MAAKOORE LIIKUMISTE UURIMINE EESTIS
|
|
- Ἀλκμήνη Αλιβιζάτος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 MAAKOORE LIIKUMISTE UURIMINE EESTIS Ants Torim Maa-amet Geodeesia osakond Tartu 2008
2 ÜLDINE TAUST * Läänemerd ümbritsevad alad on tõusnud hilisjääajast alates tõusu põhjustab mandrijää sulamisega kaasnenud maapinna aeglane kerkimine Läänemere ümbrus tõuseb pidevalt, kuid tõus pole ühtlane Botnia lahe põhjaosas on see 9 mm/a, Eesti looderannikul kuni 3 mm/a maakoore tõusu on erinevate meetoditega uuritud üle 300 aasta
3 Maapinna liikumiste uurimismeetodid * Geodeetiline meetod kasutatakse rannikualadest kaugemal toimuvate vertikaalliikumiste uurimiseks põhineb täpsete kordusliikumiste andmete kasutamisele ajavahe 20 aastat liikumiste suund ja kiirus loetakse nivelleerimiste vahelisel ajavahemikul püsivaks muutused kõrguskasvudes pole tingitud ainult mõõtmisvigadest, vaid ka maapinna vertikaalsest liikumisest
4 Maakoore tõus geoidi suhtes h g = H a + H e + H t Maakoore tõus ellipsoidi suhtes h = H a + H e + H t + N Maakoore tõus keskmise merepinna suhtes h H a = h H e H t N H a merepinna eustaatiline tõus (~ 1,2 mm/a) H t merepinna topograafiline muutus (kuni 0,5 mm/a) N geoidi tõus (0,4 0,6 mm/a)
5 * Okeanograafiline meetod põhineb ranniku üksikutest punktidest (VMP, M) saadud merepinna kõrguste mõõtmisandmete kasutamisel pikaajalistest vaatlustest leitakse merepinna keskmine kõrgus ja selle põhjal VMP absoluutne liikumiskiirus keskmine merepind jääb pikema perioodi jooksul stabiilseks, aasta keskmised tasemed omavad juhuslikke hälbeid (meteoroloogilised jm tegurid)
6 aasta keskmiste veetasemete pikaajaliste muutuste põhjal leitakse VMP-de vaheliste liikumiste kiirused eeliseks pidevvaatlused, puuduseks paiknemine kitsal rannikuribal Eesti rannikul on 12 VMP (3 mareograafi) vaatluste algus põhiliselt (Virtsu ja Narva-Jõesuu 1889) VMP-d seotakse põhi- ja kontrollreeperitega (2 korda aastas) põhireeperid tuleb siduda kõrgusvõrgu lähtereeperitega iga 3 aasta järel
7 * GPS meetod GPS püsijaamad (kahesageduslikud vastuvõtjad, kalibreeritud antennid) Eeliseks katkematud vaatlusseeriad Kasutusala: globaalsete ja kontinentaalsete laamade liikumise ja deformatsioonide jälgimine piirkondlike maakooreliikumiste uurimine lokaalsete deformatsioonide lokaalne monitooring
8 KÕRGTÄPNE NIVELLEERIMINE Nivelleerimisperiood Kasutatud nivelliir Käikude pikkus L km Keskmine ruutviga η σ d mm/km * I Zeiss A ,318 0,034 1,5 L * II (GKP) HA ,560 0,060 3,0 L Zeiss A 225 0,609 0,083 1,5 L Zeiss A, HA ,472 0,074 1,5 L Ni 004 (1963) Ni 007 (1965) * III Ni ,443 0,048 1,5 L 1970 (GKP) H 05, Ni ,530 0,060 3,0 L * Ni ,405 0,042 1,5 L
9 ANDMETÖÖTLUS
10 * Vertikaalliikumiste skeemid eeldatakse, et maapinna liikumiste kiirus ja suund kahe nivelleerimise vahel on olnud püsivad aastakiiruste summa suletud polügoonis võrdub nulliga polügoonide faktiline sidumatus keskm ± 0,42 mm/a (max ± 1,36 mm/a) aastakiiruste võrgu tasandamine toimus vaba võrguna kaalude abil tasandamisel saadi kaaluühiku veaks ± 0,20 mm/a liikumiskiiruste parandid käikudes kuni ± 0,10 mm/a
11
12 LÄHTEPUNKTI ABSOLUUTKIIRUS * Üldinfo Isobaaskaartide lähtepunkti absoluutväärtuse leidmiseks kasutatame merevaatlusjaamade vaatlusandmeid Maakoore tõusu Läänemere rannikul on määranud paljud autorid (Vitting, Bikis, Apslund, Zenin, Jakubovski, Pobedonostsev) Kasutatud on erineva pikkuse ja kvaliteediga vaatlusridu (erinev metoodika)
13 * Eesti skeemidel on lähtepunktiks Tallinna VMP merepinna vaatlustega alustati aastal 1842 VMP asukoht oli stabiilne terve sajand (aastail erinevused Kroonlinnast ainult +1,4 cm) vajumine märgatav alates aastast 1950, suurim muutus aastail
14 Tallinna reeperite kõrguste muutumine
15 Tallinna VMP absoluutkiirus mm/a Vitting 1922 Bikis 1940 Zenin 1958 Pobenostsev 1981 Jevrejeva Rüdja ,7-1,9 2,3-0,3 +0,2 0,3
16 Tallinna VMP absoluutkiirus vertikaalliikumise skeemidel mm/a Želnin Randjärv Vallner/Torim , , , , , , , , , ,7
17 Maapinna liikumine Lääne-Eesti rannikul +1,07 +1,1 +1,2 +1,2 Sõrve -0,21 +1,9 +1,9 Vilsandi +0,18 +1,7 Virtsu +2,42 +3,5 +2,0 +2,0 Ristna -0,20 +2,6 Heltermaa +0,32 +2,8 Rohuküla +1,9 Vormsi +0,25 +1,9 +1,0 Paldiki Pobedonostsev 1930/72 Tamm 1968/83 Apslund 1923/70 Jakubovski 1989/70 Punkt
18
19 VERTIKAALLIIKUMISTE SKEEMID * Üldinfo (1988, 1990) lähteandmeteks a nivelleerimised kasutati a kordusmõõtmisi teostati MVJ-de uus kontrollsidumine ( /77) Lääne-Eesti ja saarte piirkonna liikumiskiiruste täpsustamine (Tamm) komplekssed uurimismeetodid
20 * Uurimise eesmärk: selgitada, millises ulatuses avaldub Eesti kristallilise aluskorra plokiline struktuur vertikaalliikumises analüüsida vertikaalliikumiste iseloomu erinevatel käikudel koostada liikumiste graafikud käikudele, mis lõikuvad tektooniliselt aktiivsete tsoonidega selgitada insener-geoloogiliste uuringutega nende käikude reeperite stabiilsus
21 Isobaaside skeem ja liikumise kiirustasandid 1988
22 Maakoore tõus Lääne-Eestis ja saartel
23 * Maakoore liikumised Lääne-Eesti piirkonnas (Tamm 1988) Nivelleerimistevahelise a ( ) jooksul on mandri lääneosa ja saarte ala loodesuunaline tõus Karuse suhtes ca 33 mm 100 km kohta (~ 2 mm/a) Hiiumaa kirdeosa tõuseb samuti ca 2 mm/a kiiremini kui Saaremaa lõunaosa (Sõrve) Merevaatlusjaamadest ( ) ja kordusnivelleerimistest ( ) saadud maapinna suhtelised liikumiskiirused samadel käikudel langevad põhiliselt kokku (erinevus keskmisest väärtusest ± 0,6 mm/a) ja ei ületa suhtelise kiiruse arvutamise täpsust
24 Eesti aluskorra tektoonika
25 Verikaalliikumiste graafikud mm/a
26 * Kiirustasandid kõik tasandil olevad punktid pidid rahuldama võrrandit z = a + bc + cy z punkti aastane liikumiskiirus a, b, c tasandi asendit määravad konstandid arvutustest järeldus, et Eestis saab eristada 5 vertikaalliikumiste kiirustasandit: tasand z 1 kaguosas, z 2 keskosas, z 3 kirdeosas, z 4 Saaremaa lääneosas, z 5 loodeosas tasanditest z 2 z 3 ; z 2 z 1 ja z 4 z 5 ; teised tasandid on üksteise suhtes väikese nurga all (max 1 27 )
27 Järeldused: Loode-Eesti osa (tõusev tasand) ühtib enamuses raskusjõu positiivsete anomaaliatega. Kagu-Eesti (vajuv tasand) ühtib väiksemat intensiivsust omava raskusjõu positiivse anomaaliaga piirkondlike gravitatsiooniliste struktuuride ühtimine maakoore liikumistasanditega osutab liikumiste iseloomu ja piirkonna maakoore ehituse olulistele seostele
28 Eesti vertikaalliikumiste skeem (1990)
29 * Skeem 1990 skeemi aluseks on vertikaalliikumiste varem koostatud skeem (1988); täpsustati isobaaside asetust põhiliselt Kagu-Eestis toimunud kordusnivelleerimiste ( ) alusel uuendati alusskeemi ja üldistati isobaaside kulgemist (vahe 0,25 mm) skeemi kohaselt kerkib kõige intensiivsemalt Loode-Eesti, kus on fikseeritud ka üksikud maavärinad (1914, 1827, 1858, 1877, 1976) Nüüdisliikumiste gradient on maksimaalne loode kagu suunas (max 3,6 mm/a)
30 Aluspõhja tektoonika ja maavärisemised
31 kordusmõõtmiste graafikute võrdlemisel geoloogiliste ja geofüüsikaliste uuringute tulemustega nähtub, et kehtib seos maakoore aastaste liikumiskiiruste järskude muutuste ja graviväljade muutuste vahel, mis on sageli seotud tektooniliste rikete asukohaga selgelt väljendub see Pärnu Rakvere suunalist rikkevööndit (šarniirrike) lõikuvatel käikudel; selles rikkevööndis on ka suurimad liikumiskiiruse muutused rikkevööndit loetakse Balti kilbi ja Vene platvormi piiriks, mis jagab Eesti kaheks suureks geoloogiliseks plokiks; Balti kilpi mõjutab tõenäoliselt kahesuunaline pikaajaline liikumine (tektoonika + mandrijää), Vene platvormile on omane vaid aeglane tektooniline liikumine
32 Loode-Eesti kerkimise iseloom ja omadused on sarnased Fennoskandia üleüldise tõusuga Kagu-Eesti liikumised sarnanevad Vene platvormidega seotud muutustega puudub kooskõla liikumiste tausta ja piirkondlike settekihtide struktuuride vahel; aluspõhi vajub lõunasuunas, aga maakoore liikumise isojooned levivad kirdest edelasse vertikaalliikumiste isojooned ulatuvad enamikest suurtest gravistruktuuridest ja piirkondlikest magnetilistest anomaaliatest risti üle võib täheldada teatud sarnasust gravitatsiooniliste struktuuride ja maakoore liikumiste vahel Eesti loode- ja keskosas
33 ÜLDISED JÄRELDUSED * Läänemerd ümbritsevad alad on pidevalt tõusnud alates hilisjääajast, kui toimus mandrijää viimane sulamine. * Eestis toimuvad maapinna tektoonilised liikumised on järjepidevad ja peegeldavad maakoore tektoonilisi protsesse. * Vertikaalliikumine on seotud Fennoskandia jääajajärgse tõusuga, mille foonil täheldatakse diferentseeritud plokilist liikumist. * Maapinna liikumise järsud muutused korreleeruvad kristalse aluskorra plokilise ehitusega.
34 * Maakoore vertikaalliikumised põhjustavad aegajalt Lääne-Eestis nõrku tektoonilise iseloomuga maavärisemisi (Osmusaare 1976). * Vertikaalliikumiste gradient on maksimaalne loode kagu suunas (3,6 mm/a; Haapsalus tõus 2,8 mm/a; Petseris vajumine 0,8 mm/a). * GPS püsijaamde andmetel ulatub tõus Hiiumaa loodeosas 2,8 mm/a (BIFROST 2001 kaart) * Eesti võib eristada 5 liikumiskiiruse tasandit (Kagu-, Kirde-, Loode-Eesti ja Saaremaa idaosa).
35 Jääajajärgsed muutused Fennoskandias GPS püsijaamade järgi BIFROST 2001 (Baseline Inferences from Fennoscandian Rebound Oservation
36 Tallinna sadamaala vajumine
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Geoloogilised uuringud ja nende keskkonnamõju. Erki Niitlaan
Geoloogilised uuringud ja nende keskkonnamõju Erki Niitlaan Ettekande sisu Mõisted Uuringu liigid Uuringu meetodid Eestis kasutavad uuringu meetodid Keskkonnamõju Kokkuvõtte Mõisted Geoloogia - kreeka
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
Vektorid. A=( A x, A y, A z ) Vektor analüütilises geomeetrias
ektorid Matemaatikas tähistab vektor vektorruumi elementi. ektorruum ja vektor on defineeritud väga laialt, kuid praktikas võime vektorit ette kujutada kui kindla arvu liikmetega järjestatud arvuhulka.
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
Anonüümse HIV nõustamise ja testimise teenuse ülevaade aasta. Kristi Rüütel, Natalja Gluškova
Anonüümse HIV nõustamise ja testimise teenuse ülevaade 2012. aasta Kristi Rüütel, atalja Gluškova Tallinn 2013 SISUKORD LÜHEDID JA MÕISTED... 2 HIV ÕUSTAMISE JA TESTIMISE TEEUS... 3 ADMETE KOGUMIE JA AALÜÜS...
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
Salajõe karstiala geofüüsikaline uuring
TARTU ÜLIKOOL ÖKOLOOGIA JA MAATEADUSTE INSTITUUT GEOLOOGIA OSAKOND Salajõe karstiala geofüüsikaline uuring Uuringuaruanne Koostajad: Jüri Plado Argo Jõeleht Kaidi Sarv Tartu 2015 Sisukord 1 SISSEJUHATUS...
Metsa kõrguse kaardistamise võimalustest radarkaugseirega. Aire Olesk, Kaupo Voormansik
Metsa kõrguse kaardistamise võimalustest radarkaugseirega Aire Olesk, Kaupo Voormansik ESTGIS Narva-Jõesuu 24. Oktoober 2014 Tehisava-radar (SAR) Radarkaugseire rakendused Muutuste tuvastus Biomass Tormi-
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
VFR navigatsioon I (Mõisted ja elemendid I)
VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Hüdrosilindrid. Hüdrosilindrite tähtsamateks kasutus valdkondadeks on koormuste tõstmine ja langetamine, lukustus ja nihutus.
6 Hüdrosilinder ja hüdromootor on hüdrosüsteemis asendamatud komponendid, millede abil muudetakse hüdroenergia mehaaniliseks energiaks. Nagu hüdro-mootor, nii on ka hüdrosilinder ühendavaks lüliks hüdrosüsteemi
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
1 2 3 4 5 6 7 8 9 10 2 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 3 6 11 1 12 7 1 2 5 4 3 9 10 8 18 20 21 22 23 24 25 26
2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 9 10 1 8 12 7 3 1 6 2 5 4 3 11 18 20 21 22 23 24 26 28 30
AS MÕÕTELABOR Tellija:... Tuule 11, Tallinn XXXXXXX Objekt:... ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR.
AS Mõõtelabor ISOLATSIOONITAKISTUSE MÕÕTMISPROTOKOLL NR. Mõõtmised teostati 200 a mõõteriistaga... nr.... (kalibreerimistähtaeg...) pingega V vastavalt EVS-HD 384.6.61 S2:2004 nõuetele. Jaotus- Kontrollitava
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
Tulemused kaalutud andmete alusel. Weighted results
Tervise Arengu Instituut National Institute for Health Development EESTI TÄISKASVANUD RAHVASTIKU TERVISEKÄITUMISE UURING 2006 Tulemused kaalutud andmete alusel Health Behavior among Estonian Adult Population,
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
Jaanus Kroon. Statistika kvaliteedi mõõtmed
MAKSEBILANSI KVALITEEDI HINDAMINE Jaanus Kroon Statistikat kasutades tekib sageli küsimus, kui kvaliteetsed analüüsitavad andmed on ning kas need on piisavalt usaldusväärsed, et teha nende põhjal majandus-
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
Matemaatiline statistika ja modelleerimine
Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
Ehitusmehaanika. EST meetod
Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna
Ecophon Square 43 LED
Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,
NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse
TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool. Andrus Salupere. Loengukonspekt EMR5170, EMR0020, 4,0 AP
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool Andrus Salupere DÜNAAMIKA Loengukonspekt EMR5170, EMR0020, 4,0 AP Tallinn 2003/2004/2005 Eessõna Käesolev loengukonspekt on mõeldud
Vektor. Joone võrrand. Analüütiline geomeetria.
Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
REAALAINETE KESKUS JAAK SÄRAK
REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant
Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.
Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad
HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G
HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Juhuslik faktor ja mitmetasandilised mudelid
Peatükk 2 Juhuslik faktor ja mitmetasandilised mudelid Uurime inimese verer~ohku. Inimese verer~ohk on üsnagi varieeruv ja s~oltub üsnagi tugevalt hetkeolukorrat mida inimene on enne m~o~otmist söönud/joonud,
5 Vaivundamendid. Joonis 5.1. Vaivundamentide liigid. a) lint; b) vaiarühm posti all; c) üksikvai posti all. Joonis 5.2 Kõrgrostvärgiga vaivundament
1 5 Vaivundamendid Vaivundamente kasutatakse juhtudel, kui tavalise madalvundamendiga ei ole võimalik tagada piisavat kandevõimet või osutub madalvundamendi vajum liialt suureks. Mõnedel juhtudel võimaldab
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
AEGLASE SÕIDUKI LIIKLUSOHUTUSEST
133 AEGLASE SÕIDUKI LIIKLUSOHUTUSEST Eesti Maaülikool Sissejuhatus Liiklusohutuse teooriast on teada, et liiklusvoolu kiirusest erineva kiirusega sõitvad sõidukid (juhid) satuvad liiklusõnnetustesse sagedamini
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
Lexical-Functional Grammar
Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
P U U R I J A KÄSIRAAMAT
PUURIJA KÄSIRAAMAT Eesti Geoloogia Selts PUURIJA KÄSIRAAMAT Tallinn 2017 Puurija käsiraamat. Eesti Geoloogia Selts. Tallinn, 2017. ISBN 978-9949-9957-0-7 (pdf) Koostaja: Toimetajad: Kujundus: Kaanefoto:
TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots
TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
ÕHUKVALITEEDI MÕÕTMISED MUUGA SADAMAS 2014
ÕHUKVALITEEDI MÕÕTMISED MUUGA SADAMAS 2014 Tallinn 2015 Õhukvaliteedi mõõtmised Muuga sadamas 2014 1 (50) Töö nimetus: ÕHUKVALITEEDI MÕÕTMISED MUUGA SADAMAS 2014 Töö autor: Naima Kabral Töö tellija: AS
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
( ) ( ) ( ) Avaldame ka siin, tôestuseta, et faaside tasakaalu tingimus on täidetud vônkeringi takistuse faasikarakteristiku langeva iseloomu korral:
( ) ( ) ( ) V V ω ω: ϕ ω V V V S + ϕz ω c + ϕk ω π. Avaldame ka siin, tôestuseta, et faaside tasakaalu tingimus on täidetud vônkeringi takistuse faasikarakteristiku langeva iseloomu korral: ϕz c < 0. ω
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
CaCO 3(s) --> CaO(s) + CO 2(g) H = kj. Näide
3. KEEMILINE TERMODÜNAAMIKA Keemiline termodünaamika uurib erinevate energiavormide vastastikuseid üleminekuid keemilistes ja füüsikalistes protsessides. 3.1. Soojuslikud muutused keemilistes reaktsioonides
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt?
I tund: Füüsika kui loodusteadus. (Sissejuhatav osa) Eesmärk jõuda füüsikasse läbi isiklike kogemuste. Kuidas kujunes sinu maailmapilt? (Sündmused tekitavad signaale, mida me oma meeleorganitega aistingutena
Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi
Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest
Põhivara aines LOFY Füüsika ja tehnika
Põhivara aines LOFY.01.121 Füüsika ja tehnika Maailm on keskkond, mis jääb väljapoole inimese mina-tunnetuse piire. Loodus on inimest ümbritsev ja inimesest sõltumatult eksisteeriv keskkond. Looduses toimuvaid
Maaelu Arengu Euroopa Põllumajandusfond: Euroopa investeeringud maapiirkondadesse Maapiirkond noorte elu- ja ettevõtluskeskkonnana
Maaelu Arengu Euroopa Põllumajandusfond: Euroopa investeeringud maapiirkondadesse Maapiirkond noorte elu- ja ettevõtluskeskkonnana Teostaja: Eesti maaelu arengukava 2007-2013 1., 3. ja 4. telje püsihindaja
LOFY Füüsika kui loodusteadus (2 EAP)
LOFY.01.108 Füüsika kui loodusteadus (2 EAP) 1. Sissejuhatus... 1 I. Teoreetilised alused... 4 2. Mõtlemisviisid... 4 3. Teaduslik mõtlemisviis... 5 4. Loodusteadusliku mõtlemisviisi kujundamine... 6 Kirjandus...
MATEMAATILISEST LOOGIKAST (Lausearvutus)
TARTU ÜLIKOOL Teaduskool MATEMAATILISEST LOOGIKAST (Lausearvutus) Õppematerjal TÜ Teaduskooli õpilastele Koostanud E. Mitt TARTU 2003 1. LAUSE MÕISTE Matemaatilise loogika ühe osa - lausearvutuse - põhiliseks
ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS
Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007
Materjalide omadused. kujutatud joonisel Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega,
Peatükk 7 Materjalide omadused 1 Materjalide mehaanikalised omadused määratakse tavaliselt otsese testimisega, mis sageli lõpevad katsekeha purunemisega, näiteks tõmbekatse, väändekatse või löökkatse.