A) gravitačné pole, Newtonov gravitačný zákon
|
|
- Τισιφόνη Δάβης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 A) gravitačné pole, Newtonov gravitačný zákon (Hajko, II/78 - skrátené) 1. Vypočítajte potenciál φ gravitačného poľa kruhovej dosky (zanedbateľnej hrúbky) hmotnosti m a polomeru v bode P ležiacom na osi kolmej na dosku a prechádzajúcej jej stredom. Vzdialenosť bodu P od stredu dosky je a. ( + a ) ϕ = κ m a (MMF, s. 8, modifikované podľa Hajko, II/77). Určite potenciál φ gravitačného poľa homogénnej tyče dĺžky l a hmotnosti m v bode P, ležiacom v predĺžení tyče vo vzdialenosti a od jej konca. m l + a ϕ = κ ln l a (FKS 1997/1998, B-6.4). Akú výšku h nad povrchom Zeme a akú veľkosť (obežnej) rýchlosti majú geostacionárne družice? Polomer Zeme je, veľkosť uhlovej rýchlosti jej rotácie Ω. h = κm 5850km; v = κmω,08km. s Ω 1 (N 00/00, 5) 4. Vo výške 450 km nad povrchom planétky je veľkosť gravitačného zrýchlenia 100-krát menšie než na jej povrchu. Aký je polomer neznámej planétky? [50 km] (N 00/00, 6) 5. V planéte tvaru gule s homogénnou hustotou ρ a polomerom je guľová dutina s polomerom /. Hmotnosť planéty je M. Aké je gravitačné zrýchlenie v bode A na povrchu planéty? 4 M κ 7 verzia ZS 01 1/8
2 (N 007/008, 15) 6. V istej guľovej planéte z homogénneho materiálu našli dutinu tvaru gule, dotýkajúcu sa povrchu planéty v bode A i jej stredu. Veľkosť gravitačného zrýchlenia v bode A je a. Aká je veľkosť gravitačného zrýchlenia v protiľahlom bode B? 17 a 9 (N 009/010, 7) 7. V inej galaxii sa nachádza planetárna sústava podobná tej našej. ozdiel je v tom, že všetky rozmery sú tam tretinové a všetky hustoty polovičné. Koľko trvá na tamojšej Zemi rok? (FKS 1994/1995, A-6.4) [ roka] 8. Jeden z najväčších projektov minulého storočia bol projekt gravitačného vlaku z Moskvy do Vladivostoku. Krížom cez Zem (najkratšou cestou; Zem má polomer ) by sa vykopal tunel, v ktorom by sa pohyboval vlak len pôsobením gravitačných síl. Aký pohyb by vykonával takýto vlak? Ako dlho by trvala cesta z Moskvy do Vladivostoku takýmto vlakom? [kmity s periódou π ] g (FYKOS XVII-III.1) 9. (*) Tri rovnaké družice obiehajú po kružnici okolo malej planétky veľkosťou rýchlosti v tak, že sú neustále vo vrcholoch rovnostranného trojuholníka. Určite hmotnosti družíc (nemožno ich považovať za zanedbateľne malé voči hmotnosti planétky!) v κm [hmotnosti troch družíc budú rovnaké, rovné ] κ (FKS 1997/1998, A-6.) 10. (*) Predstavte si, že by sme prevŕtali Zem (s polomerom ) až do jej stredu, niečo sme tam hodili a teraz to odtiaľ ťaháme von. Na to budeme potrebovať nejakú energiu E 1. Následne si predstavte situáciu, že Zem je dutá a celá jej hmotnosť je sústredená v škrupine na povrchu Zeme hrubej 1 meter. Ak by sme teraz vyťahovali to isté niečo zo stredu Zeme, vykonáme prácu E. Porovnajte veľkosti E 1 a E. d E = E1. verzia ZS 01 /8
3 (FYKOS XIII-I.4) 11. (*) Planéta s polomerom = km je obklopená H = 10 km hlbokým morom s hustotou ρ = kg.m -. Meraním bolo zistené, že pri ponáraní sa telesa do mora sa nemení gravitačná sila na neho pôsobiaca. Vypočítajte veľkosť gravitačného zrýchlenia g na povrchu planéty. [g,68 m.s - ; zadanie je však chybné, nemožno dosiahnuť g = konšt. po celú dobu ponárania sa telesa] (FYKOS XI-IV.4; kvalitatívne FKS 1994/1995, A-1.4) 1. (*) Kedy ukážu pružinové váhy na rovníku väčšiu hmotnosť telesa: napoludnie alebo o polnoci? O koľko percent sa budú údaje líšiť? Uvažujte len sústavu Zem Slnko (Mesiac niekam odletel ). [o polnoci; prakticky nerozlíšiteľný rozdiel 10-9 %] (FX, D) 1. (**) V rámci ekonomických opatrení pred oslavou jubilejného roka 000 sa byrokracia rozhodla skrátiť výdavky tým, že odstránia polovicu Zeme (s hmotnosťou M, polomerom a hustotou ρ). Výkonná čata najprv rozrezala Zem na dve polgule, a potom jednu z nich vymazala (príkazom delete, samozrejme). 4 κπ ρ a) Akou veľkosťou sily sa tieto dve polgule priťahovali? b) Po vymazaní druhej polgule, aké bolo gravitačné zrýchlenie v mieste, kde sa kedysi nachádzal κm stred Zeme? = g 0 7,6m. s 4 4 (FX, D1) 14. (**) Je všeobecne známe, že Zem je guľa s polomerom. Kedysi si však ľudia mysleli, že Zem je nekonečná homogénna platňa s hrúbkou h. Zistite, aká by musela byť hrúbka h, aby bolo na plochej Zemi rovnaké gravitačné zrýchlenie, ako je teraz. Predpokladajte, že hustota plochej Zeme by bola rovnaká, ako je priemerná hustota Zeme teraz. h = verzia ZS 01 /8
4 B) pohyb telies v gravitačnom poli, Keplerove zákony (Hajko, II/79) 15. Akú veľkosť rýchlosti v vo vodorovnom smere treba udeliť nejakému telesu vo výške h = 500 km nad zemským povrchom, aby sa pohybovalo ako umelá družica Zeme po kruhovej dráhe? (Uvažujte polomer Zeme = 6 71 km) (Hajko, II/81) v = g + h = 7,6km. s Teleso bolo vrhnuté z povrchu Zeme zvislo nahor rýchlosťou v 0. Do akej výšky teleso h vystúpi a aká by musela byť minimálna počiatočná veľkosť rýchlosti v 0 min, aby teleso nespadlo späť na Zem? (N 1999/000, ) v0 h = g v 0 ; v 0 min = g = 11,km. s 17. Z povrchu planéty s polomerom štartuje zvislo nahor raketa prvou kozmickou rýchlosťou. Do akej výšky h meranej od povrchu planéty sa dostane raketa? Trenie v atmosfére neuvažujte. (N 008/009, 11) 1 [ h = ] 18. Kozmická loď krúži vo vzdialenosti okolo hviezdy s hmotnosťou M a chystá sa vypustiť malú sondu za účelom preskúmania hviezdy. Aká je minimálna veľkosť rýchlosti, ktorú musí kozmická loď udeliť prieskumnej sonde, aby táto spadla na hviezdu? Predpokladajte, že vzdialenosť je oveľa väčšia než rozmery hviezdy. (N 005/006, ) 19. Vo vzdialenosti od planéty s polomerom a hmotnosťou M je kruhová rýchlosť rovnako veľká ako úniková rýchlosť z povrchu planéty s polomerom r a hmotnosťou m. Aký je pomer r : polomerov týchto planét, ak majú rovnakú hustotu? κm [ r : = 1: 6 0,408] verzia ZS 01 4/8
5 (N 010/011, 8) 0. Je známe, že pri kolmom štarte je potrebné vyhodiť teleso veľkosťou rýchlosti κm v k =, ak má opustiť gravitačné pole Zeme. Akou veľkosťou rýchlosti je teleso potrebné vyhodiť v smere rovnobežnom so zemským povrchom, aby opustilo gravitačné pole Zeme? otáciu Zeme zanedbajte. κm (N 010/011, 41) 1. Veľmi dávno sa ľudia prostredníctvom hviezdnej brány dostali do veľmi vzdialenej galaxie, v ktorej neplatia fyzikálne zákony tak, ako ich poznáme my. Napríklad pre veľkosť (príťažlivej) gravitačnej sily medzi telesami s hmotnosťami m 1 a m vo vzdialenosti r platí vzťah m1m m1m F g = A + B, r r kde A a B sú konštanty. V snahe zistiť ich hodnoty vyslali ľudia sondu a pomocou nej odmerali veľkosť kruhovej rýchlosti v k a veľkosť únikovej rýchlosti v u na úrovni povrchu planéty. Vypočítajte hodnoty konštánt A a B. Hmotnosť M aj polomer skúmanej planéty poznáte. A = M B = M ( vu vk ) ( ) v v k u (N 004/005, 8). Najmenšia vzdialenosť Halleyho kométy od Slnka je r min = 0,6 AU. Perióda jej obehu je T = 76 rokov. Určite jej afélium (t.j. ako najďalej v jednotkách AU sa dostane kométa od Slnka). [5, AU] (N 010/011, ). Dve družice sa pohybujú okolo Zeme po tej istej elipse s veľkými polosami a a b. V čase ich najväčšieho priblíženia k Zemi sa nachádzajú v malej vzdialenosti d za sebou. Aká bude ich vzdialenosť v čase ich najväčšieho oddialenia od Zeme? a d a + verzia ZS 01 5/8 a a b b
6 (N 007/008, 1) 4. Nová družica obieha okolo Slnka po kruhovej dráhe v tej istej rovine ako Zem. Dlhodobým pozorovaním môžeme zistiť, že na oblohe sa vzďaľuje od Slnka najviac na 60. Aká je jej doba obehu Slnka? roka 0, 806roka (N 00/004, ) 5. Ak by sme zastavili Zem pri jej obehu okolo Slnka, ako dlho by trvalo, kým by naň Zem dopadla? (ozmery Slnka zanedbajte, pohyb Zeme uvažujte po kružnici s polomerom a periódou obehu T). T 19dni (FYKOS XII-III.4) 6. (*) Z nekonečnej vzdialenosti sa k Zemi (s polomerom ) blíži asteroid s počiatočnou rýchlosťou v 0. Vzdialenosť asteroidu od priamky, ktorá je rovnobežná s vektorom rýchlosti v 0 a prechádza stredom Zeme, je na začiatku rovná a. Určite, aký vzťah musí platiť medzi veľkosťou rýchlosti v 0 a a, aby asteroid nezasiahol Zem. (FYKOS XII-III.4) κm a > 1+ v0 7. (**) Jupiterova kometárna rodina vzniká nasledujúcim spôsobom (viď obrázok vľavo). Kométa prilieta k Jupiteru z veľkej vzdialenosti s takmer nulovou počiatočnou rýchlosťou. Po opustení Jupiterovho gravitačného poľa (sféry gravitačného vplyvu Jupitera) má jej rýchlosť vzhľadom (vzhľadom k Slnku) presne opačný smer ako rýchlosť Jupitera. Potom sa kométa pohybuje opäť v gravitačnom poli Slnka. V akej vzdialenosti od Slnka sa bude nachádzať perihélium dráhy kométy a aká je jej obežná doba (aká je veľkosť veľkej polosi dráhy kométy)? Uvažujte, že Jupiter obieha okolo Slnka po kružnici s polomerom = 5, AU. [,55 AU; 6,7 roka] verzia ZS 01 6/8
7 (N 005/006, 18) 8. (**) Predstavte si, že chcete vyslať zo Zeme sondu na Mars. Výpočty múdrych astrofyzikov ukázali, že energeticky najvýhodnejšia je tzv. Hohmanovská trajektória (na obrázku: A, B sú polohy Zeme a Marsu v okamihu štartu sondy, C miesto stretnutia sondy s Marsom). Predpokladajte, že Zem a Mars na sondu gravitačne nepôsobia, po štarte sa teda sonda pohybuje po elipse, ktorej perihélium je v bode A a afélium v bode C. Aký veľký je uhol α medzi Zemou, Slnkom a Marsom v čase štartu rakety? Predpokladajte tiež, že obe planéty obiehajú okolo Slnka v tej istej rovine po kružniciach a polomer obežnej dráhy Marsu je 1,5 násobok polomeru obežnej dráhy Zeme. [44,15 ] (FX, D) 9. (**) oman sa hral so svojím novým ďalekohľadom, keď zrazu spozoroval pohybujúci sa asteroid. oman zistil, že tento asteroid sa práve nachádza vo vzdialenosti d od Slnka, jeho veľkosť okamžitej rýchlosti je v a smer jeho rýchlosti zviera uhol α so spojnicou asteroid Slnko. Aká je jeho perióda obehu okolo Slnka? (FX, E5) πκ ( M + m) κ d ( M + m) 0. (**) Pán utherford znova vytiahol zo špajze zlatú fóliu a delo α častíc. Vystrelil α časticu s hmotnosťou m a veľkosťou rýchlosti w smerom na jadro zlata (atómové číslo Z = 79) a ona sa mu odchýlila o uhol β (od pôvodného smeru letu). Zistite, o koľko pán utherford netrafil toto jadro zlata (t.j. ako ďaleko od pôvodnej priamky letu sa toto jadro nachádzalo). dv Ze πε 0mw β cot g C) odhadovačky (FYKOS XVI-V.) 1. Odhadnite, ako dlho potrvá vesmírnej lodi Apollo, aby sa dostala na orbitu Mesiaca (ak zbytočne neplytvá palivom). [, využitím. Keplerovho zákona 4,8 dňa] verzia ZS 01 7/8
8 (FKS 000/001, A-.1). Na rovníku a na severnom póle boli postavené dve dokonalé (a klimatizované) športové haly. Majstrovstvá sveta v ľahkej atletike sa uskutočnili v tej polárnej. ekord v hode guľou do diaľky mužov bol na súťaži zlepšený o jeden centimeter. Odhadnite, či a o koľko by bol tento (už vylepšený) svetový rekord prekonaný, keby sa majstrovstvá sveta uskutočnili v rovníkovej hale. Predpokladajte, že v oboch halách by športovci podávali rovnaké fyzické (a psychické) výkony. [bol by prekonaný o cca štvrť metra] D) príklady na zamyslenie (FYKOS X-I.4). Predstavte si, že idete večer pokojne spať a do rána sa všetky vzdialenosti a rozmery všetkých predmetov zväčšia desaťkrát, pričom ich hmotnosti sa nezmenia. Zanechá táto udalosť nejaké stopy na vašej existencii? Ak áno, aké? [ ] (FKS 199/1994, B-4.1) 4. Majme kvapalinu s rovnakou hustotou, ako je priemerná hustota istého človeka. Keď do nej tohto človeka ponoríme, bude sa v nej vznášať. Bude pociťovať beztiažový stav (t.j. stav, ktorý pociťujú kozmonauti vo vesmíre)? [ ] verzia ZS 01 8/8
2. Dva hmotné body sa navzájom priťahujú zo vzdialenosti r silou 12 N. Akou silou sa budú priťahovať zo vzdialenosti r/2? [48 N]
Gravitačné pole 1. Akou veľkou silou sa navzájom priťahujú dve homogénne olovené gule s priemerom 1 m, ktoré sa navzájom dotýkajú? Hustota olova je 11,3 g cm 3. [2,33 mn] 2. Dva hmotné body sa navzájom
6 Gravitačné pole. 6.1 Keplerove zákony
89 6 Gravitačné pole Pojem pole patrí k najzákladnejším pojmom fyziky. Predstavuje formu interakcie (tzv. silového pôsobenia) v prostredí medzi materiálnymi objektmi ako sú častice, atómy, molekuly a zložitejšie
A) výpočet momentu zotrvačnosti
A) výpočet momentu zotrvačnosti (N /, 8). Vypočítajte moment zotrvačnosti symetricky splackateného kotúčika toaletného papiera s hmotnosťou m, výškou h, s vonkajšou stranou dĺžky a a vnútornou stranou
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK
Kód ITMS projektu: 26110130519 Gymnázium Pavla Jozefa Šafárika moderná škola tretieho tisícročia ZBIERKA ÚLOH Z FYZIKY PRE 3. ROČNÍK (zbierka úloh) Vzdelávacia oblasť: Predmet: Ročník: Vypracoval: Človek
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Úloha 3.7 Teleso hmotnosti 2 kg sa pohybuje pozdĺž osi x tak, že jeho dráha je vyjadrená rovnicou
3 Dynamika Newtonove pohybové zákony Úloha 3.1 Teleso tvaru kvádra leží na horizontálnej doske stola. Na jeho prednej stene sú pripevnené dve lanká v strede steny. Lanká napneme tak, že prvé zviera s čelnou
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
Kinematika hmotného bodu
Kinematika hmotného bodu 1. Automobil potrebuje na vykonanie cesty dlhej 120 km spolu s 15-minútovou prestávkou celkove 2h 40 min. Časť cesty išiel rýchlosťou v 1 = 40 km/h a časť rýchlosťou v 2 = 60 km/h.
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
DOMÁCE ZADANIE 1 - PRÍKLAD č. 2
Mechanizmy s konštantným prevodom DOMÁCE ZADANIE - PRÍKLAD č. Príklad.: Na obrázku. je zobrazená schéma prevodového mechanizmu tvoreného čelnými a kužeľovými ozubenými kolesami. Určte prevod p a uhlovú
GYMNÁZIUM V ŽILINE, HLINSKÁ 29 ALTERNATÍVNA ZBIERKA ÚLOH Z FYZIKY PRE 1. ROČNÍK. Spracovali: Mgr. Andrea Bednárová, PhD., Mgr.
GYMNÁZIUM V ŽILINE, HLINSKÁ 29 ALTERNATÍVNA ZBIERKA ÚLOH Z FYZIKY PRE 1. ROČNÍK Spracovali: Mgr. Andrea Bednárová, PhD., Mgr. Zuzana Durná 27 Milá študentka, milý študent. Dostáva sa Vám do rúk Alternatívna
A) práca, mechanická energia
A) práca, mechanická energia (MMF, s. 95) 1. Vypočítajte prácu, ktorú vykoná sila pri urýchlení telesa z 0 na rýchlosť v. Uvažujte nasledovné sily: 1 a) F konšt. mv 1 b) F k.t mv 1 c) F F 0 + k.x mv (MMF,
URČENIE MOMENTU ZOTRVAČNOSTI FYZIKÁLNEHO KYVADLA
54 URČENE MOMENTU ZOTRVAČNOST FYZKÁLNEHO KYVADLA Teoretický úvod: Fyzikálnym kyvadlom rozumieme teleso (napr. dosku, tyč), ktoré vykonáva periodický kmitavý pohyb okolo osi, ktorá neprechádza ťažiskom.
ELEKTRICKÉ POLE. Elektrický náboj je základná vlastnosť častíc, je viazaný na častice látky a vyjadruje stav elektricky nabitých telies.
ELEKTRICKÉ POLE 1. ELEKTRICKÝ NÁBOJ, COULOMBOV ZÁKON Skúmajme napr. trenie celuloidového pravítka látkou, hrebeň suché vlasy, mikrotén slabý prúd vody... Príčinou spomenutých javov je elektrický náboj,
A) kladky. Zbierka príkladov k predmetu Mechanika
A) kladky (N 1999/000, ) 1. Určite veľkosť zrýchlenia telesa m1 na obrázku. Trenie ani hmotnosť kladky neuvažujte. m g a1 = 4m1 + m (N 009/010, 0). Jedna z techník vyťahovania bezvládneho človeka z ľadovcovej
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Orientácia na Zemi a vo vesmíre
Orientácia na Zemi a vo vesmíre Orientácia na Zemi Podmienky: a) rovina b) smer podľazačiatku: 1) súradnice topocentrické 2) súradnice geocentrické 3) súradnice heliocentrické pravouhlá sústava súradníc
[ v 0 = at r + (at r ) 2 + 2as = 16,76 m/s ]
Posledná aktualizácia: 22. mája 202. Čo bolo aktualizované (oproti predošlej verzii zo 6. marca 2009): Rozsiahle zmeny, napr.: Dodané postupy riešení ku niektorým príkladom. Dodané niektoré nové príklady.
RIEŠENIA 3 ČASŤ
RIEŠENIA 3 ČASŤ - 2009-10 1. PRÁCA RAKETY Raketa s hmotnosťou 1000 kg vystúpila do výšky 2000 m nad povrch Zeme. Vypočítajte prácu, ktorú vykonali raketové motory, keď predpokladáme pohyb rakety v homogénnom
Príklady z Fyziky týždeň
Príklady z Fyziky 1 1. týždeň 1. Uvažujme vektory A = 3i + 3j, B = i j, C = 2i + 5j umiestnené v jednej rovine. Prepíšte vektory do súradnicového tvaru a graficky ich znázornite a graficky ich spočítajte.
Einsteinove rovnice. obrázkový úvod do Všeobecnej teórie relativity. Pavol Ševera. Katedra teoretickej fyziky a didaktiky fyziky
Einsteinove rovnice obrázkový úvod do Všeobecnej teórie relativity Pavol Ševera Katedra teoretickej fyziky a didaktiky fyziky (Pseudo)historický úvod Gravitácia / Elektromagnetizmus (Pseudo)historický
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Fyzikálna olympiáda. 52. ročník. školský rok 2010/2011. Kategória D. Úlohy školského kola
Fyzikálna olympiáda 52. ročník školský rok 2010/2011 Kategória D Úlohy školského kola (ďalšie informácie na http://fpv.utc.sk/fo a www.olympiady.sk) Odporúčané študijné témy pre kategóriu D 52. ročníka
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
KATALÓG KRUHOVÉ POTRUBIE
H KATALÓG KRUHOVÉ POTRUBIE 0 Základné požiadavky zadávania VZT potrubia pre výrobu 1. Zadávanie do výroby v spoločnosti APIAGRA s.r.o. V digitálnej forme na tlačive F05-8.0_Rozpis_potrubia, zaslané mailom
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Zadání úloh. Úloha 4.1 Sirky. Úloha 4.2 Zvuk. (4b) (4b) Studentský matematicko-fyzikální časopis ročník IX číslo 4. Termín odeslání 24. 3.
Studentský matematicko-fyzikální časopis ročník IX číslo 4 Termín odeslání 24. 3. 2003 Milí kamarádi, jetunovéčíslonašehočasopisuasnímiprvníinformaceojarnímsoustředění.budesekonat3. 11.května2003vCelnémuTěchonínavokreseÚstí
Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1)
Fyzika Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci štúdia geológie Druhá prednáška mechanika (1) 1 Poznámka: Silové interakcie definované v súčasnej fyzike 1. Gravitačná interakcia:
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
4 Dynamika hmotného bodu
61 4 Dynamika hmotného bodu V predchádzajúcej kapitole - kinematike hmotného bodu sme sa zaoberali pohybom a pokojom telies, čiže formou pohybu. Neriešili sme príčiny vzniku pohybu hmotného bodu. A práve
MIDTERM (A) riešenia a bodovanie
MIDTERM (A) riešenia a bodovanie 1. (7b) Nech vzhl adom na štandardnú karteziánsku sústavu súradníc S 1 := O, e 1, e 2 majú bod P a vektory u, v súradnice P = [0, 1], u = e 1, v = 2 e 2. Aký predpis bude
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE. Chemickotechnologická fakulta. Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I
SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE Chemickotechnologická fakulta Doc. RNDr. Viliam Laurinc, CSc. a kolektív FYZIKA I Zbierka príkladov a problémov Predslov Cieľom výpočtových cvičení z fyziky
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Východ a západ Slnka
Východ a západ Slnka Daniel Reitzner februára 27 Je všeobecne známe, že v našich zemepisných šírkach dĺžka dňa závisí od ročného obdobia Treba však o čosi viac pozornosti na to, aby si človek všimol, že
Telesá v pohybe. Kapitola 7
Kapitola 7 Telesá v pohybe Aby sme mohli študovať správanie sa pohybujúcich sa telies, musíme preskúmať základný význam pojmu pohyb. Ktoré vlastnosti, charakteristiky pohybu vieme merať prípadne spočítať,
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Analýza údajov. W bozóny.
Analýza údajov W bozóny http://www.physicsmasterclasses.org/index.php 1 Identifikácia častíc https://kjende.web.cern.ch/kjende/sl/wpath_teilchenid1.htm 2 Identifikácia častíc Cvičenie 1 Na web stránke
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
STRIEDAVÝ PRÚD - PRÍKLADY
STRIEDAVÝ PRÚD - PRÍKLADY Príklad0: V sieti je frekvencia 50 Hz. Vypočítajte periódu. T = = = 0,02 s = 20 ms f 50 Hz Príklad02: Elektromotor sa otočí 50x za sekundu. Koľko otáčok má za minútu? 50 Hz =
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
Základné poznatky molekulovej fyziky a termodynamiky
Základné poznatky molekulovej fyziky a termodynamiky Opakovanie učiva II. ročníka, Téma 1. A. Príprava na maturity z fyziky, 2008 Outline Molekulová fyzika 1 Molekulová fyzika Predmet Molekulovej fyziky
Test. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Zrýchľovanie vesmíru. Zrýchľovanie vesmíru. o výprave na kraj vesmíru a čo tam astronómovia objavili
Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru a čo tam astronómovia objavili Zrýchľovanie vesmíru o výprave na kraj vesmíru
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória C domáce kolo Text úloh
58. ročník Fyzikálnej olympiády v školskom roku 2016/2017 Kategória C domáce kolo Text úloh Odporúčame preštudovať si podobné úlohy v publikácii Čáp I., Konrád Ľ.: Fyzika v zaujímavých riešených úlohách
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
7 Derivácia funkcie. 7.1 Motivácia k derivácii
Híc, P Pokorný, M: Matematika pre informatikov a prírodné vedy 7 Derivácia funkcie 7 Motivácia k derivácii S využitím derivácií sa stretávame veľmi často v matematike, geometrii, fyzike, či v rôznych technických
6. V stene suda naplneného vodou je v hĺbke 1 m pod hladinou otvor veľkosti 5 cm 2. Aká veľká tlaková sila pôsobí na zátku v otvore?
Mechanika tekutín 1. Aká je veľkosť tlakovej sily na kruhový poklop ponorky s priemerom 1 m v hĺbke 50 m? Hustota morskej vody je 1,025 g cm 3. [402 kn] 2. Obsah malého piesta hydraulického zariadenia
6 HYDROMECHANIKA PRÍKLAD 6.1 (D)
Posledná aktualizácia: 4. apríla 0. Čo bolo aktualizované (oproti predošlej verzii z 3. mája 0): Malé úpravy textu a formátovania. Nový spôsob zobrazovania obtiažností. Písmená A, B, C, D vyjadrujú obtiažnosť
Motivácia pojmu derivácia
Derivácia funkcie Motivácia pojmu derivácia Zaujíma nás priemerná intenzita zmeny nejakej veličiny (dráhy, rastu populácie, veľkosti elektrického náboja, hmotnosti), vzhľadom na inú veličinu (čas, dĺžka)
A) matematické a fyzikálne kyvadlo
A) ateatické a fyzikálne kyvadlo (N /, 3; totožná úloha ako FYKOS XIX-II-). Mateatické kyvadlo dĺžky l je zavesené v kabíne lietadla a vykonáva alé haronické kity. Vypočítajte periódu alých kitov T kyvadla,
Odporníky. 1. Príklad1. TESLA TR
Odporníky Úloha cvičenia: 1.Zistite technické údaje odporníkov pomocou katalógov 2.Zistite menovitú hodnotu odporníkov označených farebným kódom Schématická značka: 1. Príklad1. TESLA TR 163 200 ±1% L
Fyzika. Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci odboru geológie. 3. prednáška energia, práca, výkon
Fyzika Úvodný kurz pre poslucháčov prvého ročníka bakalárskych programov v rámci odboru geológie 3. prednáška energia, práca, výkon V súvislosti s gravitačným poľom (minulá prednáška) môžeme uvažovať napr.
ČLOVEK A PRÍRODA. (neúplný) experimentálny učebný text
ČLOVEK A PRÍRODA Zem náš domov (neúplný) experimentálny učebný text V Z D E L Á V A C I A O B L A S Ť Č L O V E K A P R Í R O D A tematický celok Zem náš domov Martin Mojžiš, František Kundracik, Alexandra
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
Projekt KEGA Vyučovanie fyziky programovaním modelov fyzikálnych javov a pomocou interaktívneho softvéru
Projekt KEGA Vyučovanie fyziky programovaním modelov fyzikálnych javov a pomocou interaktívneho softvéru Gravitačné laboratórium Boris Gažovič Alexander Tomori Slavomír Tuleja Humenné 2005 Autori: Boris
M O N I T O R 2004 pilotné testovanie maturantov MONITOR Fyzika I. oddiel
M O N I T O 2004 pilotné testovanie maturantov MONITO 2004 Fyzika I. oddiel Test je určený maturantom na všetkých typoch stredných škôl, ktorí sa pripravujú na maturitnú skúšku z fyziky. EXAM, Bratislava
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
Kontrolné otázky z hydrostatiky a hydrodynamiky
Verzia zo dňa 28. 10. 2008. Kontrolné otázky z hydrostatiky a hydrodynamiky Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte
5 Trecie sily. 5.1 Šmykové trenie
79 5 Trecie sily S trením sa stretávame doslova na každom kroku. Bez trenia by nebola možná naša chôdza, pohyb auta či bicykla, nemohli by sme písať perom, prípadne ho držať v ruke. Skrutky by nespĺňali
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Zadania. 3. Prepíliťkmeňna3častitrvá12minút.Koľkotrváprepíliťhonaštyričasti?
Zadania Zadania 1. Nedávno zaviedli na trojprúdovom diaľničnom úseku medzi Bratislavou a Trnavou nasledovnéobmedzenia:vovšetkýchpruhochjemaximálnapovolenárýchlosť110kmh 1 avozidlá musia dodržiavať minimálny
Súradnicová sústava (karteziánska)
Súradnicová sústava (karteziánska) = sú to na seba kolmé priamky (osi) prechádzajúce jedným bodom, na všetkých osiach sú jednotky rovnakej dĺžky-karteziánska sústava zavedieme ju nasledovne 1. zvolíme
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
2. Zrezistorovsodporom1kΩadvochzdrojovsnapätím9Vpostavíme schému ako na obrázku. Aký prúd tečie rezistorom medzi zdrojmi?
Zadania 1. Kamiónsavydalzmesta Adomesta B,idekonštantnourýchlosťoua budemutotrvaťdvehodiny.kedymusívyraziťautozmesta Bdomesta A, aby sa stretli na polceste? Auto sa pohybuje o polovicu väčšou rýchlosťou
Vektorové a skalárne polia
Vetorové a salárne pola Ω E e prestorová oblasť - otvorená alebo uavretá súvslá podmnožna bodov prestoru E určených arteánsm súradncam usporadaným trocam reálnch čísel X [ ] R. Nech e salárna unca torá
Úvod. Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...
Úvod Na čo nám je numerická matematika? Poskytuje nástroje na matematické riešenie problémov reálneho sveta (fyzika, biológia, ekonómia,...) Postup pri riešení problémov: 1. formulácia problému 2. formulácia
Fyzikálna olympiáda 54. ročník, 2012/2013 školské kolo kategória A zadanie úloh
Fyzikálna olympiáda 54. ročník, 202/203 školské kolo kategória A zadanie úloh. Raketa Raketa s celkovou začiatočnou hmotnosťou M 0 = 0 kg je vypustená zvislo nahor z povrchu Zeme s nulovou začiatočnou
Matematický model robota s diferenciálnym kolesovým podvozkom
Matematický model robota s diferenciálnym kolesovým podvozkom Demonštračný modul Úlohy. Zostavte matematický model robota s diferenciálnym kolesovým podvozkom 2. Vytvorte simulačný model robota v simulačnom
Goniometrické funkcie
Goniometrické funkcie Oblúková miera Goniometrické funkcie sú funkcie, ktoré sa používajú pri meraní uhlov (Goniometria Meranie Uhla). Pri týchto funkciách sa uvažuje o veľkostiach uhlov udaných v oblúkovej
FYZIKA DUSˇAN OLCˇA K - ZUZANA GIBOVA - OL GA FRICˇOVA Aprı l 2006
FYZIKA DUŠAN OLČÁK - ZUZANA GIBOVÁ - OL GA FRIČOVÁ Apríl 2006 2 Obsah 1 o-g-f:mechanický pohyb tuhého telesa 5 1.1 Kinematika hmotného bodu......................... 6 1.1.1 Rýchlost a zrýchlenie pohybu....................
SÚHVEZDIA A ORIENTÁCIA NA HVIEZDNEJ OBLOHE
SÚHVEZDIA A ORIENTÁCIA NA HVIEZDNEJ OBLOHE 1. Čo pozorujeme: a) hviezdy a súhvezdia b) galaxie c) planéty d) obežnice planét mesiace e) meteory f) kométy g) umelé vesmírne telesá družice, rakety alebo
Zadania. Obr Tlak vody vo vodovodnom potrubí na prízemí budovy je 20 atmosfér. Aká najvyššia môže byťbudova,abyajnajejvrchutieklavodazvodovodu?
Zadania Zadania 1. Jimimánepremokavýklobúkspolomerom R.SamotnýJimiještíhly,podobásanazvislý valecspolomerom r < Ravýškou H.AkorýchlomôžeJimichodiťvdaždi,abynezmokol? Prší zvislo, rýchlosťou u. Obr.1 2.
Diferenciálne rovnice. Základný jazyk fyziky
Diferenciálne rovnice Základný jazyk fyziky Motivácia Typická úloha fyziky hľadanie časových priebehov veličín, ktoré spĺňajú daný fyzikálny zákon. Určte trajektóriu telesa padajúceho v gravitačnom poli.
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, BRATISLAVA. VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z FYZIKY PRE GYMNÁZIUM štvorročné štúdium
ŠTÁTNY PEDAGOGICKÝ ÚSTAV, PLUHOVÁ 8, 830 00 BRATISLAVA VZDELÁVACÍ ŠTANDARD S EXEMPLIFIKAČNÝMI ÚLOHAMI Z FYZIKY PRE GYMNÁZIUM štvorročné štúdium Vypracovala: RNDr. Eva Tomanová, CSc. Pri tvorbe exemplifikačných
Pilota600mmrez1. N Rd = N Rd = M Rd = V Ed = N Rd = M y M Rd = M y. M Rd = N 0.
Bc. Martin Vozár Návrh výstuže do pilót Diplomová práca 8x24.00 kr. 50.0 Pilota600mmrez1 Typ prvku: nosník Prostředí: X0 Beton:C20/25 f ck = 20.0 MPa; f ct = 2.2 MPa; E cm = 30000.0 MPa Ocelpodélná:B500
Pracovný zošit z fyziky
Gymnázium Antona Bernoláka Námestovo Pracovný zošit z fyziky Mgr. Stanislav Kozák Mgr. Stanislav Kozák, 2011 Mgr. Stanislav Kozák Pracovný zošit z fyziky pre 1. ročník gymnázia Vydavateľ: Tlačiareň Kubík
Analytická geometria pre tých, ktorí jej potrebujú rozumieť
Škola pre Mimoriadne Nadané Deti a Gymnázium, Teplická 7, 831 02 Bratislava Anino BELAN Analytická geometria pre tých, ktorí jej potrebujú rozumieť učebný text pre septimu osemročného gymnázia BRATISLAVA
4 DYNAMIKA SÚSTAVY HMOTNÝCH BODOV 1
Posledná aktualizácia: 14. apríla 2012. Čo bolo aktualizované (oproti predošlej verzii z 11. februára 2011): Preusporiadané poradie úvodných 9 príkladov. Kompaktnejšia prezentácia príkladu 4.7, najmä bez
1. písomná práca z matematiky Skupina A. 1. písomná práca z matematiky Skupina B
. písoá pác z tetik Skpi A. Zjedodšte výz : ) z 8 ) c). Doplňte, pltil ovosť : ) ). Vpočítjte : ) ) c). Vpočítjte : ) ( ) ) v v v c). Upvte výz ovete spávosť výsledk pe : 6. Zostojte tojholík ABC, k c
3 Kinematika hmotného bodu
29 3 Kinematika hmotného bodu Pohyb vo všeobecnosti zahŕňa všetky zmeny a procesy, ktoré prebiehajú vo vesmíre. Je neoddeliteľnou vlastnosťou hmoty. Časť fyziky, ktorá sa zaoberá popisom pohybu telies,
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných