Eesti koolinoorte 58. füüsikaolümpiaad

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Eesti koolinoorte 58. füüsikaolümpiaad"

Transcript

1 Eesti koolinoorte 58. füüsikaolümpiaad 29. jaanuar a. Piirkondlik voor. Gümnaasiumi ülesannete lahendused Eessõna Allpool on toodud iga ülesande üks õige lahenduskäik (mõnel juhul ka enam. Kõik alternatiivsed õiged lahenduskäigud tuleb hinnata samuti maksimumhindega. Iga alternatiivse lahenduskäigu jaoks tuleb kontrollijatel koostada hindamisskeem, juhindudes võimalusel juuresoleva hindamisskeemi punktijagamisproportsioonist. Soovituslikud maha-arvamise punktid: numbriline arvutusviga 0,5; viga teisendustes 0,5 p. (märgi jms väiksem viga või 1 p. (viga, mis viib dimensioonide konfliktini, maha arvata ainult üks kord, st edasikanduvat viga mitte karistada; kui vastus tuleb füüsikaliselt absurdne, siis võib täiendavalt karistada 0,5 punktiga; üksik viga lähtevalemis: 0,5 p. (kui märgiviga kuni 50% (sisuline viga. 1. (KOKKUPÕRGE a Autode kiirused on võrdsed ja vastassuunalised. Seetõttu on koguimpulss võrdne nulliga ja autod jäävad pärast kokkupõrget paigale [1 p.]. Kogu esialgne kineetiline energia kulub purustuste tekitamiseks. Selleks on 2 mv a 2 2 = mv 2 a [1 p.]. Autode kiirused on 50 km/h = 13,9 m/s [0,5 p.] ja koguenergia on 289 kj [0,5 p.]. b Võimalus 1 : Minnes üle massikeskme taustsüsteemi taandub b osa a olukorraks. Purustustele kuluv energia on seega 289 kj [3 p.]. Võimalus 2 : Sel korral on kineetiline energia enne põrget mv b 2 2 Koguimpulsiks on p = mv b. Impulsi jäävuse seaduse kohaselt mv b = 2mv [1 p.], kus v on mõlema auto kiirus pärast kokkupõrget. Seetõttu omavad autod pärast põrget kokku kineetilist energiat 2 mv2 2 = mv 2 = 1 4 mv2 b [1 p.]. Purustustele kuluv energia on algse ja lõpliku kineetilise energia vahe 1 2 mv2 b 1 4 mv2 b = 1 4 mv2 b [0,5 p.]. Selle arvväärtus on 289 kj [0,5 p.]. 1

2 2. (SATELLIIT Ringikujulisel orbiidil on satelliidi kiirus kogu orbitaalperioodi jooksul konstantne ja seetõttu on varjus veedetud osa ajast võrdne orbiidi varjus oleva osa pikkuse ja kogu orbiidi pikkuse suhtega, mis on ülal toodud jooniselt leitav kui k = 2αr 2πr = arcsin ( R r = 36,5%. π 1 Selgitus, et varjus oleva orbiidi lõigu pikkuse (või nurkläbimõõdu suhe kogu orbiidi pikkusesse (või täisringi vastabki sellele, kui suure osa ajast satelliit Maa varjus veedab. [1 p.] 2 Joonis. [2 p.] 3 Joonise põhjal varjus oldud orbiidi lõigule vastava nurga α avaldamine. [2 p.] 4 Õige lõppvastus. [1 p.] Märkus: Lähenduse sin(α = α kasutamisel saab maksimaalselt pooled punktidest. 3. (KÜTTESÜSTEEM Ülesande ideeks on, et küttesüsteemis olev vesi paisub soojenemisel [2 p.]. Paisumisel lisanduva ruumala jaoks peab olema paisupaagis piisavalt lisaruumi. Vajalik ruumala on V V 1 = V 0 (1 + βt 2 V 0 (1 + βt 1 = V 1β (t 2 t 1. [3 p.] 1 + βt 1 Vajalik vaba ruum paisupaagis on seega V V 1 4,0 liitrit. [1 p.] 2

3 4. (RONGIÕNNETUS Teisendades kiirusühikuid, saame v 1 = 17,5 m/s [0,5 p.] ning v 2 = 5 m/s [0,5 p.]. Olgu t aeg, mis möödus kokkupõrkeni. Kaubarong läbis teepikkuse s 1 = v 1 t+ 1 2 a 1t 2. [1 p.] Elektrirong läbis teepikkuse s 2 = v 2 t a 2t 2. [1 p.] Kuna s = s 1 + s 2, siis s = (v 1 + v 2 t (a 1 + a 2 t 2. [2 p.] Lahendades ruutvõrrandi, leiame t = 109 s. [1 p.] Seega kaubarongi kiirus oli kokkupõrke hetkel v k = v 1 + a 1 t = 6,6 m/s [1 p.] ehk 24 km/h, elektrirongi oma v e = v 2 + a 2 t = 21,4 m/s [1 p.] ehk 77 km/h. 5. (LIIVAHUNNIK Liivahunniku maksimaalse kõrguse saavutamiseks peavad pindmised liivakihid olema libisemise äärel, ehk kehtib tan(α = h R = µ, kus α on nurk maa ja koonuse moodustaja vahel, R hunniku aluse raadius ja h hunniku kõrgus. Liiva ruumala V = 1 3 πr2 h = 1 3 πr3 µ, millest R = 3 3V πµ, ning hunniku aluse pindala S = πr 2 = 3 9π( V µ m 2. 1 Seose tan α = h R = µ märkamine või selle tuletamine. [3 p.] 2 Koonuse ruumala valemi teadmine. [2 p.] 3 Mõistmine, et koonuse alus on ring. Ringi pindala avaldamine antud suuruste kaudu. [1+1 p.] 4 Õige arvulise vastuse leidmine. [1 p.] 6. (PATAREI Olgu r patarei sisetakistus. Mõlemal juhul on tekitatud elektromotoorjõud sama, seega I 1 (R + r = I 2 (2R + r. Sealt avaldame r = 2I2 I1 I 1 I 2 R. a Kui r on väiksem kui R, siis 2I 2 I 1 I 1 I 2 < 1, kust saame tingimuse I 2 /I 1 < 2/3. Samas teame, et r vähim võimalik väärtus on 0, seetõttu kehtib alati I 2 /I 1 1/2. Kokku saame, et 1/2 I 2 /I 1 < 2/3. b Maksimaalne I 2 /I 1 võimalik väärtus on 1 (kui r R. Seega 2/3 < I 2 /I Ohmi seaduse kasutamine 1. ja 2. vooluringi jaoks. [1+1 p.] 2 r või R avaldamine üksteise kaudu. [2 p.] 3 Juhu a jaoks võrratus ja avaldamine. [1+1 p.] 4 Juhu b jaoks võrratus ja avaldamine. [1+1 p.] 3

4 7. (PENDEL Esialgse hinnangu perioodile, τ = 2,425 s, saame τ 1 = t 2 t 1 ja τ 2 = t 4 t 3 keskmisest. Seda kasutades näeme, et t 1 ja t 3 vahel pidi toimuma täpselt 24 võnget, samamoodi t 2 ja t 4 vahel. Saame kaks sõltumatut mõõtmist 24 võnke kestuse kohta: τ 1 = (t 3 t 1 /24 = 2,4146 s ja τ 2 = (t 4 t 2 /24 = 2,4125 s. Nende keskmine annab meie hinnangu pendli perioodi kohta, τ = 2,4135 s 2,414 s. 1 Esialgne hinnang perioodile. [2 p.] 2 Arusaamine, et pikemates ajavahemikes peab olema täpselt täisarv võnkeid. [1 p.] 3 Kahe pikema ajavahemiku valik. [1 p.] 4 Valitud ajavahemike jaoks täisvõngete arvu leidmine. [2 p.] 5 Lõplik hinnang perioodile. [2 p.] Kui alampunktides 3 või 5 on kasutatud kahe ajavahemiku asemel ühte, anda vastava alampunkti eest pooled punktid. Kui õpilane annab lõppvastuseks τ 1 ja τ 2 keskmise, anda 2 punkti. 8. (LANGEV TAKISTI Lahendus 1. Raami läbiva magnetvoo suuruse muutus põhjustab raamis elektromotoorjõu E = dφ/dt = Blv [3 p.]. Elektromotoorjõud põhjustab raamis voolu I = E/R [2 p.]. Magnetväljas mõjub vooluga juhtmele jõud F = BIl [2 p.], mis peab olema tasakaalus raskusjõuga mg [1 p.]. Elimineerides I ja E leiame mg = B2 l 2 v R v = mgr B 2 d 2 [2 p.]. Lahendus 2. Lahendus lähub energia jäävuse seadusest [1 p.]. Gravitatsioonijõudu töö võimsus on P = mgv [2 p.]. Elektrilise töö võimsus peab sellega võrduma, seega P = mgv = U 2 /R [2 p.]. Pinge saab arvutada Faraday seadusest, mis ütleb, et pinge on võrdne kontuuri läbiva magnetvoo muutumise kiirusega [1 p.]. Magnetvoo muutumise kiirus on dφ/dt = Bdv [2 p.]. Asendades selle eelmisesse võrrandisse ja avaldades v saame v = mgr B 2 d 2 [2 p.] 4

5 9. (VÕIDUSÕIDUAUTO Helisageduse asemel võime vaadata selle pöördväärtust ehk võnkeperioodi T. Esmalt uurime, missugune on helilaine periood pealtvaataja jaoks, kui auto liigub temast eemale. Asugu auto alghetkel pealtvaatajast kaugusel x. Sel hetkel auto juurest liikuma hakanud lainehari jõuab vaatajani aja t 1 = x v h pärast. Siin tähistab v h heli levimise kiirust õhus. Autosistuja jaoks on helilaine periood T ja selle möödudes hakkab autost levima järgmine lainehari. Aja T jooksul on auto liikunud pealtvaatajast vahemaa vt võrra kaugemale, kus v on auto kiirus vaatleja suhtes. Seetõttu jõuab järgmine lainehari pealtvaatajani t 2 = T + x + vt v h pärast alghetke. [2 p.] t 2 ja t 1 vahe ongi helilaine periood vaatleja jaoks, kellest auto eemaldub. T eem = t 2 t 1 = T + x + vt x = T + vt = T (1 + vvh [2 p.] v h v h v h (Doppleri valemi teadmise eest saab siit samuti täispunktid. Kui ( auto läheneb vaatlejale, on tema kiirus pealtvaataja suhtes negatiivne ja T läh = T 1 v [1 p.]. Paneme tähele, et lähenemisel periood vaatleja jaoks lüheneb ja v h eemaldumisel pikeneb [1 p.]. Antud juhul pikeneb perioos möödasõidul kaks korda. T eem = 2T läh T (1 + vvh = 2T (1 vvh [2 p.] v = v h 3 [1 p.] Heli kiirus õhus on v h 400 km/h [1 p.]. = 330 m/s. Seega on võidusõiduauto kiirus 110 m/s ehk 5

6 10. (NÕGUSLÄÄTS EESTVAATES Kui nõgusläätsele langevad paralleelsed kiired, lõikuvad murdunud kiirte pikendused eesmisel fokaaltasandil. Joonistame antud kiirega paralleelse abikiire (optilise kõrvaltelje, joonisel AO, mis läbib läätse optilist keskpunkti. See abikiir ei murdu, seega ühtib oma läätse läbimise järgse osa pikendusega. Tema lõikepunkti eesmise fokaaltasandiga (punkti A leiame tõigast, et lõik AO on lõigu KL paralleellüke. Küsitav murdunud kiir asub siis sirgel AL. Lääts asub täpselt oma fokaaltasandite vahel keskel, seetõttu poolitab punkt L lõigu AB, kus B on küsitav murdunud kiire lõikepunkt tagumise fokaaltasandiga. Järelikult saame punkti B, kui peegeldame punkti A punkti L suhtes ( AL = LB. 1 Kui nõgusläätsele langevad paralleelsed kiired, lõikuvad murdunud kiirte pikendused eesmisel fokaaltasandil. [3 p.] 2 Optilise kõrvaltelje joonestamine. [2 p.] 3 Murdunud kiire joonestamine. [4 p.] 4 Murdunud kiire lõikepunkti leidmine tagumise fokaaltasandiga. [3 p.] 6

7 E1. (LUUBI SUURENDUS Asetame luubi millimeetripaberist erinevatele kaugustele ja võrdleme erinevatel kaugustel ruudustiku suurust läbi luubi ja ilma luubita. Mõõdame luubi kaugused millimeetripaberist ja hindame vastavad suurendused. Joonestame graafiku, millel on antud suurenduse sõltuvus eseme kaugusest luubist, kanname graafiku väljale punktid ja ühendame need. Teoreetiliselt tuletatud avaldis luubi suurenduse jaoks (vastavalt tekstis toodud definitsioonile: fl S = l(f a + a 2, kus l on silma ja objekti vahekaugus ning a objekti ja läätse vahekaugus. Kui f > l/2, siis omab suurendus kui funktsioon a-st maksimumi a = l/2 juures, S m = f f l/4. Väärtuste l = 30 cm ja f = 18 cm jaoks on graafik toodud juuresoleval joonisel. 1 Idee katse teostamiseks. [3 p.] erineval kaugusel mõõtmist. [2 p.] 3 Mõõtmiste põhjal suurenduste arvutamine. [2 p.] 4 Tulemuste arvväärtused on mõistlikud (±30%. [1 p.] 5 Korrektne graafik. [2 p.] 7

8 E2. (NIIT Lahendusidee on kasutada kangimeetodit niidi katkemispinge määramiseks: asetame joonlaua ühele otsale klotsi ja teise otsa külge seome niidi; kinnitamiseks kasutatav aas niidi küljes peab olema piisavalt suur, et niit ei katkeks mitte aasa kohalt vaid sõlme kohalt või (eelistatult allpool sõlme. Kangkaalu toetuspunktina kasutame laua serva. Muutes üle lauaserva ulatuva joonlauaosa pikkust leiame maksimaalse pikkuse l 1, mille puhul niit katkeb, kui allapoole sikutades üritame klotsi kergitada. Selle meetodi eest 2 punkti. Kui kaugus lauaservast klotsi keskpunktini on l 2 ning kaugus joonlaua keskpunktini L 1, klotsi mass M ja joonlaua mass m, siis jõumomentide tasakaalutingimusest saame avaldada niidi katkemispinge T = (Ml 2 + ml 1 g/l 1 (selle valemi eest 1,5 punkti; kui puudub joonlaua massi arvestav liige, siis 1 punkt. l 1, l 2 ja L 1 mõõtmise eest 3 0,5 punkti (kui on mõõdetud teisi pikkusi, mille põhjal saab mainitud kolm pikkust arvutada, siis antakse loomulikult ikkagi 1,5 punkti. Klotsi massi leidmiseks kasutame analoogset kangkaalu meetodit: tasakaalustame joonlaua otsa paigutatud klotsi joonlaua massi abil (selle idee eest 2 punkti. Kui joonlaua keskpunkt asub lauaservast kaugusel L 2 ja klotsi keskpunkt kaugusel l 3, siis M = ml 2 /l 3 (valemi eest 1 punkt, arvutuste eest 1 punkt. L 2 ja l 3 mõõtmiste eest 2 0,5 punkti. Korduvmõõtmiste sooritamise eest 1 punkt. Mõistlikus suurusjärgus vastuse eest 1 punkt; kui vastus erineb õigest väärtusest enam kui 1,5 korda või lõppvastusest on ühikud puudu (kuid lahenduse põhjal on arusaadav, mis ühikud peaksid olema, siis 0,5 punkti; kui vastus erineb õigest väärtusest enam kui 2 korda (või ühikud puuduvad ning lahenduse/arvutuste põhjal pole võimalik aru saada, mis ühikud peaksid olema, siis 0 punkti. 8

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on

Διαβάστε περισσότερα

Ruumilise jõusüsteemi taandamine lihtsaimale kujule

Ruumilise jõusüsteemi taandamine lihtsaimale kujule Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D

Διαβάστε περισσότερα

Lokaalsed ekstreemumid

Lokaalsed ekstreemumid Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,

Διαβάστε περισσότερα

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1

Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1 laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad

Διαβάστε περισσότερα

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA

MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58

Διαβάστε περισσότερα

Ehitusmehaanika harjutus

Ehitusmehaanika harjutus Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Eesti koolinoorte 53. füüsikaolümpiaad

Eesti koolinoorte 53. füüsikaolümpiaad Eesti koolinoorte 53. füüsikaolümpiaad 21. jaanuar 2006. a. Piirkondlik voor Põhikooli ülesannete lahendused Eessõna Käesoleval lahendustelehel on toodud iga ülesande üks õige lahenduskäik (mõnel juhul

Διαβάστε περισσότερα

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale

Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori

Διαβάστε περισσότερα

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine

Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:

Διαβάστε περισσότερα

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.

KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid. KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks

Διαβάστε περισσότερα

Geomeetrilised vektorid

Geomeetrilised vektorid Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse

Διαβάστε περισσότερα

Kompleksarvu algebraline kuju

Kompleksarvu algebraline kuju Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.

Διαβάστε περισσότερα

Funktsiooni diferentsiaal

Funktsiooni diferentsiaal Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral

Διαβάστε περισσότερα

2.2.1 Geomeetriline interpretatsioon

2.2.1 Geomeetriline interpretatsioon 2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides

Διαβάστε περισσότερα

PLASTSED DEFORMATSIOONID

PLASTSED DEFORMATSIOONID PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb

Διαβάστε περισσότερα

9. AM ja FM detektorid

9. AM ja FM detektorid 1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid

Διαβάστε περισσότερα

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =

sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α = KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke

Διαβάστε περισσότερα

; y ) vektori lõpppunkt, siis

; y ) vektori lõpppunkt, siis III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf

Διαβάστε περισσότερα

Eesti koolinoorte XLIX täppisteaduste olümpiaad

Eesti koolinoorte XLIX täppisteaduste olümpiaad Eesti koolinoorte XLIX täppisteaduste olümpiaad MATEMAATIKA PIIRKONDLIK VOOR 26. jaanuaril 2002. a. Juhised lahenduste hindamiseks Lp. hindaja! 1. Juhime Teie tähelepanu sellele, et alljärgnevas on 7.

