Matemaatiline statistika ja modelleerimine
|
|
- λατίνος Βικελίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Matemaatiline statistika ja modelleerimine Kirjeldav statistika EMÜ doktorikool DK.7 Tanel Kaart Sagedused ja osakaalud diskreetne tunnus Mittearvuliste või diskreetsete tunnuste (erinevate väärtuste arv suhteliselt väike) ülevaatlikuks kirjeldamiseks on lihtne lugeda kokku, mitu korda iga erinevat väärtust esineb ja kirjutada saadud arvud tabeli kujul. Väärtuse esinemiste arvu nimetatakse tema sageduseks. Tihti leitakse lisaks iga väärtuse (protsentuaalne) osakaal valimis, mida nimetatakse ka suhteliseks sageduseks. Mullatüüp liiv liivmuld liivmuld liiv liivmuld Niiskus niiske paras niiske kuiv paras paras niiske paras paras kuiv Suvinisu viljakus (kg/ha) Mullatüüp Sagedus 5 liivmuld 3 liiv Osakaal,5,3, Osakaal (%) 5 Tanel Kaart 1
2 Sagedustabeli asemel võib kokkuvõtliku info väärtuste esinemissagedustest esitada ka kas tulp- või ringdiagrammina (sektordiagrammina). Mullatüüpide esinemissagedused 5 4 Mullatüüpide osakaalud Sagedus 3 1 liivmuld liiv Mullatüüpide esinemissagedused Osakaal (%) 4 liivmuld liiv liivmuld (3) Mullatüüpide osakaalud liivmuld (5) liiv () 5 liiv Sagedused ja osakaalud pidev tunnus Pidevate tunnuste puhul on tunnuse võimalike väärtuste arv (teoreetiliselt) lõpmatu seega kui sagedustabelis vastaks igale väärtusele üks rida, siis kaoks praktiliselt erinevus sagedustabeli ja originaalandmete vahel. Seetõttu jagatakse tunnuse võimalikud väärtused intervallidesse ja sagedustabel näitab, mitu väärtust langeb ühte või teise intervalli. Intervallide arv ei tohiks olla liiga suur ja see oleneb valimi suurusest ( n). Sagedus [35-4) [4-45) [45-5) [5-55) Suvinisu saagikus kg/ha Saagikus Sagedus Osakaal Osakaal (%) [35-4), [4-45) 3,3 [45-5) 4,4 4 [5-55) 1,1 1 Jaotus Pideva tunnuse sagedustabeli põhjal saadud tulpdiagrammi nimetatakse histogrammiks. Tanel Kaart
3 Märkusi ja soovitusi Erinevalt tulpdiagrammist, mis on antud andmete korral üheselt määratud, võime samade andmete põhjal saada üsna erineva kujuga histogramme. 35% 5% 15% 1 5% (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Lammaste kehamass, kg (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Sagedus Suhteline sagedus 4,76% 19,5% 33,33% 9,5% 3,81%, 9,5% Lammaste kehamass, kg (5,6] (6,7] (7,8] (8,9] Sagedus Suhteline sagedus 4,76% 5,38% 33,33% 9,5% (5,6] (6,7] (7,8] (8,9] Märkusi ja soovitusi On tungivalt soovitav, et kõik kasutatud vahemikud oleksid võrdse pikkusega! Joonisele tuleb kanda ka vahemikud, kuhu ühtki objekti ei sattunud! Avatud vahemikke tuleks võimaluse korral vältida. 6 35% 45% 15% < >8 5% 15% 1 5% (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] (55,65] (65,75] (75,85] (85,95] Tanel Kaart 3
4 Märkusi ja soovitusi 7 6 Teaduslikult korrektsel histogrammil on ka x-telg esitatud pideval (mitte diskreetsel) skaalal. Selle Excel is teostamine on muidugi üks paras nikerdus (55,6] (6,65] (65,7] (7,75] (75,8] (8,85] (85,9] Märkusi ja soovitusi Sagedused versus osakaalud 5 15 Kütitud ulukid Põder Punahirv Pruunkaru Metssiga Metskits Hunt Kütitud ulukid Põder Punahirv Pruunkaru Metssiga Metskits Hunt Skaala! Eestis kütitud põdrad 5 46 Eestis kütitud põdrad Tanel Kaart 4
5 Ringdiagrammile eelistada tulpdiagrammi (eriti võrdlemisel). Märkusi ja soovitusi 4 1 Kütitud ulukid. aastal (osakaal, %) 35,3% 38,6% 3,3%,5%,%, Hunt Metskits Metssiga Pruunkaru Punahirv Põder 4 1 Kütitud ulukid 5. aastal (osakaal, %) 38,8% 43, 17,5%,1%,1%,5% Hunt Metskits Metssiga Pruunkaru Punahirv Põder Kütitud ulukid. aastal (osakaal, %) Metskits 35,3% Metssiga 38,6% Hunt,5% Pruunkaru,% Punahirv, Põder 3,3% Kütitud ulukid 5. aastal (osakaal, %) Metskits 38,8% Metssiga 43, Hunt,1% Pruunkaru,1% Punahirv,5% Põder 17,5% Vältida tuleks 3-mõõtmelisi graafikuid, eriti ringdiagramme. Märkusi ja soovitusi Rahva eelistused poliitiliste erakondade osas Valged Sinised Erakond Sinised Punased Mustad Valged Osakaal (%) Mustad Punased Rahva eelistused poliitiliste erakondade osas Sinised Rahva eelistused poliitiliste erakondade osas Sinised Punased Mustad Valged Valged Mustad Punased Tanel Kaart 5
6 Arvkarakteristikud andmestiku suurus (valimi maht, sample size) n n = = (aritmeetiline) keskmine [average, mean] x x 1 i n i mediaan (nn 5-punkt) [median] mood [mode] enim esinev (suurima sagedusega) väärtus Näide. Uuringu all olnud 5-l haigestunud loomal määrati haiguse peiteajaks vastavalt 8, 16, 1, 6 ja 14 päeva (üks uuritud loomadest oli ilmselt geneetiliselt erinev või siis sai juba mingit muud, haiguse avaldumist pärssivat ravi). Haiguse keskmine peiteaeg on x = = = päeva. 5 5 Peiteaeg, millest pooltel loomadel avaldus haigus varem ja pooltel hiljem, on leitav kui kasvavalt järjestatud peiteaegade keskmine väärtus e mediaan: 8, 1, 14, 16, 6 = med Keskmise omadusi 1. cx = cx, kus c on konstant. x + c = x + c, kus c on konstant 3. x + y = x + y n 4. x = nx i= 1 i 5. f ( x) f ( x), kus f on monotoonne teisendus Mediaani omadusi ( ) = ( ) med ( 1 x ) ( med x ) 1. med f ( x) f med( x), kus f on monotoonne teisendus Näiteks, kui log ( ) =, siis log 1 ( ) = med ( x) = 1 = 1. n. x n med( x) i= 1 i Tanel Kaart 6
7 Vaatluste hajuvus miinimum, maksimum, haare [range] = max min n standardhälve [standard deviation] s = 1 ( x ) 1 1 i x n i= dispersioon [(sample) variance] standardviga [standard error] s se = s n Näide. Uuriti 5 metsiku ja 4 puhtatõulise laborihiire reaktsiooni ärritajale. Tulemuseks saadi järgmised väärtused: metsikud hiired 15, 45, 3, 1, 5; labori hiired, 5, 3, 5. Keskmised reaktsioonid kummagi grupi jaoks on x m = = = 5, x l = = = s m s l (15 5) + (45 5) + (3 5) + (1 5) + (5 5) 75 = = = 187,5 13,69; ( 5) + (5 5) + (3 5) + (5 5) 5 = = 16,67 4, Standardhälbe ja dispersiooni omadusi 1. s ( cx) = c s ( x), kus c on konstant. s( cx) = cs( x) 3. s ( x + c) = s ( x) 4. s( x + c) = s( x) 5. kui x ja y on sõltumatud uuritavad tunnused, siis s x + y = s x + s y ( ) ( ) ( ) Teades vaid uuritava tunnuse keskväärtust (populatsiooni