Juhuslik faktor ja mitmetasandilised mudelid

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Juhuslik faktor ja mitmetasandilised mudelid"

Transcript

1 Peatükk 2 Juhuslik faktor ja mitmetasandilised mudelid Uurime inimese verer~ohku. Inimese verer~ohk on üsnagi varieeruv ja s~oltub üsnagi tugevalt hetkeolukorrat mida inimene on enne m~o~otmist söönud/joonud, milline on tema emotsionaalne seisund jne. Seega v~oiksime ühel inimesel tehtud verer~ohu m~o~otmise jaoks kirja panna järgmise mudeli: Y j = µ + ε j, kus Y j on antud inimesel tehtud j m~o~otmise tulemus, µ on antud inimese keskmine verer~ohk ja ε j on j. m~o~otmise k~orvalekalle keskmisest kas siis m~o~otmisveast tingitult v~oi arsti juurde tulekule eelnenud tegevusest tulenev hetke omapära. Tundub m~oistlik eeldada, et Eε j = 0 (me ei tee oma m~o~otmiste käigus süstemaatilist viga). Kui uurimise all on korraga enam kui üks inimene, peaksime m~o~otmistele lisama inimese järjekorranumbri. Nii näeks i. inimesel tehtud verer~ohum~o~otmiste mudel välja järgmine: Y ij = µ i + ε ij, (2.1) ku µ i on i. inimese keskmine verer~ohk. Sageli huvitabki uurijat mitte ühe konkreetse uuritava inimese verer~ohk, vaid uuritava populatsiooni (näiteks eestlaste) keskmine verer~ohk µ. Iga üksiku eestlase (keskmine) verer~ohk µ i avaldub aga populatsiooni keskmise kaudu järgmisel kujul: µ i = µ + γ i, (2.2) 9

2 10PEATÜKK 2. JUHUSLIK FAKTOR JA MITMETASANDILISED MUDELID Kus γ i tähistab i. inimese omapära, erinevust keskmisest. Juhul, kui inimesed on uuringusse saadud juhusliku valimi abil, on Eγ i = 0. Tasub tähele panna, et antud kontekstis on juhuslikud nii µ i ja γ i (milline inimene sattub valimisse i. inimeseks on juhuslik). Ühendades mudelid 2.1 (kutsutud ka m~o~otmise taseme mudeliks kirjeldab mudeli üksikute m~o~otmiste jaoks) ja 2.2 (inimese tase kirjeldab, millest s~oltub üksikindiviidi keskmine) saame järgmise mudeli: Y ij = µ + γ i + ε ij. (2.3) Tulemus näeb välja peaaegu samasugune, kui ühefaktorilise dispersioonanalüüsi mudel. Siiski on nende kujult sarnaste mudelite sisu m~onev~orra erinev. Nimelt eeldame antud kontekstis, et γ i väärtused on juhuslikud tegemist on juhusliku valimiga mingist suuremast populatsioonist (k~oigi eestlaste seast). Millised konkreetseid väärtuseid me kohtame on juhuslik see s~oltub meie uuringusse kaasatud juhuslikult valitud inimestest. Kui v~otaksime m~one teise valimi, oleksid γ i väärtused teistsugused. Ülaltoodu mudel 2.3 on üheks lihtsamaks mitmetasandilise mudeli näiteks. Loomulikult v~oime ülaltoodud mudelit mitmel viisil keerukamaks muuta näiteks v~oime indiviidi taseme mudelisse lisada inimese vanuse (nii, et inimese keskmine verer~ohk jääks s~oltuma inimese vanusest) vms. Oletame nüüd, et uurimise all polnud mitte ainult eestlased. Oletame, et maailma rahvaste seast valiti juhuslikult välja kümmekond erinevat rahvast. Iga väljavalitud rahva seast v~oeti juhuslikult uurimise alla m~oned inimesed, keda siis m~o~odeti-uuriti juhuslikult valitud ajahetkedel. Sellise skeemi puhul tekib üks täiendav tase rahvuse tase ning mudelit v~oib muuta veelgi keerukamaks. K~oiki kolme tasandit ühendav mudel r. rahvusest pärit i. inimese j. m~o~otmistulemuse jaoks oleks sellisel juhul järgmine: Y rij = µ + τ r + γ ri + ε rij, kus µ oleks keskmine verer~ohk üle erinevate rahvuste (NB! mitte maakera inimeste keskmine verer~ohk, vaid erinevate rahvaste keskmiste verer~ohkude keskmine!), µ+τ r oleks r. rahva keskmine verer~ohk (τ r iseloomustaks r. rahva omapära ), µ+τ r +γ ri oleks aga r. rahva seast juhuslikult valitud i. inimese keskmine verer~ohk (keskmine üle k~oigi m~oeldavate üksikm~o~otmiste). Muidugi on v~oimalik mudelit 2.3 üldistada ka m~onel teisel moel. Riigi sissetoomise asemel v~oime arutleda, et inimese verer~ohk kipub inimese vananedes muutuma. Seet~ottu v~oime kirjeldada i. inimese j. m~o~otmisel saadud verer~ohku hoopis järgmise mudeli abil:

3 11 Y ij = µ i + c i vanus ij + ε ij, (2.4) Kus vanus ij on i. inimese vanus j. m~o~otmise ajal. Edasi v~oime arutleda, et i. inimesel vanuse ees olev kordaja (sirge t~ous) v~oib erinevatel p~ohjustel veidi varieeruda m~oni sööb tervislikumat toitu, m~oni teeb füüsilist tööd, m~onel halveneb veresoonte kvaliteet geneetilise eelsoodumuse t~ottu kiiremini kui teistel... seega v~oime arvata, et inimeste individuaalsete sirgete t~ousud (v~oi langused) k~oiguvad populatsiooni üldkeskmise sirge t~ousu ümber: c i = c + τ i, Eτ i = 0. Samuti vabaliikmed ehk see, mis juhtus inimestega noorena, millises algseisundis nad uuringusse sattusid, v~oib varieeruda. Seega: µ i = µ + γ i, Eγ i = 0. Kokkuv~ottes saaksime inimese verer~ohum~o~otmiste mudeliks järgmise mudeli: Y ij = µ + c vanus ij + γ i + τ i vanus ij + ε ij. (2.5) Mudeli fikseeritud osa, µ + c vanus ij, kirjeldab, milline on keskmine verer~ohk antud vanuses inimestel: E(Y ij vanus ij ) = E (µ + c vanus ij + γ i + τ i vanus ij + ε ij ) = µ + c vanus ij + E (γ i ) + E (τ i ) vanus ij + 0 = µ + c vanus ij. Selles näiteks toodud mudelis on meie jaoks tundmatud konstandid µ ja c fikseeritud parameetrid me eeldame, et nende väärtused jäävad samaks üksk~oik millise valimiga on parajasti tegemist (kuigi nende suurustele valimi p~ohjal leitud hinnang jääb muidugi valimist s~oltuma). Seevastu suurused τ i,γ i,ε ij on juhuslikud nende suuruste tegelikud väärtused jäävad s~oltuma konkreetsest valimist (kui esimeseks m~o~odetud inimeseks juhtub olema Kalle, siis on τ 1 Kalle verer~ohu t~ousu kiiruse omapära (mis on suurem nullist, sest Kalle sööb palju kolesteroolirikast toitu ja ei spordi eriti...), kui aga juhuse tahtel sattuks esimeseks uuritavaks inimeseks Mai, oleks τ 1 < 0 sest Mai sööb ainult salatilehti ja mängib iga päev tennist. Toodud mudelit tuntakse vahel ka juhusliku regressioonimudeli (random regression) nime all, vaata ka järgnevat joonist.

4 12PEATÜKK 2. JUHUSLIK FAKTOR JA MITMETASANDILISED MUDELID Selles peatükis oleme esitanud mudeleid nn üksikvaatlusele kasutades tervet posu indekseid vaatluse üheseks määramiseks. Sageli on mugavam töötada maatrikskujul kirja pandud mudelit kasutades. Jagame esmalt juhuslikud efektid kaheks: jääkideks (toodud näites ε ij ) ja ülejäänud (eelnenud näites τ i, γ i ). Jääkidest moodustame vektori ε, ülejäänud juhuslikud efektid kombineerime aga ühte suurde juhuslikku (valimist s~oltuvasse) vektorisse, mille tähistame γ-ga. Fikseeritud efektidest (toodud näites µ ja c) moodustame fikseeritud parameetrite vektori β. Saame mudeli kujul: Y = Xβ + Zγ + ε, (2.6) kus X on n p fikseeritud effektide disainimaatriks (v~oi mudelimaatriks), β on p 1 fikseeritud parameetreid sisaldav vektor, Z on n z juhuslike efektide disainimaatriks, γ on meile tundmatuid juhuslikke efekte sisaldav z-pikkusega vektor ja ε on n 1 mudeli vigu ehk jääke sisaldav vektor.

5 Peatükk 3 Segamudel Oleme j~oudnud piisavalt kaugele, et l~opuks ametlikult sisse tuua segamudel. Segamudel: Y = Xβ + Zγ + ε, (3.1) kus EY = Xβ (3.2) Eγ = 0, Eε = 0 (3.3) G := Dγ, R := Dε, γ ε (3.4) V := DY = ZGZ T + R (3.5) Juhuslikke parameetreid sisaldab vektor γ, fikseeritud parameetrid on koondatud vektorisse β. 3.1 Näide (mitmetasemeline mudel) Juhuslikult valiti välja 3 kooli. Esimeses koolis testiti kolme, teistes kahte juhuslikult valitud ~opilast. Fikseeritud faktoriks on sugu. Andmeid (testituemust) kirjeldav segamudel on järgmine: y 11 y 12 y 13 y 21 y 22 y 31 y 32 = 1 1 µ β tdruk β poiss γ 1 γ 2 γ 3 + ε 11 ε 12 ε 13 ε 21 ε 22 ε 31 ε 32,

6 14 PEATÜKK 3. SEGAMUDEL kus γ 1 on 1. kooli omapära (1. kooli keskmise testitulemuse erinevus koolide keskmiste keskmisest), µ + β tdruk on tüdrukute keskmine testitulemus, µ + β poiss on poiste keskmine testitulemus jne. 3.2 Näide (Aastad, p~ollud ja sort) Tahetakse teada, kas paremat saaki annab sort A v~oi sort B. Juhuslikult valiti välja 3 p~oldu ja juhuslikult valiti uuringu tegemiseks kaks aastat (2005, 2006). Ühele katselapile p~ollul külvati sorti A, teisele sorti B. Vaadati, kuidas saak on. P~ollul i aastal j katselapil k saadud saaki y ijk kirjeldab järgmine segamudel: y 111 y 112 y 121 y 122 y 211 y 212 y 311 y 312 y 321 y 322 = ( βa β B ) ξ 1 ξ 2 ξ 3 τ 1 τ 2 + ε 111 ε 112 ε 121 ε 122 ε 211 ε 212 ε 311 ε 312 ε 321 ε 322 ; Dγ = σξ σξ σξ στ στ 2 Dε = σ 2 εi. 3.3 Näide (juhuslik regressioon) Vaatame mitmetasandilist mudeli, kus lapsi on testitud 3-s koolis, igas koolis kaht last. Lapse testitulemus v~oib s~oltuda lapse sotsiaalmajanduslikust staatusest (SES), kusjuures see s~oltuvus v~oib igas koolis olla erinev.

7 3.3. NÄIDE (JUHUSLIK REGRESSIOON) 15 y 11 y 12 y 21 y 22 y 31 y 32 = Dγ = ( µ c ) σγ r γ,τ σγ r γ,τ σγ r γ,τ r γ,τ 0 0 στ r γ,τ 0 0 στ r γ,τ 0 0 στ 2 Dε = σ 2 εi. γ 1 γ 2 γ 3 τ 1 τ 2 τ 3 + Miks juhuslike efektide kovariatsioonimaatriks G pole erinevalt eelnenud juhtudest diagonaalne? Antud mudel lubab sama kooli juhuslikul vabaliikmel ja sirge t~ousu eripäral olla korreleeritud, cov(γ i,τ i ) = r γ,τ. See tähendab, et koolides, kus vaesest perest pärit lapsi halvasti ~opetatakse (vabaliige suhteliselt väike) v~oib rikaste laste käsi käia siiski suhteliselt hästi (rikkus v~oimaldab palgata era~opetajaid, kes rikkurite lastel lasevad siiski enam-vähem normaalse hariduse omandada hoolimata kooli saamatusest...), ehk τ i oleks suhteliselt suur. Kirjeldatud olukorra korral peaksid väikesed γ i väärtused käima koos suurte τ i väärtustega ehk r γ,τ < 0. ε 11 ε 12 ε 21 ε 22 ε 31 ε 32 ;

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)

Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

1 Entroopia ja informatsioon

1 Entroopia ja informatsioon Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Matemaatiline statistika ja modelleerimine

Matemaatiline statistika ja modelleerimine Matemaatiline tatitika ja modelleerimine Üldied lineaared mudelid [general linear model, GLM] EMÜ doktorikool DK.0007 Tanel Kaart Katepõhine v mudelipõhine uuring Katepõhine uuring katetingimued range

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Annegrete Peek. Üldistatud aditiivne mudel. Bakalaureusetöö (6 EAP)

Annegrete Peek. Üldistatud aditiivne mudel. Bakalaureusetöö (6 EAP) TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Annegrete Peek Üldistatud aditiivne mudel Bakalaureusetöö (6 EAP) Juhendaja: Märt Möls, PhD Tartu 2014 Üldistatud aditiivne

Διαβάστε περισσότερα

ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS

ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007

Διαβάστε περισσότερα

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

Veaarvutus ja määramatus

Veaarvutus ja määramatus TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

SELEKTSIOONIINDEKSID

SELEKTSIOONIINDEKSID VL09 VI SELEKTSIOONIINDEKSID Kuigi geneetiliste parameetrite (päritavuskoefitsiendid, geneetilised korrelatsioonikordajad, aretusväärtused) hindamiseks reaalsetes, suurtes ja väga erinevatel sugulusastmetel

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk.

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. Mudeliteooria Kursust luges: Kalle Kaarli 1 20. september 2004. a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. 2 Sisukord 1 Põhimõisted 9 1.1 Signatuur ja struktuur.................. 9

Διαβάστε περισσότερα

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse Ahto Buldas 22. september 2003 2 Sisukord Saateks v 1 Entroopia ja infohulk 1 1.1 Sissejuhatus............................ 1 1.2 Kombinatoorne

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2016

KATEGOORIATEOORIA. Kevad 2016 KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013 55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

RF võimendite parameetrid

RF võimendite parameetrid RF võimendite parameetrid Raadiosageduslike võimendite võimendavaks elemendiks kasutatakse põhiliselt bipolaarvõi väljatransistori. Paraku on transistori võimendus sagedusest sõltuv, transistor on mittelineaarne

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

Ecophon Square 43 LED

Ecophon Square 43 LED Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,

Διαβάστε περισσότερα

Matemaatiline statistika ja modelleerimine

Matemaatiline statistika ja modelleerimine Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv

Διαβάστε περισσότερα

Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA)

Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Kursus: Mitmemõõtmeline statistika Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Õppejõud: Katrin Niglas PhD, dotsent informaatika instituut Statistilise olulisustesti põhisammud: E I: Analüüsisin

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

Füüsikalise looduskäsitluse alused

Füüsikalise looduskäsitluse alused Eesti Füüsika Selts Füüsikalise looduskäsitluse alused õpik gümnaasiumile autorid: Indrek Peil ja Kalev Tarkpea Tartu 2012 1 1. Sissejuhatus füüsikasse... 4 1.1. Maailm, loodus ja füüsika... 4 1.1.1. Füüsika

Διαβάστε περισσότερα

MATEMAATIKA RAKENDUSED, REAALSETE PROTSESSIDE UURIMINE

MATEMAATIKA RAKENDUSED, REAALSETE PROTSESSIDE UURIMINE MATEMAATIKA RAKENDUSED, REAALSETE PROTSESSIDE UURIMINE Gümnaasiumi laia matemaatika ainekava õppematerjal Ants Aasma, Ako Sauga, Riina Timmermann TALLINN 013 See teos on litsentseeritud Creative Commonsi

Διαβάστε περισσότερα

MOSFET tööpõhimõte. MOS diood. Tsoonipilt. MOS diood Tüüpiline metall-oksiid-pooljuht (MOS) diood omab sellist struktuuri

MOSFET tööpõhimõte. MOS diood. Tsoonipilt. MOS diood Tüüpiline metall-oksiid-pooljuht (MOS) diood omab sellist struktuuri MOS dood Metall-okd- ooljuht (MOS) o kaaaja kroelektrooka kõge rohke kautatav re ülde! MOSET tööõhõte I Pch-off D 3 S- allka (ource), G- a (gate), D- eel (dra) -kaalga MOSET (NMOS) kautab -tüü alut 1 1

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Kandvad profiilplekid

Kandvad profiilplekid Kandvad profiilplekid Koosanud voliaud ehiusinsener, professor Kalju Looris ja ehnikalisensiaa Indrek Tärno C 301 Pärnu 2003 SISUKORD 1. RANNILA KANDVATE PROFIILPLEKKIDE ÜLDANDMED... 3 2. DIMENSIOONIMINE

Διαβάστε περισσότερα

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?

I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

Vahendid Otsus Analüüs: Analüüsi Riskantseid Otsuseid

Vahendid Otsus Analüüs: Analüüsi Riskantseid Otsuseid Vahendid Otsus Analüüs: Analüüsi Riskantseid Otsuseid Link: http://home.ubalt.edu/ntsbarsh/opre640a/partix.htm Kui sa alustada kindlust, siis lõpetab kahtlusi, kuid kui te tahate sisu alustada kahtlusi,

Διαβάστε περισσότερα

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA http://wwwttuee http://wwwstaffttuee/ math TALLINNA TEHNIKAÜLIKOOL MATEMAATIKAINSTITUUT http://wwwstaffttuee/ itammeraid Ivar Tammeraid T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA Elektrooniline ~oppematerjal

Διαβάστε περισσότερα

MATEMAATIKA AJALUGU MTMM MTMM

MATEMAATIKA AJALUGU MTMM MTMM Õppejõud: vanemteadur Mart Abel Õppejõud: vanemteadur Mart Abel Loenguid: 14 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Hindamine:

Διαβάστε περισσότερα

TeeLeht OMANIKUJÄRELEVALVE RIIGIST, KOOSTÖÖST JA JUHTIMISEST TAASKASUTATAVATE MATERJALIDE KASUTAMINE TEEDEEHITUSES PUITSILDADE OLUKORD EESTIS

TeeLeht OMANIKUJÄRELEVALVE RIIGIST, KOOSTÖÖST JA JUHTIMISEST TAASKASUTATAVATE MATERJALIDE KASUTAMINE TEEDEEHITUSES PUITSILDADE OLUKORD EESTIS Nr 79 DETSEMBER 2014 OMANIKUJÄRELEVALVE KAS MAANTEEAMET VÕIKS SEDA ISE TEHA? RIIGIST, KOOSTÖÖST JA JUHTIMISEST INTERVJUU PEADIREKTORIGA TAASKASUTATAVATE MATERJALIDE KASUTAMINE TEEDEEHITUSES PUITSILDADE

Διαβάστε περισσότερα

Eesti LV matemaatikaolümpiaad

Eesti LV matemaatikaolümpiaad Eesti LV matemaatikaolümpiaad 2. veebruar 2008 Piirkonnavoor Kommentaarid Kokkuvõtteks Selleaastast komplekti võib paremini õnnestunuks lugeda kui paari viimase aasta omi. Lõppvooru pääsemise piirid protsentides

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013 Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,

Διαβάστε περισσότερα

MateMaatika õhtuõpik

MateMaatika õhtuõpik Matemaatika õhtuõpik 1 2 Matemaatika õhtuõpik 3 Alates 31. märtsist 2014 on raamatu elektrooniline versioon tasuta kättesaadav aadressilt 6htu6pik.ut.ee CC litsentsi alusel (Autorile viitamine + Mitteäriline

Διαβάστε περισσότερα

Arvuti kasutamine uurimistöös

Arvuti kasutamine uurimistöös Arvuti kasutamine uurimistöös Ülesannete kogu informaatika valikaine e-õpiku juurde Mart Laanpere, Katrin Niglas, Kairi Osula, Kai Pata Tallinna Ülikool 2013 Õppekomplekti rahastas ESF TeaMe programm Eesti

Διαβάστε περισσότερα

Formaalsete keelte teooria. Mati Pentus

Formaalsete keelte teooria. Mati Pentus Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks

Διαβάστε περισσότερα

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.

1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.

Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a. Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud

Διαβάστε περισσότερα

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5 1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα