EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "EcuaŃii de gradul al doilea ax 2 + bx + c = 0, a,b,c R, a 0 1. Formule de rezolvare: > 0 b x =, x =, = b 2 4ac; sau"

Transcript

1 EcuŃii de grdul l doile x + x + c = 0,,,c R, 0 Formule de rezolvre: > 0 + x =, x =, = c; su ' + ' ' ' x =, x =, =, = c Formule utile în studiul ecuńiei de grdul l II-le: x + x = (x + x ) x x = S P 3 x + x 3 = (x + x ) 3 3x x (x + x ) = S 3 SP x + x = (x + x ) x x = S S P + P RelŃii între coeficienńi şi rădăcini: x+ x = c x x = 3 DiscuŃi nturii şi semnul rãdãcinilor în funcńie de semnele lui = c, P = x x, S = x + x P S Ntur şi semnul rãdãcinilor < ± i Rãdãcini complexe: x =, = Rãdãcini rele şi egle x = x = P > 0 S > 0 Rãdãcini rele pozitive > 0 P > 0 S < 0 Rãdãcini rele negtive x x P < 0 S > 0 Rãdãcini rele şi de semne contrre; ce pozitivã este mi mre decât vlore solut celei negtivi P < 0 S < 0 Rãdãcini rele şi de semne contrre; ce negtivã este mi mre în vlore solutã Semnul funcńiei f:r R, f(x) = x + x + c,,,c R > 0: 0, x < x x - x x + f(x) semnul lui 0 semn contrr lui 0 semnul lui = 0 x - x = x + f(x) semnul lui 0 semnul lui < 0 x - + f(x) semnul lui

2 5 Grficul funcńiei f:r R, f(x) = x + x + c,,,c R este o prolã Acestã funcńie se pote scrie şi su form f ( x) = x+ +, numitã formã cnonicã Y > 0 > 0 A(x,0) B(x,0) C(0,c) C V, x x O A B x D Mximul su minimul funcńiei de grdul l doile Dcã > 0, funcńi f(x) = x + x + c re un minim egl cu relizezã pentru x = Dcã < 0, funcńi f(x) = x + x + c re un mxim egl cu relizezã pentru x =, minim ce se, mxim ce se 7 Intervle de monotonie pentru funcńi de grdul l doile Teoremã Fie funcńi de grdul l doile f(x) = x + x + c, 0 Dcã > 0, funcńi f este strict descrescãtore pe intervlul (, şi strict crescãtore pe intervlul, + ) Dcã < 0, funcńi f este strict crescãtore pe intervlul (, şi strict descrescãtore pe intervlul, + ) OservŃie: Intervlele (, şi, + ) se numesc intervle de monotonie le funcńiei f

3 3 Descompunere trinomului X + X + c,,,c R, 0, x şi x fiind rãdãcinile trinomului > 0, f(x) = (X x )(X x ); = 0, f(x) = (X x ) ; 3 < 0, f(x) este ireductiil pe R Scriere ecuńii de grdul l doile când se cunosc sum şi produsul rãdãcinilor ei: x Sx + P = 0, cu S = x + x şi P = x x Teoremã: EcuŃiile x + x + c = 0 şi x + x + c = 0,,,c,,,c R,, 0, u cel puńin o rãdãcinã comunã dcã şi numi dcã: (c c) ( )(c c) = 0 CondiŃii necesre şi suficiente pentru c numerele rele dte α şi β sã fie în numite relńii cu rãdãcinile x şi x le ecuńiei de grdul l doile f(x)=x + x + c,,c R, 0, respectiv, pentru c f(x) sã pãstreze un semn constnt x,x R Nrcrt RelŃii între x, x, α şi β CondiŃii necesre şi suficiente α < x < β < x su x < α < x <β α < x x < β 3 x < α < β < x f(α )f(β) < 0 = c = 0 f(α) > 0 3 f(β) > 0 α < 5 β > x < α < x f(α) < 0 5 α < x x f(α) > 0 = 0 6 x x < α f(α) < 0 f(β) < 0 cee ce trge dupã sine >0 3 α < = 0 f(α) > 0 3 < α 7 f(x) = 0, x R 0 > 0 8 f(x) 0, x R 0 < 0