keskmist) ja standardhälvet, võime uuritava tunnuse väärtuste kohta öelda järgmist: vähemalt 3/4 uuritava tunnuse väärtustest asuvad keskväärtusele lähemal kui kaks standardhälvet (enamasti asub kahe standardhälbe kaugusel keskväärtusest umbes 95% vaatlustest); vähemalt 8/9 uuritava tunnuse väärtustest asuvad keskväärtusele lähemal kui kolm standardhälvet (enamasti asub kolme standardhälbe kaugusel keskväärtusest rohkem kui 99% vaatlustest). Tanel Kaart 7
8 Arvkarakteristikud Näiteid kirjandusest Arvkarakteristikud Näiteid kirjandusest Tanel Kaart 8
9 Variatsioonikordaja [coefficient of variation] v = s 1 x Aga mis siis, kui keskmine on negatiivne? Näide. Keskmine St. hälve Var. kordaja Piim, kg 3,3 5,3 17,6 Rasv, % 4,13,74 17,98 Valk, % 3,17,4 7,59 SRA, tuh/ml 695,9 1111,99 159,79 Energiabilanss, MJ -36,4 5,99-146, Kvantiilid, protsentiilid kvartiilid alumine kvartiil e 5%-punkt ja ülemine kvartiil e 75%-punkt [lower, upper quartile] kvartiilide vahe [interquartile range, IQR] kasutatakse varieeruvuse iseloomustamiseks detsiilid, protsentiilid e protsendipunktid/kvantiilid min, max α-kvantiiliks [α-quantile] nimetatakse sellist uuritava tunnuse väärtust, millest väiksemate väärtuste osakaal mõõtmistulemuste seas on α. Min 5 Kvartiilide vahe 95%-punkt Alumine kvartiil Mediaan Ülemine kvartiil Max 5% 5% 5% 5% 95% 5% Tanel Kaart 9
10 Karp-vurrud diagramm [boxplot] Karpvurrud-diagramm Näiteid kirjandusest Tanel Kaart 1
11 Karpvurrud-diagramm Sünnimass Ertsma Halinga Langerma Libatse Farm Vasikate sünnimass farmide kaupa. Väärtused, mis jäävad alumisest või ülemisest kvartiilist kaugemale kui 1,5-kordne kvartiilide vahe, on loetud erandlikeks ja tähistatud sümboliga. 3D diagrammid Tanel Kaart 11
12 3D diagrammid 3-mõõtmelised pinnad sobivad sageli illustreerimaks matemaatilise modelleerimise tulemusi. Tanel Kaart 1
13 Diagramme võib omavahel kombineerida Mõnikord võib terve ettekande mahutada ühele joonisele... Tanel Kaart 13
Töökorraldus. Õppematerialid. Töökorraldus. Harvey Motulsky Intuitive Biostatistics (2010, 1995)
Andmeanalüüs molekulaarbioloogias LOMR.0.007. loeng Andmed, tunnused, tunnuste tüübid ja tunnuse jaotuse iseloomustamine Prof Maido Remm Märt Möls martm@ut.ee Töökorraldus Hinne Hinne kujuneb kontrolltööde
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika
Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika
7.7 Hii-ruut test 7.7. HII-RUUT TEST 85
7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
2. Normi piiride määramine (R.D. Smith)
. Normi piiride määramine (R.D. Smith) Sissejuhatuseks Meditsiiniliste otsuste tegemise protsess koosneb neljast põhietapist: 1. Subjektiivsete andmete kogumine. Subjektiivsed andmed põhinevad meie enda
Statistiline andmetöötlus, VL-0435 sügis, 2008
Praktikum 6 Salvestage kursuse kodulehelt omale arvutisse andmestik lehmageen.xls. Praktikum püüab kirjeldada mõningaid võimalusi tunnuste vaheliste seoste uurimiseks. Kommentaarid andmestiku kohta Konkreetselt
HULGATEOORIA ELEMENTE
HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad
Excel Statistilised funktsioonid
Excel2016 - Statistilised funktsioonid Statistilised funktsioonid aitavad meil kiiresti leida kõige väiksemat arvu, keskmist, koguarvu, tühjaks jäänud lahtreid jne jne. Alla on lisatud sellesse gruppi
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
2. Normi piiride määramine
. Normi piiride määramine 1 Teemad Kliiniliste andmete omadused Andmete liigid Skaalade liigid Objektiivsus, valiidsus (paikapidavus, täpsus), usaldusväärsus (korratavus) Variatsioon vaatlusandmetes Statistilised
Andmeanalüüs molekulaarbioloogias
Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
Matemaatiline statistika ja modelleerimine
Matemaatiline statistika ja modelleerimine Kahe arvtunnuse ühine käitumine, korrelatsioon- ja regressioonanalüüs EMÜ doktorikool DK.0007 Tanel Kaart Lineaarne e Pearsoni korrelatsioonikordaja Millal kasutada
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD
1. Reaalarvud 1.1. NATURAAL-, TÄIS- JA RATSIONAALARVUD Arvu mõiste hakkas kujunema aastatuhandeid tagasi, täiustudes ja üldistudes koos inimkonna arenguga. Juba ürgühiskonnas tekkis vajadus teatavaid hulki
Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test)
Peatükk 2 Wilcoxoni astakmärgitest (Wilcoxon Signed-Rank Test) 2.1 Motivatsioon ja teststatistik Wilcoxoni astakmärgitesti kasutatakse kahe s~oltuva valimi v~ordlemiseks. Oletame näiteks, et soovime v~orrelda,
1 Funktsioon, piirväärtus, pidevus
Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise
T~oestatavalt korrektne transleerimine
T~oestatavalt korrektne transleerimine Transleerimisel koostatakse lähtekeelsele programmile vastav sihtkeelne programm. Transleerimine on korrektne, kui transleerimisel programmi tähendus säilib. Formaalsemalt:
STM A ++ A + A B C D E F G A B C D E F G. kw kw /2013
Ι 47 d 11 11 10 kw kw kw d 2015 811/2013 Ι 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi 2010/30/ täiendavates määrustes () nr 811/2013,
Mõõtm., andmetöötlus ja autom. piimanduses ja lihanduses, VL-1112 ja VL-1122 Praktikum 1
Praktikum 1 Praktikumi sisuks on kirjeldav statistika ja selle teostamine MS Excelis. Esimesed seitse lehekülge juhendis ( Üldine sissejuhatus: ) on lihtsalt mõningate Exceli kohta käivate põhitõdede meenutus
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Praktikum 1. Matemaatiline statistika ja modelleerimine, DK.0007
Praktikum 1 MS Excelis on võimalik teostada suur hulk andmete haldamisest ja esmasest statistilisest analüüsist, sageli ka kogu vajalik analüüside hulk. Kuigi tänane praktikum käsitleb vaid erinevaid kirjeldava
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
1 Reaalarvud ja kompleksarvud Reaalarvud Kompleksarvud Kompleksarvu algebraline kuju... 5
1. Marek Kolk, Kõrgem matemaatika, Tartu Ülikool, 2013-14. 1 Reaalarvud ja kompleksarvud Sisukord 1 Reaalarvud ja kompleksarvud 1 1.1 Reaalarvud................................... 2 1.2 Kompleksarvud.................................
3 ο Φυλλάδιο Ασκήσεων. Εφαρμογές
ο Φυλλάδιο Ασκήσεων Εφαρμογές 2 ο Φυλλάδιο Ασκήσεων Εφαρμογή 1 ΣΥΓΚΡΙΣΗ ΤΗΣ ΗΛΙΚΙΑΣ ΤΩΝ ΕΡΓΑΖΟΜΕΝΩΝ ΣΕ ΔΥΟ ΕΠΙΧΕΙΡΗΣΕΙΣ Παρακάτω βλέπουμε τα ιστογράμματα και τα πολύγωνα των σχετικών (%) και σχετικών αθροιστικών
Veaarvutus ja määramatus
TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Sisukord. 4 Tõenäosuse piirteoreemid 36
Sisukord Sündmused ja tõenäosused 5. Sündmused................................... 5.2 Tõenäosus.................................... 8.2. Tõenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Sisukord. 3 T~oenäosuse piirteoreemid Suurte arvude seadus (Law of Large Numbers)... 32
Sisukord Sündmused ja t~oenäosused 4. Sündmused................................... 4.2 T~oenäosus.................................... 7.2. T~oenäosuse arvutamise konkreetsed meetodid (üldise definitsiooni
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
Praktikum 2. Kommentaarid andmestiku kohta
Praktikum 2 Salvestage kursuse kodulehelt omale arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). Kommentaarid andmestiku kohta Lammaste andmebaas on moodustatud aastal 2003
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Suhteline salajasus. Peeter Laud. Tartu Ülikool. peeter TTÜ, p.1/27
Suhteline salajasus Peeter Laud peeter l@ut.ee Tartu Ülikool TTÜ, 11.12.2003 p.1/27 Probleemi olemus salajased sisendid avalikud väljundid Program muud väljundid muud sisendid mittesalajased väljundid
Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς
Διασπορά Μέτρηση Έστω 3 πενταμελείς ομάδες φοιτητών με βαθμολογίες: Ομάδα 1: 6,7,5,8,4 Ομάδα 2: 7,5,6,5,7 Ομάδα 3: 8,6,2,4,10 Παρατηρούμε ότι και οι τρεις πενταμελείς ομάδες έχουν μέση βαθμολογία 6. συνέχεια
Kontrollijate kommentaarid a. piirkondliku matemaatikaolümpiaadi
Kontrollijate kommentaarid 2002. a. piirkondliku matemaatikaolümpiaadi tööde kohta Kokkuvõtteks Uuendusena oli tänavusel piirkondlikul olümpiaadil 10.-12. klassides senise 5 asemel 6 ülesannet, millest
Funktsioonide õpetamisest põhikooli matemaatikakursuses
Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Andmete haldus ja analüüs MS Excelis Praktikum 1
Praktikum 1 Tänase praktikumi teema on MS Exceli peamised andmeanalüüsivahendid funktsioonid, statistikaprotseduurid, risttabelid (PivotTabel) ja joonised ning valdavalt kirjeldav statistika. VÄGA ÜLDINE
Matemaatika VI kursus Tõenäosus, statistika KLASS 11 TUNDIDE ARV 35
Matemaatika VI kursus Tõenäosus, statistika Permutatsioonid, kombinatsioonid ja variatsioonid. Sündmus. Sündmuste liigid. Klassikaline tõenäosus. Geomeetriline tõenäosus. Sündmuste liigid: sõltuvad ja
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
SELEKTSIOONIINDEKSID
VL09 VI SELEKTSIOONIINDEKSID Kuigi geneetiliste parameetrite (päritavuskoefitsiendid, geneetilised korrelatsioonikordajad, aretusväärtused) hindamiseks reaalsetes, suurtes ja väga erinevatel sugulusastmetel
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
4.1 Funktsiooni lähendamine. Taylori polünoom.
Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised
1 Kompleksarvud Imaginaararvud Praktiline väärtus Kõige ilusam valem? Kompleksarvu erinevad kujud...
Marek Kolk, Tartu Ülikool, 2012 1 Kompleksarvud Tegemist on failiga, kuhu ma olen kogunud enda arvates huvitavat ja esiletõstmist vajavat materjali ning on mõeldud lugeja teadmiste täiendamiseks. Seega
Lexical-Functional Grammar
Lexical-Functional Grammar Süntaksiteooriad ja -mudelid 2005/06 Kaili Müürisep 6. aprill 2006 1 Contents 1 Ülevaade formalismist 1 1.1 Informatsiooni esitus LFG-s..................... 1 1.2 a-struktuur..............................