Διαβάστε περισσότερα

,millest avaldub 21) 23)

,millest avaldub 21) 23) II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.

Διαβάστε περισσότερα

Analüütilise geomeetria praktikum II. L. Tuulmets

Analüütilise geomeetria praktikum II. L. Tuulmets Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass

2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass 2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH

Διαβάστε περισσότερα

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused

Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna

Διαβάστε περισσότερα

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused

Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,

Διαβάστε περισσότερα

Eesti koolinoorte 51. täppisteaduste olümpiaad

Eesti koolinoorte 51. täppisteaduste olümpiaad Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba

Διαβάστε περισσότερα

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.

DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka

Διαβάστε περισσότερα

20. SIRGE VÕRRANDID. Joonis 20.1

20. SIRGE VÕRRANDID. Joonis 20.1 κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii

Διαβάστε περισσότερα

Matemaatiline analüüs I iseseisvad ülesanded

Matemaatiline analüüs I iseseisvad ülesanded Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.

Διαβάστε περισσότερα

Eesti koolinoorte 26. füüsika lahtine võistlus

Eesti koolinoorte 26. füüsika lahtine võistlus Eesti koolinoorte 26. füüsika lahtine võistlus 28. november 2015. a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud

Διαβάστε περισσότερα

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise

Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja

Διαβάστε περισσότερα

1 Funktsioon, piirväärtus, pidevus

1 Funktsioon, piirväärtus, pidevus Funktsioon, piirväärtus, pidevus. Funktsioon.. Tähistused Arvuhulki tähistatakse üldlevinud viisil: N - naturaalarvude hulk, Z - täisarvude hulk, Q - ratsionaalarvude hulk, R - reaalarvude hulk. Piirkonnaks

Διαβάστε περισσότερα

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi

Eesti koolinoorte XLVIII täppisteaduste olümpiaadi Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning

Διαβάστε περισσότερα

4.1 Funktsiooni lähendamine. Taylori polünoom.

4.1 Funktsiooni lähendamine. Taylori polünoom. Peatükk 4 Tuletise rakendusi 4.1 Funktsiooni lähendamine. Talori polünoom. Mitmetes matemaatika rakendustes on vaja leida keerulistele funktsioonidele lihtsaid lähendeid. Enamasti konstrueeritakse taolised

Διαβάστε περισσότερα

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA

ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem

Διαβάστε περισσότερα

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid

Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}

Διαβάστε περισσότερα

Eesti koolinoorte 65. füüsikaolumpiaad

Eesti koolinoorte 65. füüsikaolumpiaad Eesti oolinoorte 65. füüsiaolumpiaad 14. aprill 018. a. Vabariili voor. Gümnaasiumi ülesannete lahendused 1. (POOLITATUD LÄÄTS) (6 p.) Autor: Hans Daniel Kaimre Ülesande püstituses on öeldud, et esialgse

Διαβάστε περισσότερα

Funktsioonide õpetamisest põhikooli matemaatikakursuses

Funktsioonide õpetamisest põhikooli matemaatikakursuses Funktsioonide õpetamisest põhikooli matemaatikakursuses Allar Veelmaa, Loo Keskkool Funktsioon on üldtähenduses eesmärgipärane omadus, ülesanne, otstarve. Mõiste funktsioon ei ole kasutusel ainult matemaatikas,

Διαβάστε περισσότερα

Sissejuhatus mehhatroonikasse MHK0120

Sissejuhatus mehhatroonikasse MHK0120 Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti

Διαβάστε περισσότερα

HAPE-ALUS TASAKAAL. Teema nr 2

HAPE-ALUS TASAKAAL. Teema nr 2 PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused

Διαβάστε περισσότερα

Nelja kooli ühiskatsete näidisülesanded: füüsika

Nelja kooli ühiskatsete näidisülesanded: füüsika Nelja kooli ühiskatsete näidisülesanded: füüsika Füüsika testi lahendamiseks on soovituslik aeg 45 minutit ja seda hinnatakse maksimaalselt 00 punktiga. Töö mahust mitte üle / moodustavad faktiteadmisi

Διαβάστε περισσότερα

Eesti LIV matemaatikaolümpiaad

Eesti LIV matemaatikaolümpiaad Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit

Διαβάστε περισσότερα

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV

Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS

Διαβάστε περισσότερα

HULGATEOORIA ELEMENTE

HULGATEOORIA ELEMENTE HULGATEOORIA ELEMENTE Teema 2.2. Hulga elementide loendamine Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Hulgateooria 1 / 31 Loengu kava 2 Hulga elementide loendamine Hulga võimsus Loenduvad

Διαβάστε περισσότερα

Lõppvoor. 7. märts a. Gümnaasiumi ülesannete lahendused

Lõppvoor. 7. märts a. Gümnaasiumi ülesannete lahendused Eesti kooinoorte 56 füüsikaoümpiaad Lõppvoor 7 märts 009 a Gümnaasiumi üesannete ahendused (NÜRINENUD KÄÄRID) α N F h α Hõõrdejõud peab tasakaaustama toereaktsiooni kääride teje sihiise komponendi (joonis)

Διαβάστε περισσότερα

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.

28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil. 8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,

Διαβάστε περισσότερα

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G

HSM TT 1578 EST 6720 611 954 EE (04.08) RBLV 4682-00.1/G HSM TT 1578 EST 682-00.1/G 6720 611 95 EE (0.08) RBLV Sisukord Sisukord Ohutustehnika alased nõuanded 3 Sümbolite selgitused 3 1. Seadme andmed 1. 1. Tarnekomplekt 1. 2. Tehnilised andmed 1. 3. Tarvikud

Διαβάστε περισσότερα

Eesti koolinoorte 22. füüsika lahtine võistlus

Eesti koolinoorte 22. füüsika lahtine võistlus Eesti koolinoorte. füüsika lahtine võistlus 6. november 011. a. Noorema rühma lahendused 1. (POSTID) Posti pikkus on pärast soojushulga andmist: l = l algne(1 + a)q cm Sellest saab arvutad, kui pikaks

Διαβάστε περισσότερα

Eesti koolinoorte XLI täppisteaduste olümpiaad

Eesti koolinoorte XLI täppisteaduste olümpiaad Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise

Διαβάστε περισσότερα

Deformeeruva keskkonna dünaamika

Deformeeruva keskkonna dünaamika Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla

Διαβάστε περισσότερα

Eesti koolinoorte 28. füüsika lahtine võistlus

Eesti koolinoorte 28. füüsika lahtine võistlus Eesti koolinoorte 28. füüsika lahtine võistlus 2. detsember 2017. a. Vanema rühma ülesannete lahendused 1. (KIIRABIAUTO) (6 p.) Autor: Sandra Schumann. Olgu kiirabiauto kiirus v ja auto poolt tekitatava

Διαβάστε περισσότερα

3. IMPULSS, TÖÖ, ENERGIA

3. IMPULSS, TÖÖ, ENERGIA KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse

Διαβάστε περισσότερα

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults

Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on

Διαβάστε περισσότερα

Sissejuhatus. Kinemaatika

Sissejuhatus. Kinemaatika Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid

TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes

Διαβάστε περισσότερα

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS

KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,

Διαβάστε περισσότερα

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui

Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.

Διαβάστε περισσότερα

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks

4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].

Διαβάστε περισσότερα

Tuletis ja diferentsiaal

Tuletis ja diferentsiaal Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.

Διαβάστε περισσότερα

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.

Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül. Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)

Διαβάστε περισσότερα

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist

Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha

Διαβάστε περισσότερα

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2

Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2 Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee

Διαβάστε περισσότερα

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a.

Geomeetria põhivara. Jan Willemson. 19. mai 2000.a. Geomeetria põhivara Jan Willemson 19. mai 2000.a. 1 Kolmnurk Kolmnurgas tasub mõelda järgmistest lõikudest ja sirgetest: kõrgused, nurgapoolitajad, välisnurkade poolitajad, külgede keskristsirged, mediaanid,

Διαβάστε περισσότερα

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika

Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika Operatsioonsemantika Kirjeldab kuidas toimub programmide täitmine Tähendus spetsifitseeritakse olekuteisendussüsteemi abil Loomulik semantika kirjeldab kuidas j~outakse l~oppolekusse Struktuurne semantika

Διαβάστε περισσότερα

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD

KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed

Διαβάστε περισσότερα

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.

8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm. TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ

Διαβάστε περισσότερα

(Raud)betoonkonstruktsioonide üldkursus 33

(Raud)betoonkonstruktsioonide üldkursus 33 (Raud)betoonkonstruktsioonide üldkursus 33 Normaallõike tugevusarvutuse alused. Arvutuslikud pinge-deormatsioonidiagrammid Elemendi normaallõige (ristlõige) on elemendi pikiteljega risti olev lõige (s.o.

Διαβάστε περισσότερα

2. Optilised instrumendid

2. Optilised instrumendid Sisukord 2. Optilised instrumendid... 2 2.0 Tutvumine mikroskoobiga... 2 2.0.1 Sissejuhatus ja teoreetiline ülevaade... 2 2.1 Pikksilma suurendus, vaateväli ja lahutusvõime... 7 2.1.1 Tööülesanne... 7

Διαβάστε περισσότερα

Füüsika täiendusõpe YFR0080

Füüsika täiendusõpe YFR0080 Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine

Διαβάστε περισσότερα

Fotomeetria. Laineoptika

Fotomeetria. Laineoptika Fotomeetria 1. Päikese ja Maa vaheline kaugus on 1,5 10 8 km. Kui kaua tuleb valgus Päikeselt Maale? (Vastus: 500 s) 2. Fizeau ajaloolises katses valguse kiiruse määramiseks oli 720 hambaga hammasratta

Διαβάστε περισσότερα

5. TUGEVUSARVUTUSED PAINDELE

5. TUGEVUSARVUTUSED PAINDELE TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)

Διαβάστε περισσότερα

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse

NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov

Διαβάστε περισσότερα

Veaarvutus ja määramatus

Veaarvutus ja määramatus TARTU ÜLIKOOL Tartu Ülikooli Teaduskool Veaarvutus ja määramatus Urmo Visk Tartu 2005 Sisukord 1 Tähistused 2 2 Sissejuhatus 3 3 Viga 4 3.1 Mõõteriistade vead................................... 4 3.2 Tehted

Διαβάστε περισσότερα

REAALAINETE KESKUS JAAK SÄRAK

REAALAINETE KESKUS JAAK SÄRAK REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots

TARTU ÜLIKOOL Teaduskool. STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots TARTU ÜLIKOOL Teaduskool STAATIKA TASAKAALUSTAMISTINGIMUSED Koostanud J. Lellep, L. Roots Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi

Διαβάστε περισσότερα

Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED

Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna

Διαβάστε περισσότερα

O12. Optiliste instrumentide modelleerimine. (O14)

O12. Optiliste instrumentide modelleerimine. (O14) . Tööülesanne O2. Optiliste instrumentide modelleerimine. (O4) Peeter Paris, TÜ, 200 Mikroskoobi ning Kepleri või Galilei pikksilma mudeli koostamine ning nende suurenduse määramine. 2. Eelteadmised Lisaks

Διαβάστε περισσότερα

Andmeanalüüs molekulaarbioloogias

Andmeanalüüs molekulaarbioloogias Andmeanalüüs molekulaarbioloogias Praktikum 3 Kahe grupi keskväärtuste võrdlemine Studenti t-test 1 Hüpoteeside testimise peamised etapid 1. Püstitame ENNE UURINGU ALGUST uurimishüpoteesi ja nullhüpoteesi.

Διαβάστε περισσότερα

M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine

M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine 1. Auto sõitis Tallinnast Tartusse. Esimese poole teest läbis ta kiirusega 80 km/h ja teise poole kiirusega 120 km/h. Tagasiteel liikus auto poole

Διαβάστε περισσότερα

Energiabilanss netoenergiavajadus

Energiabilanss netoenergiavajadus Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)

Διαβάστε περισσότερα

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85

7.7 Hii-ruut test 7.7. HII-RUUT TEST 85 7.7. HII-RUUT TEST 85 7.7 Hii-ruut test Üks universaalsemaid ja sagedamini kasutust leidev test on hii-ruut (χ 2 -test, inglise keeles ka chi-square test). Oletame, et sooritataval katsel on k erinevat

Διαβάστε περισσότερα

Deformatsioon ja olekuvõrrandid

Deformatsioon ja olekuvõrrandid Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,

Διαβάστε περισσότερα

2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass

2017/2018. õa keemiaolümpiaadi lõppvooru ülesannete lahendused klass 217/218. õa keemiaolümpiaadi lõppvooru ülesannete lahendused 11. 12. klass 1. a) Vee temperatuur ei muutu. (1) b) A gaasiline, B tahke, C vedel Kõik õiged (2), üks õige (1) c) ja d) Joone õige asukoht

Διαβάστε περισσότερα

Ülesannete lahendamise metoodika

Ülesannete lahendamise metoodika Ülesannete lahendamise metoodika Füüsika ülesannete lahendamisel pole eesmärgiks vastuse leidmine, vaid lahendamise õppimine ja harjutamine. Ülesannete lahendamine ei ole "sobivate tähtedega" valemite

Διαβάστε περισσότερα

5. OPTIMEERIMISÜLESANDED MAJANDUSES

5. OPTIMEERIMISÜLESANDED MAJANDUSES 5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,

Διαβάστε περισσότερα

Eesti koolinoorte 43. keemiaolümpiaad

Eesti koolinoorte 43. keemiaolümpiaad Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6

Διαβάστε περισσότερα

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008

Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008 Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub

Διαβάστε περισσότερα

Kosmoloogia Lühikonspekt

Kosmoloogia Lühikonspekt Tallinna Ülikool Loodus- ja terviseteaduste instituut Kosmoloogia Lühikonspekt Liisi Räim, Romi Mankin, Tõnu Laas 016 1 Sisukord 1 Sissejuhatus...4 1.1 Mis on kosmoloogia? Kosmoloogia ajaloost kuni Newtonini...

Διαβάστε περισσότερα

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus

Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti

Διαβάστε περισσότερα

Vektor. Joone võrrand. Analüütiline geomeetria.

Vektor. Joone võrrand. Analüütiline geomeetria. Vektor. Joone võrrand. Analüütiline geomeetria. Hele Kiisel, Hugo Treffneri Gümnaasium Analüütilise geomeetria teemad on gümnaasiumi matemaatikakursuses jaotatud kaheks osaks: analüütiline geomeetria tasandil,

Διαβάστε περισσότερα

Füüsika täiendusõpe YFR0080

Füüsika täiendusõpe YFR0080 Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,

Διαβάστε περισσότερα

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32

4 T~oenäosuse piirteoreemid Tsentraalne piirteoreem Suurte arvude seadus (Law of Large Numbers)... 32 Sisukord 1 Sündmused ja t~oenäosused 4 1.1 Sündmused................................... 4 1.2 T~oenäosus.................................... 7 1.2.1 T~oenäosuse arvutamise konkreetsed meetodid (üldise

Διαβάστε περισσότερα

6.6 Ühtlaselt koormatud plaatide lihtsamad

6.6 Ühtlaselt koormatud plaatide lihtsamad 6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline

Διαβάστε περισσότερα

O15. Prisma aine dispersiooni määramine goniomeetri abil.

O15. Prisma aine dispersiooni määramine goniomeetri abil. O. Prisma aine dispersiooni määramine goniomeetri abil. 1.VALGUSE DISPERSIOON 1.1. Teoreetilised alused Prisma abil saame lahutada uuritava valguse spektriks ning määrata murdumisnäitaja n sõltuvuse lainepikkusest.

Διαβάστε περισσότερα

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE

3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3. LOENDAMISE JA KOMBINATOORIKA ELEMENTE 3.1. Loendamise põhireeglid Kombinatoorika on diskreetse matemaatika osa, mis uurib probleeme, kus on tegemist kas diskreetse hulga mingis mõttes eristatavate osahulkadega

Διαβάστε περισσότερα

TARTU ÜLIKOOL Teaduskool. V. Väinaste. Kehade pöördliikumine

TARTU ÜLIKOOL Teaduskool. V. Väinaste. Kehade pöördliikumine TARTU ÜLIKOOL Teaduskool V. Väinaste Kehade pöördliikumine TARTU 009 1 Kehade pöördliikumine Mehaanikas eristatakse kehade liikumise kahte põhiliiki: a) kulgliikumine b) pöördliikumine Kulgliikumise korral

Διαβάστε περισσότερα

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk

TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk TARTU ÜLIKOOL Teaduskool Magnetism Koostanud Urmo Visk Tartu 2007 Sisukord Voolude vastastikune mõju...2 Magnetinduktsioon...3 Ampere'i seadus...6 Lorentzi valem...9 Tsirkulatsiooniteoreem...13 Elektromagnetiline

Διαβάστε περισσότερα

Ehitusmehaanika. EST meetod

Ehitusmehaanika. EST meetod Ehitusmehaanika. EST meetod Staatikaga määramatu kahe avaga raam /44 4 m q = 8 kn/m 00000000000000000000000 2 EI 4 EI 6 r r F EI p EI = 0 kn p EI p 2 m 00 6 m 00 6 m Andres Lahe Mehaanikainstituut Tallinna

Διαβάστε περισσότερα