4 Proleme propuse Să se clculeze +, ştiind că x şi x sunt soluńiile ecuńiei x x =0 x x Să se clculeze sum soluńiilor întregi le inecuńiei x 5x+5 3 Fie funcńi f :R R, f (x)=mx 8x 3, unde m este un număr rel nenul Să se determine m ştiind că vlore mximă funcńiei f este eglă cu 5 Fie funcńiile f,g:r R, f (x)=x x+ şi g(x)=x+ Să se clculeze coordontele punctelor de intersecńie le grficelor funcńiilor f şi g 5 Să se clculeze x +x +x x ştiind că x şi x sunt soluńiile ecuńiei x x =0 6 Se consideră funcńi f :R R, f (x)=mx mx+,m0r* Să se determine numărul rel nenul m ştiind că vlore minimă funcńiei este eglă cu 7 Să se determine m0r, ştiind că {x0r x (m+)x+m+=0}={} 8 Se consideră funcńi f :R R, f (x)=x 5 Să se clculeze f( 5)Af( )AAf(0)AAf()Af(5) 9 Se consideră funcńiile f,g:r R, f (x)=3x 3x+şi g(x)=x Să se determine soluńiile rele le ecuńiei f(x) = g(x) 0 Se consideră funcńi f :R R, f (x)=x x+30 Să se clculeze f(0)af()aaf(6) Fie funcńi f :R R, f (x)=x +5x+m+6 Să se determine vlorile numărului rel m ştiind că f (x) 0, pentru x0r Să se determine o ecuńie de grdul l II-le le cărei soluńii x şi x verifică simultn relńiile x +x = şi x x = 3 Se consideră funcńi f :R R, f (x)=x 3x+ Să se clculeze f(0)af()a Af(008) Să se determine o ecuńie de grdul l II-le le cărei soluńii x şi x verifică simultn relńiile x +x = şi x x = 3 5 Să se clculeze distnń dintre punctele de intersecńie le reprezentării grfice funcńiei f:r R,f(x)= x +x+8, cu x Ox 6 Fie funcńi f :R R, f (x)=x 8x+7 Să se clculeze distnń dintre punctele determinte de intersecńi grficului funcńiei f cu x Ox 7 Se consideră funcńi f :R R, f (x)=x 6x+5 Să se determine punctul de intersecńie l dreptei de ecuńie y = cu reprezentre grfică funcńiei f 8 Să se demonstreze că ecuńi x x++ =0 nu dmite soluńii rele, oricre r fi 0R* 9 Să se determine vlorile rele le lui m, ştiind că vlore minimă funcńiei f :R R, f (x)=x mx+m este eglă cu 0 Să se determine m0r, ştiind că soluńiile x,x le ecuńiei x (m+)x+3m=0 verifică relńi x +x +x x = Se consideră ecuńi x +3x 5=0 cu soluńiile x şi x Să se clculeze x + x Să se rte că (x )(x )>x 3, oricre r fi x0r

