Matemaatiline statistika ja modelleerimine

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Matemaatiline statistika ja modelleerimine"

Transcript

1 Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv suhteliselt väike) ülevaatlikuks kirjeldamiseks on lihtne lugeda kokku, mitu korda iga erinevat väärtust esineb ja kirjutada saadud arvud tabeli kujul. Väärtuse esinemiste arvu nimetatakse tema sageduseks. Tihti leitakse lisaks iga väärtuse (protsentuaalne) osakaal valimis, mida nimetatakse ka suhteliseks sageduseks. Mullatüüp liiv liivmuld liivmuld liiv liivmuld Niiskus niiske paras niiske kuiv paras paras niiske paras paras kuiv Suvinisu viljakus (kg/ha) Mullatüüp Sagedus 5 liivmuld 3 liiv Osakaal,5,3, Osakaal (%) 5 Tanel Kaart 1

2 Sagedustabeli asemel võib kokkuvõtliku info väärtuste esinemissagedustest esitada ka kas tulp- või ringdiagrammina (sektordiagrammina). Mullatüüpide esinemissagedused 5 4 Mullatüüpide osakaalud Sagedus 3 1 liivmuld liiv Mullatüüpide esinemissagedused Osakaal (%) 4 liivmuld liiv liivmuld (3) Mullatüüpide osakaalud liivmuld (5) liiv () 5 liiv Sagedused ja osakaalud pidev tunnus Pidevate tunnuste puhul on tunnuse võimalike väärtuste arv (teoreetiliselt) lõpmatu seega kui sagedustabelis vastaks igale väärtusele üks rida, siis kaoks praktiliselt erinevus sagedustabeli ja originaalandmete vahel. Seetõttu jagatakse tunnuse võimalikud väärtused intervallidesse ja sagedustabel näitab, mitu väärtust langeb ühte või teise intervalli. Intervallide arv ei tohiks olla liiga suur ja see oleneb valimi suurusest ( n). Sagedus [35-4) [4-45) [45-5) [5-55) Suvinisu saagikus kg/ha Saagikus Sagedus Osakaal Osakaal (%) [35-4), [4-45) 3,3 [45-5) 4,4 4 [5-55) 1,1 1 Jaotus Pideva tunnuse sagedustabeli põhjal saadud tulpdiagrammi nimetatakse histogrammiks. Tanel Kaart

3 Märkusi ja soovitusi Erinevalt tulpdiagrammist, mis on antud andmete korral üheselt määratud, võime samade andmete põhjal saada üsna erineva kujuga histogramme. 35% 5% 15% 1 5% (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Lammaste kehamass, kg (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Sagedus Suhteline sagedus 4,76% 19,5% 33,33% 9,5% 3,81%, 9,5% Lammaste kehamass, kg (5,6] (6,7] (7,8] (8,9] Sagedus Suhteline sagedus 4,76% 5,38% 33,33% 9,5% (5,6] (6,7] (7,8] (8,9] Märkusi ja soovitusi On tungivalt soovitav, et kõik kasutatud vahemikud oleksid võrdse pikkusega! Joonisele tuleb kanda ka vahemikud, kuhu ühtki objekti ei sattunud! Avatud vahemikke tuleks võimaluse korral vältida. 6 35% 45% 15% < >8 5% 15% 1 5% (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] (55,65] (65,75] (75,85] (85,95] Tanel Kaart 3

4 Märkusi ja soovitusi 7 6 Teaduslikult korrektsel histogrammil on ka x-telg esitatud pideval (mitte diskreetsel) skaalal. Selle Excel is teostamine on muidugi üks paras nikerdus (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Märkusi ja soovitusi Sagedused versus osakaalud 5 15 Kütitud ulukid Põder Punahirv Pruunkaru Metssiga Metskits Hunt Kütitud ulukid Põder Punahirv Pruunkaru Metssiga Metskits Hunt Skaala! Eestis kütitud põdrad 5 46 Eestis kütitud põdrad Tanel Kaart 4

5 Ringdiagrammile eelistada tulpdiagrammi (eriti võrdlemisel). Märkusi ja soovitusi 4 1 Kütitud ulukid. aastal (osakaal, %) 35,3% 38,6% 3,3%,5%,%, Hunt Metskits Metssiga Pruunkaru Punahirv Põder 4 1 Kütitud ulukid 5. aastal (osakaal, %) 38,8% 43, 17,5%,1%,1%,5% Hunt Metskits Metssiga Pruunkaru Punahirv Põder Kütitud ulukid. aastal (osakaal, %) Metskits 35,3% Metssiga 38,6% Hunt,5% Pruunkaru,% Punahirv, Põder 3,3% Kütitud ulukid 5. aastal (osakaal, %) Metskits 38,8% Metssiga 43, Hunt,1% Pruunkaru,1% Punahirv,5% Põder 17,5% Vältida tuleks 3-mõõtmelisi graafikuid, eriti ringdiagramme. Märkusi ja soovitusi Rahva eelistused poliitiliste erakondade osas Valged Sinised Erakond Sinised Punased Mustad Valged Osakaal (%) Mustad Punased Rahva eelistused poliitiliste erakondade osas Sinised Rahva eelistused poliitiliste erakondade osas Sinised Punased Mustad Valged Valged Mustad Punased Tanel Kaart 5

6 Arvkarakteristikud andmestiku suurus (valimi maht, sample size) n n = = (aritmeetiline) keskmine [average, mean] x x 1 i n i mediaan (nn 5-punkt) [median] mood [mode] enim esinev (suurima sagedusega) väärtus Näide. Uuringu all olnud 5-l haigestunud loomal määrati haiguse peiteajaks vastavalt 8, 16, 1, 6 ja 14 päeva (üks uuritud loomadest oli ilmselt geneetiliselt erinev või siis sai juba mingit muud, haiguse avaldumist pärssivat ravi). Haiguse keskmine peiteaeg on x = = = päeva. 5 5 Peiteaeg, millest pooltel loomadel avaldus haigus varem ja pooltel hiljem, on leitav kui kasvavalt järjestatud peiteaegade keskmine väärtus e mediaan: 8, 1, 14, 16, 6 = med Keskmise omadusi 1. cx = cx, kus c on konstant. x + c = x + c, kus c on konstant 3. x + y = x + y n 4. x = nx i= 1 i 5. f ( x) f ( x), kus f on monotoonne teisendus Mediaani omadusi ( ) = ( ) med ( 1 x ) ( med x ) 1. med f ( x) f med( x), kus f on monotoonne teisendus Näiteks, kui log ( ) =, siis log 1 ( ) = med ( x) = 1 = 1. n. x n med( x) i= 1 i Tanel Kaart 6

7 Vaatluste hajuvus miinimum, maksimum, haare [range] = max min n standardhälve [standard deviation] s = 1 ( x ) 1 1 i x n i= dispersioon [(sample) variance] standardviga [standard error] s se = s n Näide. Uuriti 5 metsiku ja 4 puhtatõulise laborihiire reaktsiooni ärritajale. Tulemuseks saadi järgmised väärtused: metsikud hiired 15, 45, 3, 1, 5; labori hiired, 5, 3, 5. Keskmised reaktsioonid kummagi grupi jaoks on x m = = = 5, x l = = = s m s l (15 5) + (45 5) + (3 5) + (1 5) + (5 5) 75 = = = 187,5 13,69; ( 5) + (5 5) + (3 5) + (5 5) 5 = = 16,67 4, Standardhälbe ja dispersiooni omadusi 1. s ( cx) = c s ( x), kus c on konstant. s( cx) = cs( x) 3. s ( x + c) = s ( x) 4. s( x + c) = s( x) 5. kui x ja y on sõltumatud uuritavad tunnused, siis s x + y = s x + s y ( ) ( ) ( ) Teades vaid uuritava tunnuse keskväärtust (populatsiooni keskmist) ja standardhälvet, võime uuritava tunnuse väärtuste kohta öelda järgmist: vähemalt 3/4 uuritava tunnuse väärtustest asuvad keskväärtusele lähemal kui kaks standardhälvet (enamasti asub kahe standardhälbe kaugusel keskväärtusest umbes 95% vaatlustest); vähemalt 8/9 uuritava tunnuse väärtustest asuvad keskväärtusele lähemal kui kolm standardhälvet (enamasti asub kolme standardhälbe kaugusel keskväärtusest rohkem kui 99% vaatlustest). Tanel Kaart 7

8 Arvkarakteristikud Näiteid kirjandusest Arvkarakteristikud Näiteid kirjandusest Tanel Kaart 8

9 Variatsioonikordaja [coefficient of variation] v = s 1 x Aga mis siis, kui keskmine on negatiivne? Näide. Keskmine St. hälve Var. kordaja Piim, kg 3,3 5,3 17,6 Rasv, % 4,13,74 17,98 Valk, % 3,17,4 7,59 SRA, tuh/ml 695,9 1111,99 159,79 Energiabilanss, MJ -36,4 5,99-146, Kvantiilid, protsentiilid kvartiilid alumine kvartiil e 5%-punkt ja ülemine kvartiil e 75%-punkt [lower, upper quartile] kvartiilide vahe [interquartile range, IQR] kasutatakse varieeruvuse iseloomustamiseks detsiilid, protsentiilid e protsendipunktid/kvantiilid min, max α-kvantiiliks [α-quantile] nimetatakse sellist uuritava tunnuse väärtust, millest väiksemate väärtuste osakaal mõõtmistulemuste seas on α. Min 5 Kvartiilide vahe 95%-punkt Alumine kvartiil Mediaan Ülemine kvartiil Max 5% 5% 5% 5% 95% 5% Tanel Kaart 9

10 Karp-vurrud diagramm [boxplot] Karpvurrud-diagramm Näiteid kirjandusest Tanel Kaart 1

11 Karpvurrud-diagramm Sünnimass Ertsma Halinga Langerma Libatse Farm Vasikate sünnimass farmide kaupa. Väärtused, mis jäävad alumisest või ülemisest kvartiilist kaugemale kui 1,5-kordne kvartiilide vahe, on loetud erandlikeks ja tähistatud sümboliga. 3D diagrammid Tanel Kaart 11

12 3D diagrammid 3-mõõtmelised pinnad sobivad sageli illustreerimaks matemaatilise modelleerimise tulemusi. Tanel Kaart 1

13 Diagramme võib omavahel kombineerida Mõnikord võib terve ettekande mahutada ühele joonisele... Tanel Kaart 13

Töökorraldus. Õppematerialid. Töökorraldus. Harvey Motulsky Intuitive Biostatistics (2010, 1995)

Töökorraldus. Õppematerialid. Töökorraldus. Harvey Motulsky Intuitive Biostatistics (2010, 1995) Andmeanalüüs molekulaarbioloogias LOMR.0.007. loeng Andmed, tunnused, tunnuste tüübid ja tunnuse jaotuse iseloomustamine Prof Maido Remm Märt Möls martm@ut.ee Töökorraldus Hinne Hinne kujuneb kontrolltööde

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

2. Normi piiride määramine (R.D. Smith)

2. Normi piiride määramine (R.D. Smith) . Normi piiride määramine (R.D. Smith) Sissejuhatuseks Meditsiiniliste otsuste tegemise protsess koosneb neljast põhietapist: 1. Subjektiivsete andmete kogumine. Subjektiivsed andmed põhinevad meie enda

Διαβάστε περισσότερα

Statistiline andmetöötlus, VL-0435 sügis, 2008

Statistiline andmetöötlus, VL-0435 sügis, 2008 Praktikum 6 Salvestage kursuse kodulehelt omale arvutisse andmestik lehmageen.xls. Praktikum püüab kirjeldada mõningaid võimalusi tunnuste vaheliste seoste uurimiseks. Kommentaarid andmestiku kohta Konkreetselt

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Excel Statistilised funktsioonid

Excel Statistilised funktsioonid Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

2. Normi piiride määramine

2. Normi piiride määramine . Normi piiride määramine 1 Teemad Kliiniliste andmete omadused Andmete liigid Skaalade liigid Objektiivsus, valiidsus (paikapidavus, täpsus), usaldusväärsus (korratavus) Variatsioon vaatlusandmetes Statistilised

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

Matemaatiline statistika ja modelleerimine

Matemaatiline statistika ja modelleerimine Matemaatiline statistika ja modelleerimine Kahe arvtunnuse ühine käitumine, korrelatsioon- ja regressioonanalüüs EMÜ doktorikool DK.0007 Tanel Kaart Lineaarne e Pearsoni korrelatsioonikordaja Millal kasutada

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013

Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013 55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi

Διαβάστε περισσότερα

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD

1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD 1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki

Διαβάστε περισσότερα

Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)

Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

T~oestatavalt korrektne transleerimine

T~oestatavalt korrektne transleerimine T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:

Διαβάστε περισσότερα

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013

STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013 Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,

Διαβάστε περισσότερα

Mõõtm., andmetöötlus ja autom. piimanduses ja lihanduses, VL-1112 ja VL-1122 Praktikum 1

Mõõtm., andmetöötlus ja autom. piimanduses ja lihanduses, VL-1112 ja VL-1122 Praktikum 1 Praktikum 1 Praktikumi sisuks on kirjeldav statistika ja selle teostamine MS Excelis. Esimesed seitse lehekülge juhendis ( Üldine sissejuhatus: ) on lihtsalt mõningate Exceli kohta käivate põhitõdede meenutus

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

Praktikum 1. Matemaatiline statistika ja modelleerimine, DK.0007

Praktikum 1. Matemaatiline statistika ja modelleerimine, DK.0007 Praktikum 1 MS Excelis on võimalik teostada suur hulk andmete haldamisest ja esmasest statistilisest analüüsist, sageli ka kogu vajalik analüüside hulk. Kuigi tänane praktikum käsitleb vaid erinevaid kirjeldava

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5

1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5 1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................

Διαβάστε περισσότερα

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές

3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών

Διαβάστε περισσότερα

Veaarvutus ja määramatus

Veaarvutus ja määramatus TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

Sisukord. 4 Tõenäosuse piirteoreemid 36

Sisukord. 4 Tõenäosuse piirteoreemid 36 Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32

Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

Praktikum 2. Kommentaarid andmestiku kohta

Praktikum 2. Kommentaarid andmestiku kohta Praktikum 2 Salvestage kursuse kodulehelt omale arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). Kommentaarid andmestiku kohta Lammaste andmebaas on moodustatud aastal 2003

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27

Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27 Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid

Διαβάστε περισσότερα

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς

Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια

Διαβάστε περισσότερα

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi

Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Andmete haldus ja analüüs MS Excelis Praktikum 1

Andmete haldus ja analüüs MS Excelis Praktikum 1 Praktikum 1 Tänase praktikumi teema on MS Exceli peamised andmeanalüüsivahendid funktsioonid, statistikaprotseduurid, risttabelid (PivotTabel) ja joonised ning valdavalt kirjeldav statistika. VÄGA ÜLDINE

Διαβάστε περισσότερα

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35

Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35 Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja

Διαβάστε περισσότερα

Kontekstivabad keeled

Kontekstivabad keeled Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,

Διαβάστε περισσότερα

SELEKTSIOONIINDEKSID

SELEKTSIOONIINDEKSID VL09 VI SELEKTSIOONIINDEKSID Kuigi geneetiliste parameetrite (päritavuskoefitsiendid, geneetilised korrelatsioonikordajad, aretusväärtused) hindamiseks reaalsetes, suurtes ja väga erinevatel sugulusastmetel

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...

1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud... Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega

Διαβάστε περισσότερα

Lexical-Functional Grammar

Lexical-Functional Grammar Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................

Διαβάστε περισσότερα

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2

siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2 Vahemikhinnangud Vahemikhinnangud Olgu α juhusliku suuruse X parameeter ja α = α (x 1,..., x n ) parameetri α hinnang. Kui ε > 0 on kindel suurus, siis vahemiku (α ε, α +ε) otspunktid on samuti juhuslikud

Διαβάστε περισσότερα

Juhuslik faktor ja mitmetasandilised mudelid

Juhuslik faktor ja mitmetasandilised mudelid Peatükk 2 Juhuslik faktor ja mitmetasandilised mudelid Uurime inimese verer~ohku. Inimese verer~ohk on üsnagi varieeruv ja s~oltub üsnagi tugevalt hetkeolukorrat mida inimene on enne m~o~otmist söönud/joonud,

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega

Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

Matemaatiline statistika ja modelleerimine

Matemaatiline statistika ja modelleerimine Matemaatiline tatitika ja modelleerimine Üldied lineaared mudelid [general linear model, GLM] EMÜ doktorikool DK.0007 Tanel Kaart Katepõhine v mudelipõhine uuring Katepõhine uuring katetingimued range

Διαβάστε περισσότερα

Enam kui kahe grupi keskmiste võrdlus

Enam kui kahe grupi keskmiste võrdlus Bomeetra Enam ku kahe populatsoon keskväärtuste võrdlemne dspersoonanalüüs Enam ku kahe grup keskmste võrdlus H 0 : 1 = 2 = = k H 1 : leduvad sellsed grupd,j, et Eeldustel, et j uurtav (sõltuv) tunnus

Διαβάστε περισσότερα

Annegrete Peek. Üldistatud aditiivne mudel. Bakalaureusetöö (6 EAP)

Annegrete Peek. Üldistatud aditiivne mudel. Bakalaureusetöö (6 EAP) TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Annegrete Peek Üldistatud aditiivne mudel Bakalaureusetöö (6 EAP) Juhendaja: Märt Möls, PhD Tartu 2014 Üldistatud aditiivne

Διαβάστε περισσότερα

ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS

ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis

Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής

Διαβάστε περισσότερα

Arvuti kasutamine uurimistöös

Arvuti kasutamine uurimistöös Arvuti kasutamine uurimistöös Ülesannete kogu informaatika valikaine e-õpiku juurde Mart Laanpere, Katrin Niglas, Kairi Osula, Kai Pata Tallinna Ülikool 2013 Õppekomplekti rahastas ESF TeaMe programm Eesti

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Arvutatavad statistikud. Programmi LSTATS kasutamisjuhend

Arvutatavad statistikud. Programmi LSTATS kasutamisjuhend Programmi LSTATS kasutamisjuhend Lokaalstatistikute arvutamise tarkvara LSTATS võimaldab arvutada mitmesuguseid kujutise või kategoorilise pinna lokaalseid omadusi kirjeldavaid statistikuid päiseta binaarsetest

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Smith i diagramm. Peegeldustegur

Smith i diagramm. Peegeldustegur Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes

Διαβάστε περισσότερα

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας

ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr

Διαβάστε περισσότερα

Epidemioloogiliste terminite lühisõnastik

Epidemioloogiliste terminite lühisõnastik Epidemioloogiliste terminite lühisõnastik Andmed [Data] - informatsioon, mistahes laadi faktid. Data on mitmuses, datum on ainsuses. Andmestik [Data set] süstematiseeritud infokogum, tavaliselt elektroonilisel

Διαβάστε περισσότερα

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,

Διαβάστε περισσότερα

Biostatistics for Health Sciences Review Sheet

Biostatistics for Health Sciences Review Sheet Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................

Διαβάστε περισσότερα

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397

Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397 Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus

Διαβάστε περισσότερα

Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122

Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122 Praks 2(3) Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls (http://www.eau.ee/~ktanel/vl_1112/lammas.xls). 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

2. HULGATEOORIA ELEMENTE

2. HULGATEOORIA ELEMENTE 2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.

Διαβάστε περισσότερα

A - suurepärane % B - väga hea 81-90% C - hea 71-80% D - rahuldav 61-70% E - kasin 51-60% F - puudulik 0 50% Kirjeldav statistika

A - suurepärane % B - väga hea 81-90% C - hea 71-80% D - rahuldav 61-70% E - kasin 51-60% F - puudulik 0 50% Kirjeldav statistika Kursuse korraldus Andmeanalüüs: statistiline andmestik ja kirjeldav statistika Loeng 6 nädalat 31.01 7.02 14.02 21.02 28.02 7.03 IFI7041 Loeng: Kairi Osula Seminar: Taivo Tuuling Loengu slaidid ja muud

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

Statistiline andmetöötlus VL.0435

Statistiline andmetöötlus VL.0435 Tanel Kaart ügi, 009 Statitiline andmetöötlu VL.0435 Loeng 3 Hüpoteeide tatitiline kontrollimine Kekmite võrdlemine http://www.eau.ee/~ktanel/vl_0435/ Hüpoteeide kontroll Näiteid hüpoteeidet Ka jogurti

Διαβάστε περισσότερα

1 Entroopia ja informatsioon

1 Entroopia ja informatsioon Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",

Διαβάστε περισσότερα

Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA)

Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Kursus: Mitmemõõtmeline statistika Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Õppejõud: Katrin Niglas PhD, dotsent informaatika instituut Statistilise olulisustesti põhisammud: E I: Analüüsisin

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2010

KATEGOORIATEOORIA. Kevad 2010 KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122

Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122 Praks 2 Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage fail

Διαβάστε περισσότερα

KATEGOORIATEOORIA. Kevad 2016

KATEGOORIATEOORIA. Kevad 2016 KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me

Διαβάστε περισσότερα

ALGEBRA I. Kevad Lektor: Valdis Laan

ALGEBRA I. Kevad Lektor: Valdis Laan ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja

Διαβάστε περισσότερα

6 Mitme muutuja funktsioonid

6 Mitme muutuja funktsioonid 6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad

Διαβάστε περισσότερα