siis on tegemist sümmeetrilise usaldusvahemikuga. Vasakpoolne usaldusvahemik x i, E x = EX, D x = σ2
Vahemikhinnangud Vahemikhinnangud Olgu α juhusliku suuruse X parameeter ja α = α (x 1,..., x n ) parameetri α hinnang. Kui ε > 0 on kindel suurus, siis vahemiku (α ε, α +ε) otspunktid on samuti juhuslikud
Juhuslik faktor ja mitmetasandilised mudelid
Peatükk 2 Juhuslik faktor ja mitmetasandilised mudelid Uurime inimese verer~ohku. Inimese verer~ohk on üsnagi varieeruv ja s~oltub üsnagi tugevalt hetkeolukorrat mida inimene on enne m~o~otmist söönud/joonud,
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA tüüpi mudelitega
TARTU ÜLIKOOL MATEMAATIKA INFORMAATIKATEADUSKOND Matemaatilise statistika instituut Finants- ja kindlustusmatemaatika eriala Kärt Päll Eesti elektrienergia hinna analüüs ja ühesammuline prognoosimine ARIMA
Eesti koolinoorte XLIX täppisteaduste olümpiaad
Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.
Matemaatiline statistika ja modelleerimine
Matemaatiline tatitika ja modelleerimine Üldied lineaared mudelid [general linear model, GLM] EMÜ doktorikool DK.0007 Tanel Kaart Katepõhine v mudelipõhine uuring Katepõhine uuring katetingimued range
Enam kui kahe grupi keskmiste võrdlus
Bomeetra Enam ku kahe populatsoon keskväärtuste võrdlemne dspersoonanalüüs Enam ku kahe grup keskmste võrdlus H 0 : 1 = 2 = = k H 1 : leduvad sellsed grupd,j, et Eeldustel, et j uurtav (sõltuv) tunnus
Annegrete Peek. Üldistatud aditiivne mudel. Bakalaureusetöö (6 EAP)
TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND MATEMAATILISE STATISTIKA INSTITUUT Annegrete Peek Üldistatud aditiivne mudel Bakalaureusetöö (6 EAP) Juhendaja: Märt Möls, PhD Tartu 2014 Üldistatud aditiivne
ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS
Meede 1.1 projekt nr 1.0101-0386/IN660 Elektrotehnilise personali täiendkoolitussüsteemi väljaarendamine ELEKTRIMÕÕTMISTE TÄIENDKOOLITUS Täiendkoolituse õppematerjal Koostanud Raivo Teemets Tallinn 2007
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE
3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis
Διερευνητική Ανάλυση Δεδομένων Exploratory Data Analysis Περιλαμβάνει ένα σύνολο αριθμητικών και γραφικών μεθόδων, που μας επιτρέπουν να αποκτήσουμε μια πρώτη εικόνα για την κατανομή των τιμών της μεταβλητής
Arvuti kasutamine uurimistöös
Arvuti kasutamine uurimistöös Ülesannete kogu informaatika valikaine e-õpiku juurde Mart Laanpere, Katrin Niglas, Kairi Osula, Kai Pata Tallinna Ülikool 2013 Õppekomplekti rahastas ESF TeaMe programm Eesti
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Arvutatavad statistikud. Programmi LSTATS kasutamisjuhend
Programmi LSTATS kasutamisjuhend Lokaalstatistikute arvutamise tarkvara LSTATS võimaldab arvutada mitmesuguseid kujutise või kategoorilise pinna lokaalseid omadusi kirjeldavaid statistikuid päiseta binaarsetest
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
ΒΙΟΣΤΑΤΙΣΤΙΚΗ. ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας
ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΑΛΕΓΚΑΚΗΣ ΑΘΑΝΑΣΙΟΣ Φυσικός, PH.D. Σχολής Επιστηµών Υγείας Επικοινωνία: Πτέρυγα 4, Τοµέας Κοινωνικής Ιατρικής Εργαστήριο Βιοστατιστικής Τηλ. 4613 e-mail: biostats@med.uoc.gr thalegak@med.uoc.gr
Epidemioloogiliste terminite lühisõnastik
Epidemioloogiliste terminite lühisõnastik Andmed [Data] - informatsioon, mistahes laadi faktid. Data on mitmuses, datum on ainsuses. Andmestik [Data set] süstematiseeritud infokogum, tavaliselt elektroonilisel
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122
Praks 2(3) Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls (http://www.eau.ee/~ktanel/vl_1112/lammas.xls). 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
2. HULGATEOORIA ELEMENTE
2. HULGATEOORIA ELEMENTE 2.1. Hulgad, nende esitusviisid. Alamhulgad Hulga mõiste on matemaatika algmõiste ja seda ei saa def ineerida. Me võime vaid selgitada, kuidas seda abstraktset mõistet endale kujundada.
A - suurepärane % B - väga hea 81-90% C - hea 71-80% D - rahuldav 61-70% E - kasin 51-60% F - puudulik 0 50% Kirjeldav statistika
Kursuse korraldus Andmeanalüüs: statistiline andmestik ja kirjeldav statistika Loeng 6 nädalat 31.01 7.02 14.02 21.02 28.02 7.03 IFI7041 Loeng: Kairi Osula Seminar: Taivo Tuuling Loengu slaidid ja muud
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Statistiline andmetöötlus VL.0435
Tanel Kaart ügi, 009 Statitiline andmetöötlu VL.0435 Loeng 3 Hüpoteeide tatitiline kontrollimine Kekmite võrdlemine http://www.eau.ee/~ktanel/vl_0435/ Hüpoteeide kontroll Näiteid hüpoteeidet Ka jogurti
1 Entroopia ja informatsioon
Kirjadus: T.M. Cover, J.A. Thomas "Elemets of iformatio theory", Wiley, 99 ja 2006. Yeug, Raymod W. "A first course of iformatio theory", Kluwer, 2002. Mackay, D. "Iformatio theory, iferece ad learig algorithms",
Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA)
Kursus: Mitmemõõtmeline statistika Seminar II: Mitmemõõtmeline dispersioonanalüüs (MANOVA) Õppejõud: Katrin Niglas PhD, dotsent informaatika instituut Statistilise olulisustesti põhisammud: E I: Analüüsisin
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
KATEGOORIATEOORIA. Kevad 2010
KTEGOORITEOORI Kevad 2010 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
Mõõtmised, andmetöötlus ja automaatika lihanduses ja piimanduses, VL-1112 & VL-1122
Praks 2 Eel- ja järeltöö 1. Salvestage arvutisse andmestik lammas.xls (http://ph.emu.ee/~ktanel/vl_1112/lammas.xls). 2. Avage salvestatud fail MS Excel is. 3. Peale ülesannete lahendamist salvestage fail
KATEGOORIATEOORIA. Kevad 2016
KTEGOORITEOORI Kevad 2016 Loengukonspekt Lektor: Valdis Laan 1 1. Kategooriad 1.1. Hulgateoreetilistest alustest On hästi teada, et kõigi hulkade hulka ei ole olemas. Samas kategooriateoorias sooviks me
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
6 Mitme muutuja funktsioonid
6 Mitme muutu funktsioonid Reaalarvude järjestatud paaride (x, ) hulga tasandi punktide hulga vahel on üksühene vastavus, st igale paarile vastab üks kindel punkt tasandil igale tasandi punktile vastavad