5 3 Se consideră ecuńi x +mx+=0 cu soluńiile x şi x Să se determine vlorile rele le lui m pentru cre (x +x ) x x =5 Să se determine funcńi de grdul l doile f :R R, f (x)=x (m+)x+3, m0r, l cărei grfic re scis vârfului eglă cu 7 5 Să se rezolve inecuńi(x ) 9 6 Să se demonstreze că prol socită funcńiei f :R R, f(x)=x mx+m + este sitută desupr xei Ox, oricre r fi m0r 7 Se consideră funcńi f :R R, f (x)=x +mx+ Să se determine numerele rele m pentru cre minimul funcńiei f este egl cu 8 Să se formeze o ecuńie de grdul l doile, ştiind că cest re soluńiile x = şi x = 3 x+ y = 0 9 Să se rezolve sistemul de ecuńii x x+ y= 0 30 Să se determine soluńiile rele le inecuńiei x Se consideră funcńi f :R R, f (x)=x +3 Să se rezolve inecuńi f(x) 3 Să se determine coordontele vârfului prolei socite funcńiei f:r R, f(x)=x +x 5 33 Se consideră ecuńi x x+m=0 cu soluńiile x şi x Să se determine numărul 3 rel m pentru cre + = x + x + 3 Se consideră funcńi f :R R, f (x)=x 3x+ Să se determine numerele rele m pentru cre punctul A(m, ) prńine grficului funcńiei f 35 Să se determine funcńi de grdul l II-le l cărei grfic conńine punctele A(;3), B(0;5) şi C( ;) 36 Să se determine vlorile rele le prmetrului m ştiind că soluńiile x şi x le ecuńiei x +(m )x+3=0 verifică eglitte x = 3x 37 Să se determine m0r* stfel încât grficul funcńiei f :R R, f (x)=mx x+ să conńină punctul A(,3) 38 Să se determine vlorile rele le lui m ştiind că soluńiile x şi x le ecuńiei x (m +3)x+3=0 verifică eglitte x +x +x x =7 39 Să se determine vlorile rele le prmetrului m stfel încât ecuńi x +mx+9=0 să dmită două soluńii egle 0 Să se rte că soluńiile x şi x le ecuńiei x x =0 verifică relńi x + x = x + x + Să se determine vlorile rele le numărului m ştiind că vlore minimă funcńiei f :R R, f (x)=x mx+3m este eglă cu Să se determine vlorile rele nenule le lui m pentru cre grficul funcńiei f:r R, f (x)=mx (m+)x+ este tngent xei Ox 3 Să se determine numerele rele m ştiind că vlore mximă funcńiei f:r R, f (x)= x +x m+3 este eglă cu 0 5

6 Să se determine vlorile rele le numărului m ştiind că soluńiile x şi x le ecuńiei x mx+m+=0 verifică eglitte x x =x +x 5 Ştiind că x şi x sunt soluńiile ecuńiei x 008x+=0, să se clculeze + x x 6 Să se determine vlorile rele le lui m, ştiind că soluńiile x şi x le ecuńiei x mx m 6=0 verifică relńi (x +x )+x x =0 7 Să se determine m rel stfel încât soluńiile x şi x le ecuńiei x +x+6m =0 să verifice relńi x +x =x x 8 Să se determine punctele de intersecńie le grficului funcńiei f :R R, f(x)=x cu xele de coordonte 9 Să se demonstreze că pentru orice m0r ecuńi x +mx m =0 re două soluńii rele distincte 50 Să se determine vlorile rele le lui x pentru cre x(x ) x+5 5 Să se determine vlorile rele le numărului m stfel încât reprezentre grfică funcńiei f :R R, f (x)=x (m )x m să fie tngentă l x Ox 5 Să se determine soluńiile rele le inecuńiei x 5x Se consideră funcńi f:r R, f(x)=x x+, unde 0R Să se determine stfel încât minimul funcńiei f să fie 5 Să se rte că soluńiile x şi x le ecuńiei x (m 3)x+m =0 verifică eglitte x +x x x =, m0r 55 Se consideră funcńi f :R R, f (x)=x x+ Să se rte că vârful prolei socite funcńiei re cooordontele egle 56 Să se rte că mulńime {x0r x (m+)x+m +m=0} re două elemente, oricre r fi m0r 57 Să se formeze o ecuńie de grdul l doile, le cărei soluńii verifică relńiile x+ y= xy= 30 y= x 58 Să se rezolve sistemul y = x 3x Să se rte că, oricre r fi m0r, prol socită funcńiei f:r R, f(x)=x mx+m + este sitută desupr xei Ox 60 Să se determine vlore prmetrului rel m, ştiind că soluńiile x şi x le ecuńiei x (m )x m=0 verifică relńi x +x =(x x +) x+ y= 3 6 Să se rezolve sistemul x + x= y 6 Să se rezolve în mulńime numerelor rele inecuńi (x )(x+) x+ 63 Se consideră funcńi f:r R, f(x)= x +x+6 Să se rte că f (x) f (), oricre r fi x0r 6 EcuŃi x +px p=0, cu p0r, re soluńiile x şi x Să se verifice dcă expresi x +x x x este constntă 6

7 65 Fie funcńi f :R R, f (x)=x (m+)x+m, cu m0r Să se rte că soluńiile x şi x le ecuńiei f (x)= 0 verifică relńi x +x x x = 66 Să se demonstreze că prol socită funcńiei f:r R, f(x)=x x+ este tngentă xei Ox x+ y= 6 67 Să se rezolve sistemul de ecuńii xy= 8 x+ y= 5 68 Să se rezolve sistemul de ecuńii xy= 6 69 Se consideră ecuńi de grdul l doile x x+m=0 Să se determine m0r stfel încât ecuńi să dmită soluńii de semne contrre 70 Să se rte că vârful prolei socite funcńiei f:r R, f(x)=x x 3 se flă pe drept de ecuńie 3x+y+=0 7 Să se rezolve inecuńi (x )(x+) 0 7 Să se rte că produsul soluńiilor ecuńiei mx 008x m=0 este constnt, oricre r fi m0r* 73 Se consideră funcńiile f,g:r R, f(x)=x x+, g(x)=x Să se rezolve ecuńi f(x)+g(x)= 7 Se consideră funcńi f:r R, f(x)=x 3x+ Să se clculeze produsul f( )Af( )Af(0)Af()Af() 75 Se consideră funcńi f:r R, f(x)=x +mx+ Să se determine numărul rel m stfel încât minimul funcńiei să fie egl cu 76 Se consideră funcńi f:r R, f(x)=x x+3 Să se demonstreze că f (x), oricre r fi numărul rel x 77 Să se determine numărul rel m stfel încât soluńiile ecuńiei x mx =0 să fie numere rele opuse 78 Să se determine prmetrul rel m stfel încât soluńiile ecuńiei x 3x+m=0 să fie inverse un ltei 79 Să se determine m0r* stfel încât soluńiile ecuńiei x 3x+m=0 să iă semne opuse 80 Să se determine coordontele vârfului prolei socite funcńiei f:r R, f(x)=x x+9 7

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi

Analiza matematică, clasa a XI-a probleme rezolvate Rolul derivatei întâi Anliz mtemtică, cls XI- proleme rezolvte Rolul derivtei întâi Virgil-Mihil Zhri DefiniŃie: Punctele critice le unei funcńii derivile sunt rădăcinile (zerourile) derivtei întâi DefiniŃie: Fie f:i R, cu

Διαβάστε περισσότερα

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1.

π } R 4. ctg:r\{kπ} R FuncŃii trigonometrice 1. DefiniŃii în triunghiul dreptunghic 2. ProprietãŃile funcńiilor trigonometrice 1. Trigonometrie FuncŃii trigonometrice. DefiniŃii în triunghiul dreptunghic b c b sin B, cos B, tgb c C c ctgb, sin B cosc, tgb ctgc b b. ProprietãŃile funcńiilor trigonometrice. sin:r [-,] A c B sin(-x)

Διαβάστε περισσότερα

TEMA 3. Analiză matematică - clasa a XI-a (3h/săpt.), clasa a XII-a (3h/săpt.)

TEMA 3. Analiză matematică - clasa a XI-a (3h/săpt.), clasa a XII-a (3h/săpt.) LECłII DE SINTEZĂ în vedere pregătirii sesiunii iulie-ugust emenului de BACALAUREAT - M pentru cndidńii solvenńi i liceelor din filier tehnologică, profil: servicii, resurse nturle şi protecńi mediului,

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n.

