4 Sukladnost i sličnost trokuta
|
|
- Ωσαννά Ανδρέου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C } takva da je f(a) = A f(b) = B f(c) = C i ako vrijede jednakosti a = a b = b c = c. Oznaka: ABC = A B C. Minimalni dovoljni uvjeti za sukladnost trokuta dani su sljedećim teoremima: Teorem (S-S-S). Dva su trokuta sukladna ako se podudaraju u sve tri stranice. Teorem (S-K-S). Dva su trokuta sukladna ako se podudaraju u dvije stranice i kutu izmedu njih. Teorem (K-S-K). Dva su trokuta sukladna ako se podudaraju u jednoj stranici i kutovima koji su priležeći toj stranici. Teorem (S > -S-K). Dva su trokuta sukladna ako se podudaraju u dvije stranice i kutu nasuprot većoj stranici. Zadatak 1. Stranice AB BC i CA jednakostraničnog ABC produžimo preko vrhova B C A redom za istu duljinu. Dokažite da je novonastali trokut takoder jednakostraničan. Zadatak 2. Dokažite da su dva trokuta sukladna ako se podudaraju u: a) dvije stranice i težišnici koja pripada jednoj od njih b) dva kuta i odresku simetrale jednog od njih c) dva kuta i odresku simetrale trećeg kuta d) jednoj stranici kutu na njoj i visini spuštenoj iz vrha tog trokuta. Zadatak 3. Dan je ABC u kojemu je AB = AC i BAC = 80. Unutar ABC odabrana je točka M takva da je MBC = 30 i MCB = 10. Odredite AMC. Zadatak 4. Ako su u trokutu ABC jednake dvije visine dokažite da je trokut jednakokračan.
2 Zadatak 5. Središta upisane i opisane kružnice jednakokračnog ABC simetrična su u odnosu na osnovicu AB. Koliki su kutovi tog trokuta? Zadatak 6. Dokažite da su dijagonale romba medusobno okomite i da raspolavljaju unutrašnje kutova romba. Zadatak 7. Dan je paralelogram ABCD s duljinama stranica a i b. Pokažite da simetrale kutova tog paralelograma tvore pravokutnik i izrazite duljinu d njegove dijagonale pomoću a i b. 4.2 Sličnost trokuta Teorem (Talesov teorem o proporcionalnosti). Ako su točke A B C D na pravcu p a točke A B C D točke na pravcu p dobivene paralelnom projekcijom onda će se odgovarajući omjeri duljina sačuvati tj. AB CD = A B C D AB A B = CD C D. A B C D p A B C D p Korolar (Talesov poučak o proporcionalnosti u pramenu pravaca). Ako se dva pravca a i b sijeku u točki O i ako su oni presječeni paralelnim pravcima t 1 i t 2 takvima da je b t 1 = A a t 1 = B b t 2 = A a t 2 = B onda vrijedi: OA OB = OA OB OA AB = OA A B OB BA = OB B A. A t1 A t2 b O B B a
3 Teorem (o simetrali unutarnjeg kuta trokuta). Simetrala unutarnjeg kuta trokuta dijeli tom trokutu nasuprotnu stranicu u omjeru preostalih stranica. Sličnost je preslikavanje ravnine M na samu sebe za koje vrijedi: d(a B ) = k d(a B) A B M k R + pri čemu je f(a) = A i f(b) = B. Dva su trokuta slična ako postoji bijekcija f : {A B C} {A B C } takva da f(a) = A f(b) = B f(c) = C povlači α = α β = β γ = γ i a a = b b = c c = k (k - koeficijent sličnosti) tj. odgovarajući kutovi su jednaki a odgovarajuće stranice razmjerne. Oznaka: ABC A B C. Napomena. Sukladnost trokuta je specijalan slučaj sličnosti za koeficijent k = 1. Teorem (K-K-K sličnost). Dva su trokuta slična ako su im odgovarajući kutovi jednaki. Teorem (S-S-S sličnost). Dva su trokuta slična ako su im odgovarajuće stranice razmjerne. Teorem (S-K-S sličnost). Dva su trokuta slična ako su im dvije stranice proporcionalne a kutovi medu njima jednaki. Teorem (S > -S-K sličnost). Dva su trokuta slična ako su im dvije stranice proporcionalnme i kutovi nasuprot većim stranicama jednaki. Zadatak 8. Dokažite da je u svakom trokutu produkt duljine stranice i pripadne visine neovisan o izboru stranice. Zadatak 9. Ako u ABC vrijedi β = 2α tada je b 2 = a 2 + ac. Dokažite! Zadatak 10. Neka je D nožište visine spuštene iz vrha pravog kuta pri vrhu C na hipotenuzu AB pravokutnog ABC. Točkom D povučena je paralela s katetom BC i neka ona siječe stranicu AC u točki E. Odredite AE : EC ako je AC : BC = 1 : 2.
4 Zadatak 11. Krajevima A i B dužine AB povučene su paralelne dužine AA 1 i BB 1 duljina a i b. Neka je C 1 presjek pravaca BA 1 i AB 1 C presjek paralele sa AA 1 i stranice AB te CC 1 = c. Dokažite da je 1/c = 1/a + 1/b. Zadatak 12. Dva su kuta u jednom trokutu α β a dva kuta drugog trokuta α 180 β. Dokažite da su stranice tih trokuta nasuprot jednakim kutovima razmjerne stranicama nasuprot suplementnim kutovima. 4.3 Primjena Pitagorinog počka Teorem (Euklid). (a) Duljina katete pravokutnog trokuta je geometrijska sredina duljine hipotenuze i duljine svoje ortogonalne projekcije na hipotenuzu. (b) Visina na hipotenuzu pravokutnog trokuta je geometrijska sredina duljina njenih odsječaka na hipotenuzi. Teorem (Pitagorin poučak). Ako je trokut ABC sa stranicama a b c pravokutan s pravim kutom kod vrha C onda vrijedi a 2 + b 2 = c 2. Teorem (Obrat Pitagorinog poučka). Ako za stranice a b c trokuta ABC vrijedi a 2 + b 2 = c 2 onda je ABC pravokutan s pravim kutom kod vrha C. Zadatak 13. Prirodni brojevi x y z koji zadovoljavaju jednakost x 2 + y 2 = z 2 nazivaju se Pitagorini brojevi. Pokažite da dvije klase tih brojeva daju formule a) x = 2n + 1 y = 2n 2 + 2n z = 2n 2 + 2n + 1 (Pitagora) b) x = n 2 1 y = 2n z = n (Platon). Zadatak 14. Dokažite da za duljine stranica a b c pravokutnog ABC vrijedi a) c 3 > a 3 + b 3. b) a + b 2c. Kada vrijedi jednakost? Zadatak 15. Neka su t a t b t c duljine težisnica pravokutnog ABC. Pokažite da vrijedi t 2 a + t2 b = 5t2 c. Zadatak 16. Neka su a b c duljine stranica pravokutnog trokuta ABC a v duljina 1 visine na hipotenuzu. Dokažite da vrijedi v = 1 2 a b 2.
5 Zadatak 17. Visina spuštena iz vrha pravog kuta na hipotenuzu pravokutnog trokuta dijeli pravi kut u omjeru 1 : 2. Dokažite da nožište te visine dijeli hipotenuzu u omjeru 1 : 3. Zadatak 18. Koja relacija povezuje duljina stranica a b c d konveksnog četverokuta kojemu su dijagonale okomite? Zadatak 19. Unutar pravokutnika ABCD odabrana je točka T čije su udaljenosti od vrhova A B C redom Kolika je udaljenost točke T od vrha D? Zadatak 20. Nad katetama pravokutnog trokuta ABC postavljeni su kvadrati ACDE i BCFG. Iz točaka E i G spuštene su okomice na pravac AB. Neka su M i N nožišta tih okomica. Dokažite da je EM + GN = AB. Zadatak 21. Zadno je 5 dužina takvih da se od svake 3 može načiniti trokut. Dokažite da je bar jedan od tih trokuta šiljastokutan.
6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
TRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
Geometrija 1. dio. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi
1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Udaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
Udaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =
Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo
MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Geometrijski trikovi i metode bez imena
Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih
2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0
17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi
Temeljni pojmovi o trokutu
1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet
Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Proširenje na poučku o obodnom i središnjem kutu
Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije
Proširenje na poučku o obodnom i središnjem kutu
Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.
r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira
Analitička geometrija Zadaci. 13. siječnja 2014.
Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja 009. 1. Riješi nejednadžbu x + x Rješenje. 1 u skupu prirodnih brojeva. x + x 1 x + x + 0 x x < 0 x
ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Aksiome podudarnosti
Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog
Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.
Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b
Funkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
0 = 5x 20 => 5x = 20 / : 5 => x = 4.
Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Elementarni zadaci iz Euklidske geometrije II
Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k
je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O
Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev
Matematika 1+ - skripta za dodatnu nastavu u 1. razredu srednje škole - Kristijan Kvaternik
Matematika + - skripta za dodatnu nastavu u. razredu srednje škole - Kristijan Kvaternik Sadržaj Obodni i središnji kut 2 Zadatci za vježbu............................ 8 2 Sukladnost i sličnost 9 Zadatci
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU
DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU Izrada: Dalila Ljevo Lektorisala: Ivana Mostarac Tehnička obrada: Edin Tabak Sadržaj CIJELI BROJEVI...4 Svojstva zbrajanja
PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE
PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Općinsko natjecanje. 4. razred
9 1. Općinsko natjecanje iklus susreta i natjecanja mladih matematičara, učenika osnovnih i srednjih škola Republike Hrvatske i u 1998. godini sastojao se od školskih natjecanja, gradskih i općinskih natjecanja,
INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
RJEŠENJA ZA 4. RAZRED
RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN.
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Analitička geometrija i linearna algebra
1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje
DRŽAVNO NATJECANJE IZ MATEMATIKE
DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola B kategorija Pula, 30. ožujka 009. Zadatak B-.. (0 bodova) Tomislav i ja, reče Krešimir, možemo završiti posao za 0 dana. No, ako bih radio s Ivanom
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
3. KRIVULJE DRUGOG REDA
3. KRIVULJE DRUGOG REDA U realnoj projektivnoj ravnini konike ili krivulje drugog reda definiraju se ovako: Definicija 3.1. Skup svih točaka projektivne ravnine čije koordinate zadovoljavaju algebarsku
2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Konstruktivni zadaci. Uvod
Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,
Poučak ili teorem. Iz rječnika metodike. Zdravko Kurnik, Zagreb
Iz rječnika metodike Poučak ili teorem Zdravko Kurnik, Zagreb Trajno usvajanje matematičkih znanja nije moguće bez usmjerenog razvoja mišljenja. Zato je razvoj mišljenja učenika jedan od osnovnih zadataka
12 1. UVODNI DIO c 2 ) 2 2(a 4 + b 4 + c 4 ). (F1)
11 1. Uvodni dio Da bi se s potpunim razumijevanjem mogao pratiti sadržaj ove knjige, nužna su neka znanja iz srednjoškolske nastave matematike. To se u prvom redu odnosi na temeljne pojmove geometrije
Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo:
2 Skupovi Neka su A i B skupovi. Kažemo da je A podskup od B i pišemo A B ako je svaki element skupa A ujedno i element skupa B. Simbolima to zapisujemo: A B def ( x)(x A x B) Kažemo da su skupovi A i
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
L. Kralj, Z. Ćurković, D. Glasnović Gracin, S. Banić, M. Stepić. Petica+ 5. udžbenik i zbirka zadataka za 5. razred osnovne škole DRUGI SVEZAK
L. Kralj, Z. Ćurković, D. Glasnović Gracin, S. Banić, M. Stepić Petica+ 5 udžbenik i zbirka zadataka za 5. razred osnovne škole DRUGI SVEZAK 1. izdanje Zagreb, 010. Autorice: Dubravka Glasnović Gracin,
Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.
UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se
I. OLIMPIJADA 1. Zadaci. ne može skratiti ni za koji prirodan broj. 1. Dokazati da se razlomak 21n n + 3 n.
I. OLIMPIJADA 1 I. Prva MMO održana je 1959. g. u Rumunjskoj. Pored zemlje domaćina sudjelovale su još Bugarska, Čehoslovačka, DR Njemačka, Ma - darska, Poljska i SSSR. 1. Dokazati da se razlomak 21n +
Pismeni ispit iz predmeta Euklidska geometrija 1
Univerzitet u Zenici Pedagoški fakultet Odsjek: Matematika i informatika Zenica, 27.01.2010. Pismeni ispit iz predmeta Euklidska geometrija 1 Zadatak br. 1 a) U oštrouglom trouglu ABC (AC < BC) visina
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
radni nerecenzirani materijal za predavanja
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je
12 1. GEOMETRIJA. vrhove novog trokuta. Dokažite da taj trokut ne može biti jednakostraničan.
11 1. Geometrija 1.1. Kvadratni komad papira D presavijen je tako da točka D prije - de u proizvoljnu točku D na. Novi položaj točke je.neka je E sjecište dužina i D.Označimo s r polumjer kružnice upisane
RJEŠENJA ZA 4. RAZRED
RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN..
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE
Ministarstvo znanosti, obrazovanja i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija
2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
Predavanja iz Elementarne geometrije
Predavanja iz Elementarne geometrije Jurica Perić 2017./2018. Sadržaj Povijesni pregled ii 1. Planimetrija - geometrija ravnine 1 1.1. Aksiomi euklidske geometrije ravnine.................. 1 1.1.1. Aksiomi
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
6 Polinomi Funkcija p : R R zadana formulom
6 Polinomi Funkcija p : R R zadana formulom p(x) = a n x n + a n 1 x n 1 +... + a 1 x + a 0, gdje su a 0, a 1,..., a n realni brojevi, a n 0, i n prirodan broj ili 0, naziva se polinom n-tog stupnja s
Rijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Op cinsko natjecanje Osnovna ˇskola 4. razred
9 1. Općinsko natjecanje Općinsko (gradsko) natjecanje je prvi stupanj natjecanja koji se organizira po jedinstvenim kriterijima Državnog povjerenstva za matematička natjecanja. Godine 1996. ono je održano
MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO
4. razred-osnovna škola 1. Umjesto zvjezdica upiši odgovarajuće znamenke i obrazloži. * * 8 5 * * 5 5 * 0 + 4 * * 5 * * * * * 2. U jednoj auto-radionici u jednom mjesecu popravljena su 44 vozila i to motocikli
ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010.
ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI
MATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
7.1 Međusobni položaji točaka, pravaca i ravnina
Poglavlje 7 Stereometrija Stereometrijom nazovamo geometriju (trodimenzionalnog euklidskog) prostora. Osnovni elementi prostora su točke, pravci i ravnine. Aksiome geometrije prostora nećemo navoditi.
Analitička geometrija afinog prostora
Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i
11. GEOMETRIJA. Zadaci:
11. GEOMETRIJA elementarna geometrija likova u ravnini drediti mjeru kuta razlikovati vrste trokuta rabiti poučke o sukladnosti trokuta rabiti Pitagorin poučak i njegov obrat rabiti osnovna svojstva paralelograma
Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1
Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +
4. MONGEOVO PROJICIRANJE
4. MONGEOVO PROJICIRANJE 4.1. Projiciranje točke Niti centralno ni paralelno projiciranje točaka prostora na ravninu nije bijekcija. Stoga se pri takvim preslikavanjima suočavamo s problemom nejednoznačnog
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja
OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
DRŽAVNO NATJECANJE IZ MATEMATIKE Šibenik, 2.travnja-4.travnja razred-rješenja
DRŽAVNO NATJECANJE IZ MATEMATIKE Šibenik, travnja-4travnja 014 5 razred-rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE
x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z + x)(x + y) =1 x 2 (y + z)+y 2 (z + x)+z 2 (x + y) = 6
DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija,. svibnja 2007. Rješenja Zadatak 1A-1. Na - dite realna rješenja sustava jednadžbi: x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z
DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007.
Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007. Zadatak
ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.
ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 24. siječnja razred rješenja
ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 4. siječnja 011. 4. razred rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I
13. SFERNA TRIGONOMETRIJA
Geodetski fakultet, dr sc J Beban-Brkić Predavanja iz Matematike 1 13 SFERNA TRIGONOMETRIJA UVOD Trigonometrija je dio geometrije unutar koje se proučavaju odnosi između stranica i kutova u ravninskom
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, 3.travnja-5.travnja razred-rješenja
DRŽAVNO NATJECANJE IZ MATEMATIKE Primošten, travnja-5travnja 07 5 razred-rješenja OVDJE SU DANI NEKI NAČINI RJEŠAVANJA ZADATAKA UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN
Pitanja za usmeni dio ispita iz matematike
PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna