompuem itervlul [, ] îtr-u umăr orecre

Διαβάστε περισσότερα

5. Polii şi zerourile funcţiei de transfer

5. Polii şi zerourile funcţiei de transfer 5. Polii şi zerourile fucţiei de rafer 5.. Răpuul la emalul expoeţial Fie iemul m bm ( z ) i= i Y() = G()U() (.), G () =, cu poli impli. a ( p ) j= j λ u u( ) = ue σ Se aplică : ( ), U() =. (5.) λ Se uilizează

Διαβάστε περισσότερα

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx

7. INTEGRALA IMPROPRIE. arcsin x. cos xdx 7 INTEGRALA IMPROPRIE 7 Erciţii rzolv Erciţiul 7 Să s sudiz nur urăorlor ingrl irorii şi să s drin vloril csor în cz d convrgnţă: d c sin d 3 / rcsin d cos d d sin d > R Soluţii Funcţi f : - R f s ingrilă

Διαβάστε περισσότερα

5.1. ŞIRURI DE FUNCŢII

5.1. ŞIRURI DE FUNCŢII Modulul 5 ŞIRURI ŞI SERII DE FUNCŢII Subiecte :. Şiruri de fucţii.. Serii de fucţii. 3. Serii de puteri. Evaluare :. Covergeţa puctuală şi covergeţa uiformă la şiruri şi serii de fucţii.. Teorema lui Abel.

Διαβάστε περισσότερα

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011

Analiza matematica Specializarea Matematica vara 2010/ iarna 2011 Aaliza matematica Specializarea Matematica vara 010/ iara 011 MULTIPLE HOIE 1 Se cosidera fuctia Atuci derivata mita de ordi data de este egala cu 1 y Derivata partiala de ordi a lui i raport cu variabila

Διαβάστε περισσότερα

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare

SUBGRUPURI CLASICE. 1. SUBGRUPURI recapitulare SUBGRUPURI CLASICE. SUBGRUPURI recapitulare Defiiţia. Fie (G, u rup şi H o parte evidă a sa. H este subrup al lui G dacă:. H este parte stabilă a lui G;. H îzestrată cu operaţia idusă este rup. Teorema.

Διαβάστε περισσότερα

4. Serii de numere reale

4. Serii de numere reale I. (,) lim x lim + II. x şi lim x III. > x ( + ) ( + ) şi cum lim ( >) ; lim x lim lim lim x + ; (,) (, ). 4. Serii de umere rele Coceptul de serie umerică este o geerlizre turlă oţiuii de sum fiită de

Διαβάστε περισσότερα

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE

7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. ECUAŢII ŞI SISTEME DE ECUAŢII DIFERENŢIALE 7. NOŢIUNI GENERALE. TEOREMA DE EXISTENŢĂ ŞI UNICITATE Pri ecuaţia difereţială de ordiul îtâi îţelegem o ecuaţie de forma: F,, = () ude F este o fucţie reală

Διαβάστε περισσότερα

3. Serii de puteri. Serii Taylor. Aplicaţii.

3. Serii de puteri. Serii Taylor. Aplicaţii. Fucţiile f ( ) cos t = sut de clasă C pe R cu α si derivatelor satisface codiţiile: α f ' ( ) si = şi seria ' ( ), α α f R cu = b α ' coverge petru α > f este (ormal covergetă) absolut şi uiform covergetă

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica

Capitole fundamentale de algebra si analiza matematica 2012 Analiza matematica Capitole fudametale de algebra si aaliza matematica 01 Aaliza matematica MULTIPLE CHOICE 1. Se cosidera fuctia. Atuci derivata mixta de ordi data de este egala cu. Derivata partiala de ordi a lui i raport

Διαβάστε περισσότερα

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII

6.1. DERIVATE ŞI DIFERENŢIALE PENTRU FUNCŢII REALE DE O VARIABILĂ REALĂ. APLICAŢII 7 7 Modulul 6 APLICAŢII DIFERENŢIABILE Subiecte : Derivate şi difereţiale petru fucţii reale de o variabilă reală Formula lui Taylor şi Mac-Lauri petru fucţii de o variabilă reală Serii Taylor 3 Derivate

Διαβάστε περισσότερα

ŞIRURI ŞI SERII DE FUNCŢII

ŞIRURI ŞI SERII DE FUNCŢII Capitolul 8 ŞIRURI ŞI SERII DE FUNCŢII 8. Şiruri de fucţii Fie D R, D = şi fie f 0, f, f 2,... fucţii reale defiite pe mulţimea D. Şirul f 0, f, f 2,... se umeşte şir de fucţii şi se otează cu ( f ) 0.

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

PENTRU CERCURILE DE ELEVI

PENTRU CERCURILE DE ELEVI 122 Petru cercurile de elevi PENTRU CERCURILE DE ELEVI Petru N, otăm: POLINOAME CICLOTOMICE Marcel Ţea 1) U = x C x = 1} = cos 2kπ + i si 2kπ } k = 0, 1. Mulţimea U se umeşte mulţimea rădăciilor de ordi

Διαβάστε περισσότερα

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa

Demodularea (Detectia) semnalelor MA, Detectia de anvelopa Deodularea (Deecia) senalelor MA, Deecia de anveloa Deodularea ese recuerarea senalului odulaor din senalul MA. Aceasa se oae face erfec nuai daca s( ) ese de banda liiaa iar Deodularea senalelor MA se

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 5..8 Ecuaţia difereţială Riccati Ecuaţia difereţială de ordiul îtâi de forma: d q( ) p( ) r( ) d + + (4) r sut fucţii cotiue pe u iterval, cuoscute, iar fucţia ude q( ), p ( ) şi ( ) este ecuoscuta se

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

CAPITOLUL III FUNCŢII CONTINUE

CAPITOLUL III FUNCŢII CONTINUE CAPITOLUL III FUNCŢII CONTINUE. Fucţii de o variabilă reală Fucţiile defiite pe mulţimi abstracte X, Y cu f : X Y au î geeral puţie proprietăţi şi di acest motiv, puţie aplicaţii î rezolvarea uor probleme

Διαβάστε περισσότερα

λ C valoare proprie a matricei A dacă x, x 0

λ C valoare proprie a matricei A dacă x, x 0 ALULUL NUMERI AL VALORILOR PROPRII ŞI AL VETORILOR PROPRII A mtrice pătrtică de ordiul cu elemete rele vlore proprie mtricei A dcă, R : A ; () vector propriu l mtricei A socit vlorii () (A I), I mtrice

Διαβάστε περισσότερα

9. STABILITATEA SISTEMELOR

9. STABILITATEA SISTEMELOR 9. STABILITATEA SISTEMELOR 9.. Itroducere Stbilitte uui item ete u ditre proprietăţile importte le cetui. Noţiue de tbilitte ete îtâlită şi liztă l tote ctegoriile de iteme: mecice, electrice, termice

Διαβάστε περισσότερα

TORSIUNEA BARELOR DREPTE

TORSIUNEA BARELOR DREPTE 7.1. Generliăţi CAPITOLUL 7 TORSIUNEA BARELOR DREPTE Torsiune (răsucire) ese solicire redominnă din rborii mşinilor, dr ese înâlniă şi în le czuri, de exemlu l şsiurile de uovehicole, consrucţiile melice

Διαβάστε περισσότερα

2) Numim matrice elementara o matrice:

2) Numim matrice elementara o matrice: I TRANSFORMARI ELEMENTARE ) Cre di urmtorele opertii efectute supr uei mtrice este trsformre elemetr: ) dure uei liii l o colo; b) imultire uei liii cu sclrul α = c) schimbre dou liii itre ele; d) dure

Διαβάστε περισσότερα

Laborator 4 Interpolare numerica. Polinoame ortogonale

Laborator 4 Interpolare numerica. Polinoame ortogonale Laborator 4 Iterpolare umerica. Polioame ortogoale Resposabil: Aa Io ( aa.io4@gmail.com) Obiective: I urma parcurgerii acestui laborator studetul va fi capabil sa iteleaga si sa utilizeze diferite metode

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie

Analiză I Curs 1. Curs 1., a n. dacă ε, ( )N ( ε ) a.î. n x n ε ; ε sunt numere reale şi deci (a n. şi fie Aaliză I Curs Curs Şiruri de umere: D : Fie u şir de umere (a ), a. Spuem că dacă ( )M 0, a.î. a M. (a ) este mărgiit D : Spuem că (a ) coverge către l dacă ( )V (l), ( )N (V ) şi N (V ) a V. D 3 : a l

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite.

CAPITOLUL 2 SERII FOURIER. discontinuitate de prima speţă al funcţiei f dacă limitele laterale f ( x 0 există şi sunt finite. CAPITOLUL SERII FOURIER Ser trgoometrce Ser Fourer Fe fucţ f :[, Remtm că puctu [, ] se umeşte puct de b dscotutte de prm speţă fucţe f dcă mtee tere f ( ş f ( + estă ş sut fte y Defţ Fucţ f :[, se umeşte

Διαβάστε περισσότερα

MATEMATICI APLICATE IN ECONOMIE. 1. Precizari si recomandari privind desfasurarea activitatilor la disciplina MATEMATICI APLICATE IN ECONOMIE

MATEMATICI APLICATE IN ECONOMIE. 1. Precizari si recomandari privind desfasurarea activitatilor la disciplina MATEMATICI APLICATE IN ECONOMIE MATEMATICI APLICATE IN ECONOMIE. Precizri si recomdri privid desfsurre ctivittilor l discipli MATEMATICI APLICATE IN ECONOMIE Tip curs obligtoriu Mulul de curs recomdt R. Trdfir I. Dud A. Bciu R. Io Mtemtici

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE

CAPITOLUL 4 FUNCŢIONALE LINIARE, BILINIARE ŞI PĂTRATICE CAPITOLUL FUNCŢIONALE LINIAE BILINIAE ŞI PĂTATICE FUNCŢIONALE LINIAE BEIA TEOETIC Deiniţia Fie K X un spaţiu vecorial de dimensiune iniă O aplicaţie : X K se numeşe uncţională liniară dacă: ese adiivă

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

!! #7 $39 % (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ). 1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3

Διαβάστε περισσότερα

CUPRINS ALGEBRÃ... 5 I. Elemente de logicã matematicã... 5 I.1. Noţiunea de propoziţie... 5 I.2. Operatori logici... 5 I.3. Expresii în calculul

CUPRINS ALGEBRÃ... 5 I. Elemente de logicã matematicã... 5 I.1. Noţiunea de propoziţie... 5 I.2. Operatori logici... 5 I.3. Expresii în calculul Zhri Virgil-Mihil Mic memortor mtemtic UPRINS ALGEBRÃ. 5 I. Elemete de logicã mtemticã 5 I.. Noţiue de propoziţie 5 I.. Opertori logici.. 5 I.. Epresii î clculul propoziţiilor 7 I.4. Noţiue de predict

Διαβάστε περισσότερα

7. CONVOLUŢIA SEMNALELOR ANALOGICE

7. CONVOLUŢIA SEMNALELOR ANALOGICE 7. CONVOLUŢIA SEMNALELOR ANALOGICE S numş funcţi (prous) convoluţi în imp smnllor şi ingrl: f ( ) Noţi conscră prousului convoluţi în imp s urmăor: no Convoluţi unui smnl cu (7.) (7.) δ su u conuc l rzul

Διαβάστε περισσότερα

RĂSUCIREA (TORSIUNEA)

RĂSUCIREA (TORSIUNEA) 5 RĂSUCREA (TORSUNEA) 5 Generliăţi Secţiune unei bre cu ouă xe e simerie ese suusă l răsucire ură că orsorul forţelor ce cţioneză e secţiune brei, clcul în ror cu cenrul e greue l secţiunii, se reuce l

Διαβάστε περισσότερα

4.7 Reprezentarea complexă a seriilor Fourier

4.7 Reprezentarea complexă a seriilor Fourier 4.7 Reprezetre compeă seriior Fourier Presupuem că f ( ) îdepieşte codiţii suficiete petru dezvotre î serie Fourier. Atuci pote fi reprezettă pe [, ] cu seri: f b + ( cos + si ) f cos d,,, b f si d,, Foosid

Διαβάστε περισσότερα

4. Ecuaţii diferenţiale de ordin superior

4. Ecuaţii diferenţiale de ordin superior 4.. Ecuaţii liiare 4. Ecuaţii difereţiale de ordi superior O problemã iportatã este rezolvarea ecuaţiilor difereţiale de ordi mai mare ca. Sut puţie ecuaţiile petru care se poate preciza forma aaliticã

Διαβάστε περισσότερα