The tables gives expressions for VaR p (X) and ES p (X) when X is an absolutely continuous random variable specified by the stated pdf and cdf.
|
|
- Ἀντιόπη Ζέρβας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 The tbles gies eressions for VR X nd ES X when X is n bsolutely continuous rndom rible secified by the stted df nd cdf. Eonentil Kumrswmy eonentil df cdf VR X ES X e b e e e b e e b /b / /b / Eonentited eonentil nerse eonentited eonentil eonentil Logistic eonentil e e e e eb Bb e e e e / e / e / / e b b e e / b / Eonentil etension e e / / Mrshll- Olkin eonentil Perks Berd e e eβ eβ eβ ρ ρ/β ρ eβ ρ/β e e eβ ρ ρ/β ρ eβ ρ/β β β ρ ρ ρ ρ/β β β β β ρ ρ ρ ρ/β Gomertz bη eb e η η eb e η η eb b η b η Gomertz Liner filure rte bη eb Bcd e dη e dη eb e η η eb c b e b / eηη eb c d b η c d e b b / b b η c d b b b Preto ck c c K K c K /c Kc /c c Kc c
2 Kumrswmy Preto F Preto Preto Preto ositie stble bck c c K c K c b K d B d d d d d d d d d /c k c k < k/c if c > > k/c if c < if c = K d d Bcd K c K ν ν e ν K c b K d d d d d d d /b / /c d d d d /c c k k c c K c d K e ν c d / e /ν K /b / /c d d d d d d k c kc cc k cc K / c d e /ν Gmm Kumrswmy gmm β eβ Γ bβ eβ γ β Γ γ β b Γ γβ Γ γ β Γ b β Q β Q β Q /b / β Q /b / Nkgmi Reflected gmm Comound Llce gmm Log gmm m m Γm m m e m Γ e < < β β < < r r Γr Q m m m Q m Q if Q if > β if β if > Qr Q if / Q if > / β / β if / β / β if > / e Q r m Q m Q if / / Q / Q if > / β / β/ if / β / β/ if > / e Q r
3 nerse gmm β eβ/ Γ Q β/ β β Q Q Stcy c cγ e/ c cγ Γγ Q γ c Q γ /c Q γ /c Lindley e e W e W e Lindley e e e W / e W / e b Bb b b b Uniform b b b b b uniform hkc c k c h k c h k /c /h /c k /c k/c /c /h Power function Power function b b / / / b /b b /b b Log bet d c b Bb c d b c d c b d c c dc b c dc b Comlementry bet B b b b b b b b Libby- Noick bet b Bb b b b b b b McDonld- Richrds bet r b r r b b r b Bb b /r r b br b/r /r b b /r b /r bet Arcsine c d b Bbdc b c d π b b c b dc π rcsin b c d c b sin π dc b c b b sin π 3
4 Tringulr bet if < bc if c b bbc if c < b if b < c c c b Bb if < bc if c b bbc if c < b if b < c b b c if < < c b b b b c if c b < 3 b c if < < c b b c cb 3 /c b b b c 3/ 3 if c b < b /c nerse bet Bb b b b b b b inerse bet Two sided ower c Bcd cd if < if < < Kumrswmy b b Norml Kumrswmy norml µ < < b µ Φ µ Φ µ < < b / c d cd cd if < if < < / if < / if < < b /b / µ Φ Φ µ b / cd cd / µ Φ µ µ Φ /b / if < / if < < /b / Φ Φ µ /b / µ / Q Eonentil ower / Γ / e µ < < Q µ if µ Q µ if > µ µ / Q / if / µ / Q / if > / / if / µ / / Q / / Q / / if > / 4
5 Skewed eonentil ower if K e K e if where K = / Γ/ Q if Q if Q if Q if > Q if Q Q Asymmetric eonentil ower norml Hlf norml Kumrswmy hlf norml Student s t K e if K e if where K = = µ Bb / Γ/ K K K Φ µ Φ b µ < < b Φ Φ b Γ n nπγ n n n < < if Q Q if Φ µ Q if b µ Φ Φ Φ Φ Φ b sign sign n n n Q if > / /b nsign if > Q if Q Q if > µ b Φ b n where = if < / = if / Φ Φ /b / n sign n where = if < / = if / 5