Seminar 3. Serii. Probleme rezolvate. 1 n . 7. Problema 3.2. Să se studieze natura seriei n 1. Soluţie 3.1. Avem inegalitatea. u n = 1 n 7. = v n. Semir 3 Serii Probleme rezolvte Problem 3 Să se studieze tur seriei Soluţie 3 Avem ieglitte = ) u = ) ) = v, Seri = v este covergetă fiid o serie geometrică cu rţi q = < Pe bz criteriului de comprţie cu

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT

Tit Tihon CNRV Roman FISA DE EVALUARE A UNITATII DE INVATARE. Caracteristici vizibile observate PUNCTAJ ACORDAT Tit Tihon CNRV Romn FISA DE EVALUARE A UNITATII DE INVATARE Nr. crt 5 6 7 8 9 0 Nr. crt Nr. crt Crcteristici vizibile observte PUNCTAJ ACORDAT preciere D+ Nu Observţii privind preciere folosire mnulului

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

TITULARIZARE 2002 Varianta 1

TITULARIZARE 2002 Varianta 1 TITULARIZARE 2002 Vrint 1 A. Omotetii plne: definiţie, oricre două triunghiuri omotetice sunt semene, mulţime omotetiilor de celşi centru formeză un grup belin izomorf cu grupul multiplictiv l numerelor

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA FINALĂ - 22 mai 2010

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI ETAPA FINALĂ - 22 mai 2010 ETAPA FINALĂ - mi 00 BAREM DE CORECTARE CLASA A IX A. Pe o dreptă se consideră 00 puncte, cre formeză 009 segmente, fiecre de cm. Pe primul segment, desupr dreptei, construim un pătrt, pe l doile segment,

Διαβάστε περισσότερα

, m ecuańii, n necunoscute;

, m ecuańii, n necunoscute; Sisteme liniare NotaŃii: a ij coeficienńi, i necunoscute, b i termeni liberi, i0{1,,..., n}, j0{1,,..., m}; a11 1 + a1 +... + a1 nn = b1 a11 + a +... + an n = b (S), m ecuańii, n necunoscute;... am11 +

Διαβάστε περισσότερα

Seminariile 1 2 Capitolul I. Integrale improprii

Seminariile 1 2 Capitolul I. Integrale improprii Cpitolul I: Integrle improprii Lect. dr. Lucin Mticiuc Fcultte de Mtemtică Clcul integrl şi Aplicţii, Semestrul I Lector dr. Lucin MATICIUC Seminriile Cpitolul I. Integrle improprii. Să se studieze ntur

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

VARIANTE PENTRU BACALAUREAT, M1-1, 2007

VARIANTE PENTRU BACALAUREAT, M1-1, 2007 VARIANTE PENTRU BACALAUREAT, M-, 27 VARIANTA SUBIECTUL I. a) Să se determine ecuația dreptei care trece prin punctul A(2; 5;3) și este paralelă cu dreapta x = y 2 4 6 = z +3 9. b) Să se determine valoarea

Διαβάστε περισσότερα

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu.

Anexa B2 Elemente de reprezentare grafică în plan şi în spaţiu. Anex B Elemente de reprezentre grfică în pln şi în spţiu. 1. Tipuri de sisteme de coordonte. Coordonte crteziene Fie xoy un sistem de coordonte crteziene în pln. Fie P un punct în pln vând coordontele

Διαβάστε περισσότερα

Integrale cu parametru

Integrale cu parametru 1 Integrle proprii cu prmetru 2 3 Integrle proprii cu prmetru Definiţi 1.1 Dcă f : [, b ] E R, E R este o funcţie cu propriette că pentru orice y E, funcţi de vribilă x x f (x, y) este integrbilă pe intervlul

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice

Asupra unei metode pentru calculul unor integrale definite din functii trigonometrice Educţi Mtemtică Vol. 1, Nr. (5), 59 68 Asupr unei metode pentru clculul unor integrle definite din functii trigonometrice Ion Alemn Astrct In this pper is presented one method of clcultion for the trigonometricl

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn.

Sunt variabile aleatoare care iau o infinitate numărabilă de valori. Diagrama unei variabile aleatoare discrete are forma... f. ,... pn. 86 ECUAŢII 55 Vriile letore discrete Sut vriile letore cre iu o ifiitte umărilă de vlori Digrm uei vriile letore discrete re form f, p p p ude p = = Distriuţi Poisso Are digrm 0 e e e e!!! Se costtă că

Διαβάστε περισσότερα

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA

METODE ŞI ETAPE NECESARE PENTRU DETERMINAREA ETOE ŞI ETAPE ECESARE PETRU ETERIAREA UGHIULUI A OUĂ PLAE PROF. IACU ARIA, ŞCOALA ROUL LAEA, ORAVIłA, CARAŞ- SEVERI (). Unghi diedru. Fie α şi β două semiplne vând ceeşi frontieră (muchie)d. Se numeşte

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Integrale generalizate (improprii)

Integrale generalizate (improprii) Integrle generlizte (improprii) Fie f : [, ] R, definită prin =, α > 0. Pentru u, funţi α f este integrilă pe intervlul [, u] şi u ln α+ α+ u u = ( α)u α α, α = ln u, α =. Dă treem l limită pentru u oţinem

Διαβάστε περισσότερα

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI"

CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI INSPECTORATUL ŞCOLAR JUDEŢEAN IAŞI CONCURSUL NAŢIONAL DE MATEMATICĂ APLICATĂ "ADOLF HAIMOVICI" ETAPA JUDEŢEANĂ 8 mrtie 04 Profil rel, specilizre ştiinţele nturii FACULTATEA CONSTRUCŢII DE MAŞINI ŞI MANAGEMENT

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Tema: şiruri de funcţii

Tema: şiruri de funcţii Tem: şiruri de fucţii. Clculţi limit (simplă) şirului de fucţii f : [ 0,], f ( ) R Avem lim f ( 0) = ir petru 0, vem lim f ( ) Î cocluzie, dcă otăm f: [ 0, ], f ( ) =, = 0 =, 0 + + = +, tuci lim f f =..

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a Ediţia a XVII-a, 7 8 Aprilie 207 SUBIECTUL CLASA a IV-a Într-o zi de Duminică, la Salina Turda, a venit un grup de vizitatori, băieți și de două ori mai multe fete. Au intrat în Salină 324 băieți și 400

Διαβάστε περισσότερα

Axiomele geometriei în plan şi în spańiu

Axiomele geometriei în plan şi în spańiu xiomele geometriei în pln şi în spńiu 1 xiomele geometriei în pln şi în spńiu unoştinńele de geometrie cumulte în clsele gimnzile pot fi încdrte într-un sistem logic de propozińii mtemtice: xiome, definińii,

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

TEMA 5: DERIVATE ŞI DIFERENȚIALE

TEMA 5: DERIVATE ŞI DIFERENȚIALE TEMA 5: DERIVATE ŞI DIFERENȚIALE 35 TEMA 5: DERIVATE ŞI DIFERENȚIALE Obiective: Deinire principlelor proprietăţi mtemtice le uncţiilor, le itelor de uncţii şi le uncţiilor continue Deinire principlelor

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

GRADUL II 1995 CRAIOVA PROFESORI I

GRADUL II 1995 CRAIOVA PROFESORI I GRADUL II 1995 CRAIOVA PROFESORI I 1. Fie f : R R definită prin f(x) = x(1+e x ). a) Să se arate că f este indefinit derivabilă şi că f (n) (x) = a n e x +b n xe x, ( ) n 3, ( ) x R. Deduceţi că a n+1

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA

CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA CULEGERE DE PROBLEME DE MATEMATICA PENTRU ADMITEREA LA UNIVERSITATEA POLITEHNICA DIN TIMISOARA î ul uiversitr 9 PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii lor

Διαβάστε περισσότερα

CAPITOLUL 1. ELEMENTE DE ALGEBRA

CAPITOLUL 1. ELEMENTE DE ALGEBRA CAPITOLUL. ELEMENTE DE ALGEBRA. Mulţimi Definiţi.. (Cntor) Prin mulţime se înţelege un nsmlu de oiecte ine determinte şi distincte, cre formeză o entitte. Oiectele cre formeză o mulţime se numesc elementele

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2016 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii ADOLF HAIMOVICI, 206 Clasa a IX-a profil științe ale naturii, tehnologic, servicii. Se consideră predicatul binar p(x, y) : 4x + 3y = 206, x, y N și mulțimea A = {(x, y) N N 4x+3y = 206}. a) Determinați

Διαβάστε περισσότερα

sin d = 8 2π 2 = 32 π

sin d = 8 2π 2 = 32 π .. Eerciţii reolvte. INTEGRALA E UPRAFAŢĂ E AL OILEA TIP. ÂMPURI OLENOIALE. Eerciţiul... ă se clculee dd dd dd, () fiind fţ eterioră sferei + + 4. oluţie. Avem: sin θ cos φ, sin θ sin φ, cos θ, θ[, π],

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA

TESTE GRILĂ DE MATEMATICĂ. pentru examenul de bacalaureat şi admiterea în învăţământul superior UNIVERSITATEA POLITEHNICA DIN TIMISOARA TESTE GRILĂ DE MATEMATICĂ petru emeul de bcluret şi dmitere î îvăţămâtul superior l UNIVERSITATEA POLITEHNICA DIN TIMISOARA PREFAŢĂ Prezet culegere se dreseză deopotrivă elevilor de liceu, î scopul istruirii

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I.

ANALIZĂ MATEMATICĂ pentru examenul licenţă, manual valabil începând cu sesiunea iulie 2013 Specializarea Matematică informatică coordonator: Dorel I. ANALIZĂ MATEMATICĂ pentru exmenul licenţă, mnul vlbil începând cu sesiune iulie 23 Specilizre Mtemtică informtică coordontor: Dorel I. Duc Cuprins Cpitolul. Serii de numere rele. Noţiuni generle 2. Serii

Διαβάστε περισσότερα

TESTE GRILĂ DE MATEMATICĂ 2018

TESTE GRILĂ DE MATEMATICĂ 2018 TESTE GRILĂ DE MATEMATICĂ 8 A U T O R I Prof.univ.dr. Vasile Câmpian Prof.univ.dr. Iuliu Crivei Prof.univ.dr. Bogdan Gavrea Prof.univ.dr. Ioan Gavrea Prof.univ.dr. Dumitru Mircea Ivan Prof.univ.dr. Nicolaie

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate

CURS I II. Capitolul I: Integrala definită. Primitive. 1 Integrabilitate Riemann. Criterii de integrabilitate Cpitolul I: Integrl definită. Primitive Conf. dr. Lucin Mticiuc Fcultte de Hidrotehnică, Geodezie şi Ingineri Mediului Anliz Mtemtică II, Semestrul II Conf. dr. Lucin MATICIUC CURS I II Cpitolul I: Integrl

Διαβάστε περισσότερα

a) De câte cămări are nevoie hârciogul pentru a depozita toate semințele? b) După al câtelea drum a umplut complet a doua cămară?

a) De câte cămări are nevoie hârciogul pentru a depozita toate semințele? b) După al câtelea drum a umplut complet a doua cămară? CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2009 Cls V- 1. Un hârciog cră semințe într-o glerie. L primul drum duce cu el o sămânță, l l doile duce 3 semințe, l l treile duce 5 semințe, etc.,

Διαβάστε περισσότερα

EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă

EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă Maranda Linţ Dorin Linţ Rozalia Marinescu Dan Ştefan Marinescu Mihai Monea Steluţa Monea Marian Stroe Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă clasa a VIII-a mate 000

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

BACALAUREAT 2007 SESIUNEA IULIE M1-1

BACALAUREAT 2007 SESIUNEA IULIE M1-1 BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului

Διαβάστε περισσότερα

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare

CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE. 6.1 Forme liniare Algebră liniră CAPITOLUL 6 FORME LINIARE, BILINIARE ŞI PĂTRATICE 6 Forme linire Fie V un spţiu vectoril peste un corp K Definiţi 6 Se numeşte formă liniră su funcţionlă liniră o plicţie f : V K cre stisfce

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

Probleme pentru clasa a XI-a

Probleme pentru clasa a XI-a Probleme pentru clasa a XI-a 1 ( ) 01. Fie A si B doua matrici de ordin n cu elemente numere reale, care satisfac relatia AB = A + B. a) Sa se arate ca det(a 2 + B 2 ) 0. b) Sa se arate ca rang A + B =

Διαβάστε περισσότερα

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ

CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ CAPITOLUL VII EXTINDERI ALE CONCEPTULUI DE INTEGRALĂ DEFINITĂ În teori Integrlei definite numită şi Integrl Riemnn, s- urmărit c, l numite funcţii rele de o vriilă relă, dte pe mulţimi din R, după o schemă

Διαβάστε περισσότερα

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1)

Universitatea din Bucureşti Facultatea de Matematică şi Informatică. Algebră (1) Universitatea din ucureşti.7.4 Facultatea de Matematică şi Informatică oncursul de admitere iulie 4 omeniul de licenţă alculatoare şi Tehnologia Informaţiei lgebră (). Fie x,y astfel încât x+y = şi x +

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

GRADUL II n α+1 1

GRADUL II n α+1 1 GRADUL II 2007 BUCUREŞTI 1. Fie A un inel cu unitate. Notăm cu Z(A) = {a A ( )x A,ax = xa}. Să se arate că: a) Z(A) este un subinel comutativ al lui A (numit centrul inelului A). b) Dacă B este un alt

Διαβάστε περισσότερα

Teste admitere Facultatea de Automatică şi Calculatoare Domeniul Calculatoare şi Tehnologia Informaţiei

Teste admitere Facultatea de Automatică şi Calculatoare Domeniul Calculatoare şi Tehnologia Informaţiei Teste admitere Facultatea de Automatică şi Calculatoare Domeniul Calculatoare şi Tehnologia Informaţiei 0 aprilie 04 Cuprins Algebră 5 Analiza 39 3 Trigonometrie 6 4 Geometrie 69 5 Modele teste 73 5.

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma: CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita

REZUMAT CURS 3. i=1. Teorema 2.2. Daca f este (R)-integrabila pe [a, b] atunci f este marginita REZUMAT CURS 3. Clse de uctii itegrbile Teorem.. Dc :, b] R este cotiu tuci este itegrbil pe, b]. Teorem.2. Dc :, b] R este mooto tuci este itegrbil pe, b]. 2. Sume Riem. Criteriul de itegrbilitte Riem

Διαβάστε περισσότερα

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =.

1. Completati caseta, astfel incat propozitia obtinuta sa fie adevarata lg 4 =. Copyright c ONG TCV Scoala Virtuala a Tanarului Matematician Ministerul Educatiei al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 4 iunie Profilul real Timp

Διαβάστε περισσότερα

Soluţiile problemelor propuse în nr. 2/2010

Soluţiile problemelor propuse în nr. 2/2010 Soluţiile problemelor propuse în nr. /00 Clsele primre P.96. Mior rnjeză ptru mărgele, două lbe şi două glbene, un lângă lt, pe o ţă. În câte feluri pote rnj Mior mărgelele? (Cls I) Inst. Mri Rcu, Işi

Διαβάστε περισσότερα

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE

EL-nesss.r.l. CONDENSATOARE DE MEDIE TENSIUNE ONDENSATOARE DE MEDIE TENSIUNE EL-nesss.r.l. ondenstorele sunt destinte imunttirii fctorului de putere si filtrrii rmonicilor superiore in retelele de medie tensiune. Dielectricul este de tip ll-film impregnt

Διαβάστε περισσότερα

DRUMURI, ARCE ŞI LUNGIMILE LOR

DRUMURI, ARCE ŞI LUNGIMILE LOR Drumuri, rce, lugimi Virgil-Mihil Zhri DRUMURI, ARCE ŞI LUNGIMILE LOR FucŃiile cu vrińie mărgiită u fost itroduse de Jord Cmille (88-9) şi utilizte de el cu oczi studiului prolemei rectificilităńii curelor,

Διαβάστε περισσότερα