Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused"

Transcript

1 Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a ) ) c ) 1. c a Lahendus. Kuna ac = 1, siis leiduvad positiivsed arvud x, y, z, nii et a = x y, = y z ja c = z x kõigepealt valime x ja y, nii et a = x y, siis valime z, nii et = y z ja siis tingimus ac = 1 anna, et järelikult c = z ). Seega tõestatav võrratus võta kuju x x y 1 + z ) y y z 1 + x ) z z x 1 + y ) 1 x ehk arvuga xyz läi korrutades x y + z)y z + x)z x + y) xyz, Selle tõestamiseks paneme tähele, et arvudest x y + z, y z + x, z x + y saa negatiivne olla ülimalt üks, sest mistahes kahe summa on positiivne. Tõepoolest x y+z)+y z+x) = x > 0, x y + z) + z x + y) = z > 0 ja y z + x) + z x + y) = y > 0. Kui üks arvudest x y + z, y z + x, z x + y on negatiivne, siis ja seega triviaalselt x y + z)y z + x)z x + y) < 0 x y + z)y z + x)z x + y) < 0 < xyz, nagu soovitud. Seega eeldame edaspidi, et x y + z 0, y z + x 0, z x + y 0. Siis x = x y + z) + y z + x) y z + x) + z x + y) y = x y + z) + z x + y) z = Korrutades need 3 võrratust kokku saame x y + z)y z + x), y z + x)z x + y), x y + z)z x + y). xyz x y + z)y z + x) y z + x)z x + y) x y + z)z x + y) = x y + z)y z + x)z x + y), nagu soovitud.. Leia vähim selline reaalarv M, et võrratus aa ) + c c ) + cac a ) Ma + + c ) 1

2 kehti kõigi reaalarvude a, ja c korral. Lahendus. Tegurdades või tõestatava võrratuse ümer kirjutada kujul a ) c)c a)a + + c) Ma + + c ). Olgu x = a, y = c, z = c a ning s = a + + c. Siis tõestatav võrratus saa kuju xyzs M 9 x + y + z + s ), 1) kus x + y + z = 0. Arvudest x, y, z kahel on sama märk. Üldisust kitsendamata olgu need samamärgilised arvud x ja y samuti võime lihtsuse mõttes eeldada, et nad on mittenegatiivsed, aga see pole edasises oluline). Nüüd paneme tähele, et kui x ja y asendada oma aritmeetilise keskmisega ehk arvuga x + y, siis tõestatava võrratuse 1) vasak pool ei kahane ja parem pool ei kasva. Seega võime eeldada, et x = y ja seega x = y = z. Järelikult tõestatav võrratus teisene kujule x 3 s M 9 s + 6x ). AM-GM võrratus aga anna s + x + x + x ) 16 8s x 6 = 3 sx 3. Seega soi väärtuseks M = See on ka minimaalne, sest nt a = c = 1 korral leia aset võrdus Olgu a,, c, d sellised täisarvud, et a > > c > d > 0 ning ac + d = + d + a c) + d a + c). Tõesta, et a + cd ei ole algarv. Lahendus. Paneme kõigepealt tähele, et a + cd) ac + d) = a d) c) > 0 ja ac + d) ad + c) = a )c d) > 0 ning seega a + cd > ac + d > ad + c. Samas 3 + 1, = 3 ja ac + d) + d + d ) = ac + d + d ) + da ac + c ) = ac + acd + a d + c d = a + cd)ad + c), mis anna, et arv a + cd)ad + c) jagu arvuga ac + d. Kui nüüd oletada, et a + cd on algarv, siis viimasest jaguvusest järelduks, et arv ad + c peaks jaguma arvuga ac + d. Kuid see pole võimalik, sest ac + d > ad + c. 4. Leia kõik sellised positiivsete täisarvude paarid a, ), mille korral arv a + a + jagu arvuga a Lahendus. Vastus: soiva paarid a,) on 11, 1), 49, 1) ja kõik paarid kujul 7k, 7k), kus k

3 on suvaline positiivne täisarv. Esiteks, kui a < ehk a + 1, siis a > a + a + 1)a + 1) = a + a + a a + a + ja seega sel juhul lahendid puuduvad. Olgu edasises a ning eeldame, et k = a + a + a täisarv. Siis a + 1 ) a + + 7) = a + a + 7 a + a > a + a +, mis anna, et k < a + 1. Kui 3, siis 7 > 0, mis anna a 1 ) a + + 7) = a + a a 7 ) 1 7 < a + a < a + a +. Seega kas = 1, = või k > a 1. Juhul, kui a 1 < k < a + 1 saame siit, et a 1 < k < a+1, millest järeldu, et a = k. Siit saame lahendi a, ) = 7k, 7k), kus k > 0. Vaatleme nüüd juhtu, kui = 1. Siis pea arv a + a + 1 jaguma arvuga a + 8. Seega ka arv aa + 8) a + a + 1) = 7a 1 jagu arvuga a + 8. Järelikult ka arv 7a + 8) 7a 1) = 57 jagu arvuga a + 8. Arvu 57 ainsad arvu 8 ületavad jagajad on 19 ja 57. Mis anna a = 11 ja a = 49. Lihtne kontroll näita, et a, ) = 11, 1) ja a, ) = 49, 1) on tõepoolest lahenditeks. Vaatleme viimaks juhtu =. Sel juhul jagu arv a + a + arvuga 4a + 9. Seega ka arv a4a + 9) a + a + ) = 7a 4 ning järelikult ka arv 74a + 9) 47a 4) = 79 jaguvad arvuga 4a+9. Arvu 79 ainus arvust 9 suurem jagaja on 79, kuid siis peaks a = 35, mis ei ole täisarv. 5. Olgu ABCDEF selline kumer kuusnurk, millel leidu siseringjoon st ringjoon, mis puutu kõiki selle kuusnurga külgi). Tõesta, et diagonaalid AD, BE ja CF lõikuvad ühes punktis. Lahendus. Tähistame kuusnurga ABCDEF siseringjoone tähega c. Olgu P, Q, R, S, T ja U vastavalt ringjoone c ning külgede AB, BC, CD, DE, EF ja F A puutepunktid. Olgu positiivne reaalarv, mis on suurem kuusnurga ABCDEF kõigi külgede pikkustest. Võtame kiirel QB punkti H nii, et QH = ja kiirel T F punkti W nii, et T W = vaata joonist 1). Olgu c 1 ringjoon, mis puutu kiirt QB punktis H ja kiirt T F punktis W. Pane tähele, et selline ringjoon leidu, sest ringjoon c puutu sirgeid QH ja T W vastavalt punktides Q ja T ning QH = T W. Tõsi, halvimal juhul või see ringjoon osutuda ka üheks punktiks, aga seda saa vältida, kui valida soivalt arv.) Analoogiliselt valime kiirtel UF ja RD vastavalt punktid Y ja L nii, et UY = ja RL =. Olgu c ringjoon, mis puutu sirgeid UY ja RL vastavalt punktides Y ja L. Samuti valime kiirtel SD ja P B vastavalt punktid V ja J nii, et SV = ja P J =. Analoogiliselt olgu antud ka ringjoon c 3, mis puutu sirgeid SV ja P J vastavalt punktides V ja J. Märgime siinkohal, et arvu saa valida nii, et ükski ringjoontest c 1, c ega c 3 ei oleks punkt st raadius on positiivne). Nüüd paneme tähele, et punkte A ja D läiv sirge on ringjoonte c ja c 3 radikaaltelg. Tõepoolest, kuna RL = SV ja DR = DS, siis DL = LR RD = V S SD = DV. Järelikult asu punkt D ringjoonte c ja c 3 radikaalteljel sest punkti D potents mõlema ringjoone suhtes on DL = DV ). Sarnaselt, kuna UY = P J ja AU = AP, siis AY = AJ. Seega ka punkt A asu ringjoonte c ja c 3 radikaalteljel. 3

4 H J c 1 c 3 B P Q A c C W U R V F D T S E Y L c Joonis 1 Analoogiliselt saa veenduda, et sirge BE on ringjoonte c 1 ja c 3 radikaaltelg ning sirge F C on ringjoonte c 1 ja c radikaaltelg. Kuna teoreemi 4 põhjal need kolm radikaaltelge lõikuvad ühes punktis, siis ka kuusnurga ABCDEF diagonaalid AD, BE ja CF lõikuvad ühes punktis. 6. Olgu ABCDEF kumer kuusnurk, kus AB = BC = CD ja DE = EF = F A ning BCD = EF A = π. Olgu G ja H selle kuusnurga niisugused sisepunktid, et AGB = 3 DHE = π 3. Tõesta, et AG + GB + GH + DH + HE CF. Lahendus 1. Paneme tähele, et kolmnurgad BCD ja EF A on võrdkülgsed, seega on sirge BE nelinurga ABDE sümmeetriateljeks vt joonist ). Peegeldame kolmnurgad BCD ja EF A sirge BE suhtes vastavalt kolmnurkadeks BC A ja EF D. Et BGA = π AC B, siis paikne punkt G kolmnurga ABC ümerringjoonel, millest AGC = ABC = π 3. Olgu K selline punkt sirgel GC, et kolmnurk KAG on võrdkülgne. Siis C AK = π 3 BAK = BAG. Kuna samuti C A = BA ja AK = AG, siis kolmnurgad AKC ja AGB on kongruentsed. Siit GC = GK + KC = AG + GB. Analoogiliselt saame, et HF = DH + DE. Nüüd CF = C F C G + GH + HF = AG + GB + GH + DH + HE, 4

5 kusjuures võrdus kehti parajasti siis, kui punktid C, G, H ja F paiknevad ühel ja samal sirgel selles järjekorras. Joonis Lahendus. Paneme tähele, et kolmnurgad BCD ja EF A on võrdkülgsed, seega on sirge BE nelinurga ABDE sümmeetriateljeks vt joonist ). Peegeldame kolmnurgad BCD ja EF A sirge BE suhtes vastavalt kolmnurkadeks BC A ja EF D. Kasutades Ptolemaiose võrratust saame, et GC AB GA BC + GB AC, millest AB = BC = AC tõttu GC GA + GB. Analoogiliselt HF HD + DE. Siit järeldu, et CF = C F C G + GH + HF AG + GB + GH + DH + HE., mis tähenda, et tege- Märkus. Lahenduses me ei kasuta tingimust AGB = DHE = π 3 likult kehti võrreldes ülesandes nõutuga tugevam väide. 7. Keeleteadlaste konverentsil oli n 3 osavõtjat, kes valdasid ühtekokku 14 erinevat keelt. On teada, et suvalise kolme teadlase puhul leidus keel, mida kõik kolm valdasid, kuid ei leidunud keelt, mida oleks osanud üle poole osavõtjatest. Leia arvu n vähim võimalik väärtus. Lahendus. Kui n 5, siis suvaliselt valitud kolme osavõtja ühist keelt oska vähemalt 3 ehk üle poole kõigist osavõtjatest, mis on vastuolus ülesande tingimustega. Kui n = 6 või n = 7, siis valime kõigi teadlaste seast välja suvalised 6. Neist saa moodustada 0 erinevat kolmikut. Dirichlet printsiii põhjal leidu keel, mis on ühiseks keeleks kahele erinevale kolmikule. Kuid kahes erinevas kolmikus on esindatud vähemalt 4 teadlast. Seega leidu keel, mida oska vähemalt 4 osavõtjat jällegi vastuolu ülesande tingimustega. Kui aga n = 8, saame leida ülesande tingimustele vastava konstruktsiooni: 5

6 1 : A C E G I K M : A C E H J L N 3 : A D F G I L N 4 : A D F H J K M 5 : B C F G J K N 6 : B C F H I L M 7 : B D E G J L M 8 : B D E H I K N siin on 14 keelt tähistatud tähtedega A,..., N ja osavõtjad numritega 1,..., 8). 8. Laual on 10 väikest karpi, mis on nummerdatud arvudega 1 kuni 10, ja üks suur karp. Juku pane mõnedesse või ka kõigisse) väikestesse karpidesse mingi arvu kuule ning seejärel hakka kuule ümer tõstma järgmiste reeglite kohaselt: igal käigul võta Juku välja kõik kuulid ühest sellisest väikesest karist, kus kuulide arv on täpselt võrdne kari numriga n; need kuulid lisa ta karpidesse numritega 1 kuni n 1 igasse karpi ühe kuuli) ning viimase ülejääva kuuli pane suurde karpi. Niiviisi jätka Juku senikaua, kuni kirjeldatud reeglitele vastavat käiku ei saa enam teha. Leia suurim kuulide koguarv väikestes karpides mängu algul, mille korral võivad mängu lõpuks kõik kuulid olla suures karis. Lahendus. Näitame kõigepealt, et väikestesse karpidesse pandavate kuulide koguarv ei saa olla suurem kui 41. Tõepoolest, karpi numriga 10 saa Juku mängu käigus tühjendada vaid korra, sest sellest suurema numriga karpe ei ole ning järelikult pärast tühjendamist sinna enam kusagilt kuule juurde ei tule. Samuti saa ainult korra tühjendada karpi 9, sest sinna või mängu käigus lisanduda ainult üks kuul karist 10. Niiviisi edasi arutledes leiame, et ainult korra saa Juku tühjendada ka karpe 8, 7 ja 6. Karpi 5 on võimalik tühjendada ülimalt korda sest suurema numriga karpidest või sinna mängu käigus lisanduda kokku ülimalt = 5 kuuli), karpi 4 samuti ülimalt korda sinna või lisanduda kuni 5 + = 7 kuuli), karpi 3 aga ülimalt 4 korda lisanduda või kuni 7 + = 9 kuuli). Sarnasel viisil veendume, et karpi saa tühjendada kuni 7 korda lisanduda või kuni 13 kuuli) ning karpi 1 kuni 1 korda lisanduda või kuni 0 kuuli). Kokku saa Juku seega teha mitte rohkem kui = 41 käiku ning et igal käigul vähene kuulide koguarv väikestes karpides täpselt 1 võrra, siis ei saa mängu algul olla karpides rohkem kui 41 kuuli. Leiame nüüd, kuidas 41 kuuli karpidesse paigutada nii, et mängu käigus saaks Juku kõik karid tühjaks teha. Et karpi 10 kuule juurde ei tule, siis selleks, et seda oleks üldse võimalik tühjaks teha, pea seal algusest peale olema 10 kuuli. Karpi 9 lisandu 1 kuul karist 10 ning et ka see karp saaks mängu lõpus olla tühi, pea seal algul olema 9 1 = 8 kuuli. Analoogiliselt veendume, et karpides 8, 7 ja 6 pea algul olema vastavalt 8 = 6, 7 3 = 4 ja 6 4 = kuuli. Et karpi 5 tule suuremate numritega karpidest juurde kokku 5 kuuli, siis selleks, et seda saaks mängu käigus kaks korda tühjendada, pea seal alguses olema 5 5 = 5 kuuli. Karpi 4 lisandu 7 kuuli ja seal pea mängu algul seega olema 4 7 = 1 kuul; karis 3 pea olema = 3 kuuli, karis pea olema 7 13 = 1 kuul ning karis 1 samuti 1 kuul. Kokku paigutasime karpidesse tõepoolest = 41 kuuli. Kirjeldatud kuulide paigutus on näidatud joonisel 3. Iga ruudu all on kari järjekorranumer, 6

7 ruudu sees kuulide esialgne arv vastavas karis ning ruudu kohal selle kari tühjendamiste arv mängu jooksul. Jää üle kontrollida, et sellise algpaigutuse korral saa Juku soivat strateegiat Joonis 3 rakendades tõepoolest kõik karid tühjaks võtta. Selleks tule tal igal käigul valida tühjendamiseks vähima numriga soiv karp. Kuulide arvud karpides iga käigu järel on näidatud järgnevas taelis. Joonis 4 7

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a. Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaadi

Eesti koolinoorte XLIX täppisteaduste olümpiaadi Eesti koolinoorte XLIX täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 7. märtsil 2002. a. IX klass Lahendamisaega on 5 tundi. Iga ülesande õige ja ammendavalt põhjendatud lahendus annab 7 punkti.

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel

Algebraliste võrrandite lahenduvus radikaalides. Raido Paas Juhendaja: Mart Abel Algebraliste võrrandite lahenduvus radikaalides Magistritöö Raido Paas Juhendaja: Mart Abel Tartu 2013 Sisukord Sissejuhatus Ajalooline sissejuhatus iii v 1 Rühmateooria elemente 1 1.1 Substitutsioonide

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

MATEMAATILISEST LOOGIKAST (Lausearvutus)

MATEMAATILISEST LOOGIKAST (Lausearvutus) TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

Eesti LV matemaatikaolümpiaad

Eesti LV matemaatikaolümpiaad Eesti LV matemaatikaolümpiaad 2. veebruar 2008 Piirkonnavoor Kommentaarid Kokkuvõtteks Selleaastast komplekti võib paremini õnnestunuks lugeda kui paari viimase aasta omi. Lõppvooru pääsemise piirid protsentides

Διαβάστε περισσότερα

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva

LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST. Koostanud Hilja Afanasjeva LOOGIKA ELEMENTE MATEMAATIKAS. GEOMEETRIA AKSIOMAATILISEST ÜLESEHITUSEST EESSÕNA Koostanud Hilja Afanasjeva Enne selle teema käsitlemist avame mõned materjalist arusaamiseks vajalikud mõisted hulgateooriast.

Διαβάστε περισσότερα

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk.

Mudeliteooria. Kursust luges: Kalle Kaarli september a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. Mudeliteooria Kursust luges: Kalle Kaarli 1 20. september 2004. a. 1 Käesoleva konspekti on L A TEX-kujule viinud Indrek Zolk. 2 Sisukord 1 Põhimõisted 9 1.1 Signatuur ja struktuur.................. 9

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

Avaliku võtmega krüptograafia

Avaliku võtmega krüptograafia Avaliku võtmega krüptograafia Ahto Buldas Motiivid Salajase võtme vahetus on tülikas! Kas ei oleks võimalik salajases võtmes kokku leppida üle avaliku kanali? 2 Probleem piiramatu vastasega! Kui vastane

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα

Formaalsete keelte teooria. Mati Pentus

Formaalsete keelte teooria. Mati Pentus Formaalsete keelte teooria Mati Pentus http://lpcs.math.msu.su/~pentus/ftp/fkt/ 2009 13. november 2009. a. Formaalsete keelte teooria 2 Peatükk 1. Keeled ja grammatikad Definitsioon 1.1. Naturaalarvudeks

Διαβάστε περισσότερα

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül. Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)

Διαβάστε περισσότερα

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5 1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

!!  &' ':  /.., c #$% & - & ' (),..., * +,.. * ' + * - - * (),...(. ..,.. 00 !!.6 7 " 57 +: #$% & - & ' ()",..., * +,.. * ' + * - - * ()",.....(. 8.. &' ': " /..,... :, 00. c. " *+ ' * ' * +' * - * «/'» ' - &, $%' * *& 300.65 «, + *'». 3000400- -00 3-00.6, 006 3 4.!"#"$

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2016

KATEGOORIATEOORIA. Kevad 2016 KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

Sirgete varraste vääne

Sirgete varraste vääne 1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

Eesti koolinoorte 43. keemiaolümpiaad

Eesti koolinoorte 43. keemiaolümpiaad Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA

T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA http://wwwttuee http://wwwstaffttuee/ math TALLINNA TEHNIKAÜLIKOOL MATEMAATIKAINSTITUUT http://wwwstaffttuee/ itammeraid Ivar Tammeraid T~OENÄOSUSTEOORIA JA MATEMAATILINE STATISTIKA Elektrooniline ~oppematerjal

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

YMM3740 Matemaatilne analüüs II

YMM3740 Matemaatilne analüüs II YMM3740 Matemaatilne analüüs II Gert Tamberg Matemaatikainstituut Tallinna Tehnikaülikool gert.tamberg@ttu.ee http://www.ttu.ee/gert-tamberg G. Tamberg (TTÜ) YMM3740 Matemaatilne analüüs II 1 / 29 Sisu

Διαβάστε περισσότερα

1 Entroopia ja informatsioon

1 Entroopia ja informatsioon Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

Elastsusteooria põhivõrrandid,

Elastsusteooria põhivõrrandid, Peatükk 4 Elastsusteooria põhivõrrandid, nende lahendusmeetodid ja lihtsamad ruumilised ülesanded 113 4.1. Elastsusteooria põhivõrrandid 114 4.1 Elastsusteooria põhivõrrandid 1. Tasakaalu (diferentsiaal)võrrandid

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. VII klass I osa: Lahendamiseks on aega 40 minutit. Sellele lehele kirjuta ainult vastused, lahendamiseks

Διαβάστε περισσότερα

3. IMPULSS, TÖÖ, ENERGIA

3. IMPULSS, TÖÖ, ENERGIA KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

Ecophon Square 43 LED

Ecophon Square 43 LED Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester

Matemaatiline analüüs IV praktikumiülesannete kogu a. kevadsemester Matemaatiline analüüs IV praktikumiülesannete kogu 4. a. kevadsemester . Alamhulgad ruumis R m. Koonduvad jadad. Tõestage, et ruumis R a) iga kera s.o. ring) U r A) sisaldab ruutu keskpunktiga A = a,b),

Διαβάστε περισσότερα

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση. 3. Λίστα Παραμέτρων 3.. Λίστα Παραμέτρων Στην αρχική ρύθμιση, μόνο οι παράμετροι

Διαβάστε περισσότερα

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas

Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse. Ahto Buldas Krüptoloogia II: Sissejuhatus teoreetilisse krüptograafiasse Ahto Buldas 22. september 2003 2 Sisukord Saateks v 1 Entroopia ja infohulk 1 1.1 Sissejuhatus............................ 1 1.2 Kombinatoorne

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

Pinge. 2.1 Jõud ja pinged

Pinge. 2.1 Jõud ja pinged Peatükk 2 Pinge 1 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.

Διαβάστε περισσότερα

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD

Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD Krüptoräsid (Hash- funktsioonid) ja autentimine. Kasutatavaimad algoritmid. MD5, SHA-1, SHA-2. Erika Matsak, PhD 1 Nõudmised krüptoräsidele (Hash-funktsionidele) Krüptoräsiks nimetatakse ühesuunaline funktsioon

Διαβάστε περισσότερα

KRITON Platon. Siin ja edaspidi tõlkija märkused. Toim. Tõlkinud Jaan Unt

KRITON Platon. Siin ja edaspidi tõlkija märkused. Toim. Tõlkinud Jaan Unt KRITON Platon AKADEEMIA, 1/1994 lk 57 71 Tõlkinud Jaan Unt SOKRATES: Miks sa nii vara siin oled, Kriton? Või polegi enam vara? KRITON: On küll. SOKRATES: Ja kui vara siis? KRITON: Alles ahetab. SOKRATES:

Διαβάστε περισσότερα