6 K ν ν Skewed Student s t Asymmetric Student s t Hlf Student s t ν if K ν ν ν if where Kν = Γν/ πνγν/ K ν ν ν if K ν ν ν if where Kν = Γν/ πνγν/ = Γ n nπγ n n n Kν Kν Kν min F ν F ν m where F ν is Student s t cdf min F ν m F ν where F ν is Student s t cdf n n Fν Fν where F min m is ν Student s t inerse cdf Fν min Fν m where Fν is Student s t inerse cdf n n n F ν min F ν m F ν min F ν m n n n Cuchy π µ < < π rctn µ µ tn π µ tn π Log Cuchy Hlf Cuchy Llce Poirud- Csno- Thoms- Agnn Llce π µ π e µ < < e if e if > π rctn µ π rctn µ e if < µ e µ if µ e if e if > e µ tn π π tn µ if < / µ if / if if > eµ e tn π tn π µ if < / µ if / if if > 6
7 Holl- Bhttchry Llce McGill Llce Log Llce Asymmetric Llce e if e if > ψ e ψ if e if > β β δ β β if δ βδ β if > δ κ τ κ e κ τ if κ τ κ e κτ if < e e if e e if > e ψ if e if > β δ β β if δ βδ β if > δ κ e κ τ if κ κ e κτ if < if if > ψ if / if > / δ β if /β β δ β / if > β τ κ if κτ if < κ κ κ κ κ κ if if > ψ if / ψ if > / β /β if β δβ β δ /ββ / β / δ β/ δ / / β if > β τ κ κ τ κ κ κ κ τκ κ κ κ κ τ κ 4 κ κ τ κ τ κ if κ κ κτ κ κτ if < κ κ 7
8 / δ Asymmetric ower δ / Γ / e δ if δ / Γ / e δ if δ / if δ / if / δ / if / δ / if > / if / δ / / δ Logistic Hyerbolic secnt istic istic istic V e µ e µ < < sech π < < e e µ µ < < B e µ µ e < < B e µ e µ < < e µ e π rctn π e e e µ µ µ µ π tn µ π µ µ / µ / if > µ π tn π / µ µ Hlf istic Logistic Kumrswmy istic Eonentited istic e e ββ β β β bβ β β β β b β β β /β e/β e/β < < e e β β β b β β β /β B β β e/β β /b / /β / β /b / /β / Hosking istic norml k/k k /k < /k if k > > /k if k < < < if k = µ k /k k µ Φ k k k B k k eµ e µ Φ e Φ 8
9 norml Bb µ Φ µ Φ b µ e µ Φ µ b Φ b eµ e Φ b Burr Burr Burr X b b b b / b bd Bcd bd b cd / kc c c k / b /b /b B /b /b / b c d c d /b c k /k c d /b c d /b /c /c c d /b /k Kumrswmy Burr X Burr X Dgum Lom Lom Gumbel Kumrswmy Gumbel Gumbel Gumbel bkc c c k c k c k b kc c Bb k c c bk cb c b c Bb b e e e < < b e e e e e b < < e Bb e e e e b < < b e b c k b c k b /b / /k /c /k b /c b c b /c / / /b /k /c b /k /c b /c / / / / b / b b / e e e e b < < e e b e b /b / /b / b b / / b b / / Gumbel b Bcd e bd e b c c d b / e b c d / b / / c d 9
10 Fréchet Fréchet Kumrswmy Logistic Ryleigh Mrshll- Olkin e Bb e e e b b e e e b e / e / e / β β β e β e Bb e b e β e e / b e e b e / e / e e β β b / / /b / / / /β e b / b Γ / / b γ / / /b / / / /β / b /c Double c c e < < c e if e if > c c /c if / /c if > / if / / /c / Eonentited ower c c c e / c e / c e e / c / /c /c if > / / /c e / / / /
11 inerse b bc b e c b e c b c /b /b c /b /b generlized Ryleigh Chen BbΓ e γ Γ Q b β β e β e e β b Q β e e Q b Q /β / b /β Xie β β e / β e e e / β e e e / β /β /β Tukey Lmbd Goindrjulu β β β β β β β β Rmberg- Schmeiser β γ δ Freimer β β γ γ β δβ γ δγ γ β β ββ γ γγ Hnkin- Lee C β C B β n Stden- Loots n Stden- King β δ βδ βδ β δ β δ βδ Log e e / / / Eonentil rithmic β eβ eβ eβ β β Eonentil geometric e e e e
12 Eonentil Poisson To- Leone Qudrtic β eβ eβ e b b β b = b 3 β = b e eβ e b β e 3 β 3 β 3 β 3 β 3 /3 β e /b b B /b b 3 β 4 3 β 3 4/3 β 4 Schbe Birnbum Sunders γ γ/ γ / / / γ / / γ γ γ Φ / / γ γ γ 4 γφ 4 γ Φ γ γγ γ γ γφ 4 4 γ Φ etreme lue µ /ξ ξ e /ξ ξ µ µ /ξ if ξ > µ /ξ if ξ < < < if ξ = e /ξ ξ µ µ ξ µ ξ ξ ξ ξ ξ
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%
" #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.
..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
-! " #!$ %& ' %( #! )! ' 2003
-! "#!$ %&' %(#!)!' ! 7 #!$# 9 " # 6 $!% 6!!! 6! 6! 6 7 7 &! % 7 ' (&$ 8 9! 9!- "!!- ) % -! " 6 %!( 6 6 / 6 6 7 6!! 7 6! # 8 6!! 66! #! $ - (( 6 6 $ % 7 7 $ 9!" $& & " $! / % " 6!$ 6!!$#/ 6 #!!$! 9 /!
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =
Probability theory STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (2016) Basic probability theory. One-dimensional random variables
Lund University Centre for Mthemticl Sciences Mthemticl Sttistics STATISTICAL METHODS FOR SAFETY ANALYSIS FMS065 TABLE OF FORMULÆ (06) Probbility theory Bsic probbility theory Let S be smple spce, nd let
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.
Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι
ΖΕΡΔΑΛΗΣ ΣΩΤΗΡΙΟΣ ΤΟ ΟΥΤΙ ΣΤΗ ΒΕΡΟΙΑ (1922-ΣΗΜΕΡΑ) ΘΕΣΣΑΛΟΝΙΚΗ 2005 1
(1922- ) 2005 1 2 .1.2 1.1.2-3 1.2.3-4 1.3.4-5 1.4.5-6 1.5.6-10.11 2.1 2.2 2.3 2.4.11-12.12-13.13.14 2.5 (CD).15-20.21.22 3 4 20.,,.,,.,.,,.,.. 1922., (= )., (25/10/2004), (16/5/2005), (26/1/2005) (7/2/2005),,,,.,..
? 9 Ξ : Α : 4 < ; : ; 4 ϑ Α Λ Χ< : Χ 9 : Α Α Χ : ;: Ψ 8< ;: 9 : > Α ϑ < > = 8 Α;< 4 <9 Ξ : 9 : > Α 4 Α < >
# % & ( ) ) +,. / 0, 1 / )., / 2 (& 3 5 % 6 6 7 8 : ; < : / : ; = 5 >
δ β β γ δ ββ γ α β α α α α α α α α δ δ γ γ δ δ δ δ β β α α α α α α α α β γδ α β γ δ α βγδ αβγδ δγ βα α β γ δ O α β γ δ αγ α γ α γ δ αγδ α αγ γ γ δ γ α γ β β β β β β β α γ β β β β β μ μ β β
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Table A.1 Random numbers (section 1)
A Tables Table Contents Page A.1 Random numbers 696 A.2 Orthogonal polynomial trend contrast coefficients 702 A.3 Standard normal distribution 703 A.4 Student s t-distribution 704 A.5 Chi-squared distribution
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
! # % & ( ) & + #, +. ! # + / 0 / 1 ! 2 # ( # # !! ( # 5 6 ( 78 ( # ! /! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # ## : + 5 ; )!
! # % & ( ) + ! # % & ( ) & + #, +.! # + / 0 / 1! 2 # ( # 1 3 4 3 #!! ( # 5 6 ( 78 ( # 6 4 6 5 1! /! #! / 0, /!) 4 0!.! ) 7 2 ## 9 3 # 78 78 0 ## : + 5 ; )! 0 / )!! < # / ).
Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)
Bsic Formuls. n d =. d b = 3. b d =. sin d = 5. cos d = 6. tn d = n n ln b ln b b cos sin ln cos 7. udv= uv vdu. sin( = cos( π 9. sin ( = cos ( 0. sin( = sin(cos(. cos( =cos (. tn( = cos( sin( 3. sin(b
Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''
Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright
# % % % % % # % % & %
! ! # % % % % % % % # % % & % # ( ) +,+.+ /0)1.2(3 40,563 +(073 063 + 70,+ 0 (0 8 0 /0.5606 6+ 0.+/+6+.+, +95,.+.+, + (0 5 +//5: 6+ 56 ;2(5/0 < + (0 27,+/ +.0 10 6+ 7 0, =7(5/0,> 06+?;, 6+ (0 +9)+ 5+ /50
Review Exercises for Chapter 7
8 Chapter 7 Integration Techniques, L Hôpital s Rule, and Improper Integrals 8. For n, I d b For n >, I n n u n, du n n d, dv (a) d b 6 b 6 (b) (c) n d 5 d b n n b n n n d, v d 6 5 5 6 d 5 5 b d 6. b 6
ΟΔΗΓΙΕΣ. Κάθε ΟΡΘΗ απάντηση βαθμολογείται με 5 μονάδες. Κάθε ΛΑΘΟΣ απάντηση με -1 μονάδα, και Μη απαντημένη άσκηση βαθμολογείται με 0.
Όνομα: Αρ.Ταυτότητας: Σχολείο: Επαρχία: Επώνυμο: Τηλ.: Τάξη: Διάρκεια: 90 λεπτά ΟΔΗΓΙΕΣ Κάθε ΟΡΘΗ απάντηση βαθμολογείται με 5 μονάδες. Κάθε ΛΑΘΟΣ απάντηση με -1 μονάδα, και Μη απαντημένη άσκηση βαθμολογείται
P621 - HW 4. Scott Dietrick November 17, b = i 4 (σµ σ ν σ ν σ µ ) a b. L ) b. 1 2 ǫijk σ k and (S k0. = i 4 (σ ki + Iσ k ) = i 2 σ k
P6 - HW 4 Scott Dietrick November 7, 9-35. - Show tht S ν implies S i L S i L b i 4 σi σ σ σ i b b L ǫik σ k nd S k b i 4 σ σ ν σ ν σ b L b iσ k. SL k b i 4 σk σ σ σ k b i 4 σi ċ σċb σ ċ σiċb i 4 σ iσ
Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 018.. 49.. 4.. 907Ä917 Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ.. ³μ, ˆ. ˆ. Ë μ μ,.. ³ ʲ μ ± Ë ²Ó Ò Ö Ò Í É Å μ ± ÊÎ μ- ² μ É ²Ó ± É ÉÊÉ Ô± ³ É ²Ó μ Ë ±, μ, μ Ö μ ² Ìμ μé Ê Ö ±
ΔΙΔΙΑΣΤΑΤΕΣ «COPULAS» ΜΕ ΕΜΦΑΣΗ ΣΕ ΑΣΦΑΛΙΣΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Διατμηματικό Πρόγραμμα Μεταπτυχιακών Σπουδών «Μαθηματικά των Υπολογιστών και των Αποφάσεων» ΔΙΔΙΑΣΤΑΤΕΣ «COPULAS» ΜΕ ΕΜΦΑΣΗ ΣΕ ΑΣΦΑΛΙΣΤΙΚΑ ΠΡΟΒΛΗΜΑΤΑ x.5.5.75 4.5.5 y.75 ΝΤΑΤΣΟΠΟΥΛΟΥ
) 0 ) 2 & 2 & 0 + 6! ) & & & & & ), Γ , Γ 8 (?. Κ Ε 7 ) ) Μ & 7 Ν & & 0 7 & & Γ 7 & & 7 & Ν 2 & Γ Γ ( & & ) Η ++. Ε Ο 9 8 ) 8& & ) & Ε
#! % & ( + ),./! +./+., ( ( 1 #23 + + ), 1 (453.+ 6.+ 6, 7 1 89 3.! :.! :, 1 (453.. / 2 ; ? Α 7 ; Β / / 4 > (? / / ) 8 Χ :/. ++.. +. : 6 : ) )4 ) ) ( 4 )Φ 7 % 6 : : +.. ++. ) & & & & ), Γ, Γ 8 (?.
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο Λύσεις ενδέκατου φυλλαδίου ασκήσεων.
Απειροστικός Λογισμός Ι, χειμερινό εξάμηνο 8-9. Λύσεις ενδέκατου φυλλαδίου ασκήσεων.. (i) Βρείτε μία παράγουσα της + στο (, + ). Ποιές είναι όλες οι παράγουσες της + στο (, + ); (ii) Βρείτε μία παράγουσα
! " #$% & '()()*+.,/0.
! " #$% & '()()*+,),--+.,/0. 1!!" "!! 21 # " $%!%!! &'($ ) "! % " % *! 3 %,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0 %%4,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,5
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
! " # " $ #% $ "! #&'() '" ( * / ) ",. #
Ψ ƒ! " # " $ #% $ "! #&'() '" ( * +",-.'!( / ) ",. # 0# $"!"#$%# Ψ 12/345 6),78 94. ƒ 9)")1$/):0;3;::9 >'= ( ? 9 @ '&( % A! &*?9 '( B+)C*%++ &*%++C 0 4 3'+C( D'+C(%E $B B - " % B
RACING 250 ΠΑΝΕΛΛΗΝΙΟ ΠΡΩΤΑΘΛΗΜΑ SPECTRO SUPERMOTO /3
RACING 250 14/4 5/5 2/6 29/9 27/10 18/11 Θ ο ΓΩΖ Ω βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ βαθ ΒΘ 1 1 ΖΓΩΓ Ω YAMAHA YZF 250 25 25 25 25 25 25 25 25 25 25 25 20 25 25 345 2 2 KAWA KXF 250 20
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Notes on Tobin s. Liquidity Preference as Behavior toward Risk
otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', & - #% '##' #( &2(!%#(345#" 6##7
!"!"!!#" $ "# % #" & #" '##' #!( #")*(+&#!', '##' '# '## & - #% '##'.//0 #( 111111111111111111111111111111111111111111111111111 &2(!%#(345#" 6##7 11111111111111111111111111111111111111111111111111 11111111111111111111111111111111111111111111111111
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ 1 ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ / Γραμμική Άλγεβρα
ΛΥΣΕΙΣ ΦΥΛΛΑΔΙΟΥ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ /00- Γραμμική Άλγεβρα Διανυσματικά γινόμενα Να αποδείξετε ότι για τα διανύσματα, b,cισχύουν : (i) 0b, = c και b= c b= c (ii) +b+c= 0 b=b c= c (iii) ( b) ( c ) = (,b,c)
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
MA6451-PROBABILITY & RANDOM PROCESS. UNIT-IV-CORRELATION AND SPECTRAL DENSITIES By K.VIJAYALAKSHMI Dept. of Applied mathematics
M645-POBBILIY & NDOM POCESS UNI-IV-COELION ND SPECL DENSIIES By K.VIJYLKSHMI Dp. of pplid mhmics COELION ND SPECL DENSIIES Dfiniion: uo Corrlion h uo Corrlion of rndom procss {x}is dfind by xx xx im vrg
794 Appendix A:Tables
Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
! # % ) + +, #./ )
! # % & ( ) + +, #./0. 1 + 2 + 2 5 2 3 40. ) 6 1+ + + 7 ! # % (% ) + # #, %. / 0 # 1 2, 3 4 5 6 3 7 00 5 8, 6 8 3 9 0: 5.;, 6 #! #, 8, 3 04 5 6 < ; = >!? >, 3? 5! # % & ( Α! 1 6, 3 7 2 Α0 : 6 Β Χ Α :,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:
Seria : 0. T_ME_(+B)_Strength of Materia_9078 Dehi Noida Bhopa Hyderabad Jaipur Luckno Indore une Bhubanesar Kokata atna Web: E-mai: info@madeeasy.in h: 0-56 CLSS TEST 08-9 MECHNICL ENGINEERING Subject
lim y < inf B + ε = x = +. f(x) =
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μαθηματική Ανάλυση Ι ΟΜΑΔΑ: Α 8 Μαρτίου, 0 Θέμα. (αʹ) Εστω A, B μη κενά σύνολα πραγματικών αριθμών τέτοια ώστε x y, για
! " #! $ %! & & $ &%!
!" #! $ %!&&$&%! ! ' ( ')&!&*( & )+,-&.,//0 1 23+ -4&5,//0 )6+ )&!&*( '(7-&8 )&!&9!':(7,&8 )&!&2!'1;
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
! # %& # () & +( (!,+!,. / #! (!
! # %& # () & +( (!,+!,. / #! (! 0 1 12!, ( #& 34!5 6( )+(, 7889 / # 4 & #! # %& , & ( () & :;( 4#! /! # # +! % # #!& ( &6& +!, ( %4,!! ( 4!!! #& /
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 9 εκδόσεις Καλό πήξιμο Τα πάντα για τα Ολοκληρώματα
Livro Eletrônico. Aula 00. Português p/ MAPA (nível superior) Professor: Fernando Pestana DEMO
Livro Eletrônico Aula 00 Português p/ MAPA (nível superior) Professor: Fernando Pestana ! # % & # ( ) % +, #,...!/!. #0 1 234 567! 8!!! 99999999!!! : #! 5 ;! < ; =! #! >& %!!!?! % Α # & Β : >&! < # ;!!!!
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
= (2)det (1)det ( 5)det 1 2. u
www.maths.gr, Ενδεικτικές Λύσεις ης Εργασίας ΦΥΕ4 έτους -. Οι Λύσεις είναι για την βοήθεια των φοιτητών, σε ΘΕΜΑ ο 5 6 4 6 4 5 det 4 5 6 ()det ()det ()det 8 9 7 9 7 8 7 8 9 ()( ) ()( 6 ) ()( ) 5 4 4 det
DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL Fifth Edition
SOLUTIONS MANUAL DIGITAL DESIGN WITH AN INTRODUCTION TO THE VERILOG HDL ifth Edition M. MORRIS MANO Professor Emeritus California State Universit, Los Angeles MICHAEL D. CILETTI Professor Emeritus Universit
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities
6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohydrodynmic nd Ferrohydrodynmic Instilities I. Mgnetic Field Norml Instility Courtesy of MIT Press. Used with permission. A. Equilirium
Supplementary Information 1.
Supplementary Information 1. Fig. S1. Correlations between litter-derived-c and N (percent of initial input) and Al-/Fe- (hydr)oxides dissolved by ammonium oxalate (AO); a) 0 10 cm; b) 10 20 cm; c) 20
Ολοκληρώματα. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Ασκήσεις για ΑΕΙ και ΤΕΙ. Kglykos.gr. σε Ολοκληρώματα. τεχνικές. 108 ασκήσεις. εκδόσεις.
Ολοκληρώματα Κώστας Γλυκός Ασκήσεις για ΑΕΙ και ΤΕΙ σε Ολοκληρώματα τεχνικές 08 ασκήσεις Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglkos.gr / / 0 7 εκδόσεις Καλό πήξιμο τηλ. Οικίας : 0-60.78
Part Numbering. Chip Ferrite Bead for Automotive. D q. (Part Number)
Chip Ferrite Bead for Automotive ing () BL M 18 AG 2 S Z 1 D q w e r t y u i o qproduct ID Product ID BL Chip Ferrite Beads timpedance Expressed by three figures. The unit is in ohm (Ω) at MHz. The first
&,'-- #-" > #'$,"/'3&)##3!0'0#!0#/# 0'0';&'"$8 ''#"&$'!&0-##-""#;-# B
!"#"# $%"&$' ('#')#''$# * +,-""&$'.-,-"#!&"!##/'#')#''$# ** '$#/0'!0#'&!0"#"/#0"## * 1--'/''00#&'232232223#24 *5 ##-'"-&1-$6'#76#!$#0"$8&9-1$" * '$#&$'!&&1:"-#;6"/'-#
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes
Aula 00 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes ! # # % & () ++,. /0,1 234,5 0 6 +7+,/ /894,5 8 5 8,045, :4 50,8,59;/0 8,04 + 8 097,4 8,0?5 4 59 8,045, :4 50,8,
6.642 Continuum Electromechanics
MIT OpenCourseWre http://ocw.mit.edu 6.64 Continuum Electromechnics Fll 8 For informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms. 6.64, Continuum Electromechnics,
*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻
*❸34❸ ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ -3*98❻➀*➁❽4❹❹** ~ N( µσ, )**σ **-❹➄❹8❹* µ*➆4❹➂➂*➁➆*❽➀➂❹➄*➂➂* *➁3 Pa ( < b) * ➀8*-9❼4➂❸*-❹❶➀➈-❸❸*-❽4&➄❹➈*➀8*-❹3➀9❼*8❽*-❽❼➄➂➀3*❸❽4&➄❹➈*❹➄❽3*➀&❼➄❽3❸❹*❻3➂
12 Το αόριστο ολοκλήρωµα
Το αόριστο ολοκλήρωµα. Αντιπαράγωγοι Εστω ότι η y = f ( ορίζεται στο διάστηµα I, οποιουδήποτε τύπου. Αν µια δεύτερη συνάρτηση y = F(, που ορίζεται στο ίδιο διάστηµα I, έχει την ιδιότητα F ( = f (, για
ΑΠΑΝΤΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΘΕΜΑ Α
ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
!!" # "!! $$ %$ ' : () *"++,- ; 4 $ < % % / $ $ % /
!!" # "!! $$ %$ & ' () *"++,- $ %. $ $ % $/ $ $ / # $ 2 3 / / & / / / 45 ( % $ / $ 6 / / 3 / / 3 / 7 /7 7 ' 8"7 87 9" ' : () *"++,- ; 4 $ < % % / $ $ % / & = $ = $ $ 4 #$ 5/ > = $ 5 5 // $!!".. 5 5 $ =
Λύση Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι διάφορη του μηδενός =
7. Άσκηση 1 2 1 Εστω ο πίνακας A = 1 3 2. Να δειχθεί ότι ο πίνακας είναι αντιστρέψιμοςκαιστησυνέχειαναυπολογιστείοαντίστροφος. 1 0 1 Για να είναι αντιστρέψιμος θα πρέπει η ορίζουσα του πίνακα να είναι
Θεωρία Πληροφορίας. Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη. Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής
Θεωρία Πληροφορίας Διάλεξη 5: Διακριτή πηγή πληροφορίας με μνήμη Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Διακριτές πηγές πληροφορίας με μνήμη Μαρκοβιανές αλυσίδες Τάξη μακροβιανών αλυσίδων
%78 (!*+$&%,+$&*+$&%,-. /0$12*343556
! %78 ( 9 :: "#$% $&'"(" )!*$&%,$&*$&%,-. /$*343556 $ $& %$&.;$& $(# $"*("$# $ "$?, !* $&,#$"&::> $&( &$#, #$&# $"#&"& @($&%%>A!" #$ % µ & ' (#$ )! ) * ' "!)!,-./.' ) " $ &
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
Rectangular Polar Parametric
Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
δειγματοληψίας ανήκει στην EF όταν μπορεί να τεθεί στην μορφή: = και σταθερά i j j i δειγματοληψίας, δεν θα πρέπει να εξαρτάται από την παράμετρο ϑ.
Στην πολυμετβλητή περίπτωση d ϑ ϑ ϑ d Θ το μοντέλο δειγμτοληψίς νήκει στην EF ότν μπορεί ν τεθεί στην μορφή: π ( x ϑ) h( x) exp{ c( ϑ) t( x) } ( ) όπου ( ϑ) ( ϑ) ( ϑ) c c c d το διάνυσμ των φυσικών πρμέτρων
,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )
!! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!
الهندسة ( )( ) مذكرة رقم 14 :ملخص لدرس:الجداءالسلمي مع تمارين وأمثلةمحلولة اھافواراتاة ارس : ( ) ( ) I. #"ر! :#"! 1 :ااءا&%$: v
الهندسة مذكرة رقم :ملخص لدرس:الجداءالسلمي مع تمارين أمثلةمحللة اھافاراتاة ارس : EFiEG EF EG ( FEG) 6 EF EG ( FEG) 6 FEG 6 ( FEG ) 6 I. #"ر! :#"! :ااءا&%$: u u : اى.( ) H ا ادي C ا u ا#اءا! ھا#د ا! ا(ي
< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α
# & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =
, όπου D ( ) ( ) ( ) i i i. ανήκουν στην καμπύλη 2 και καθορίζουν τα ύψη των παραλληλογράμμων. με συντεταγμένες ( ( ))
Έστω διάστημα B= ( b ) Df όπου D f το πεδίο ορισμού της y f ( x) διαμέριση ( B) = { t i n: t < t r n t = t = b} n i r r+ n n ( b ] ( x x ] = Το ολοκλήρωμα της y = f ( x) στο B άθροισμα του εμβαδού ( Π
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ. ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΕΝΟΤΗΤΑ: Διανύσματα στους Rn, Cn, διανύσματα στο χώρο (3) ΙΟΝΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΔΑΣΚΩΝ: Βλάμος Παναγιώτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ MΑΘΗΜΑΤΙΚΩΝ ΤΜΗΜΑ ΜΕΘΟΔΟΛΟΓΙΑΣ, ΙΣΤΟΡΙΑΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΤΜΗΜΑ ΕΠΙΣΤΉΜΩΝ ΑΓΩΓΉΣ & ΘΕΩΡΙΑΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΜΗΜΑ ΦΙΛΟΣΟΦΙΑΣ, ΠΑΙΔΑΓΩΓΙΚΗΣ &
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula