1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C."

Transcript

1 Geometrija 1. dio U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C U trokutu ABC na dužini AC odabrana je točka D tako da vrijedi AB = AD i ABC ACB=30. Koliki je CBD? 1.3. U trokutu ABC simetrale unutarnjeg kuta vrha B i vanjskog kuta vrha A sijeku se u točki D. Kroz točku D povučen je pravac paralelan s AB koji stranice AC i BC siječe u točkama L i M. Znamo da je AL =5 i BM =7. Koliko je LM? 1.4. U pravokutnom trokutu ABC CF je težišnica, CE je simetrala pravog kuta i CD je visina na hipotenuzu AB. Dokaži da je DCE= ECF U pravokutnom trokutu ABC kroz točku B na hipotenuzu AB povučena je okomica i na njoj je konstruirana točka P tako da je BC = BP. Dokažite da je pravac CP ili okomit, ili paralelan, sa simetralom unutarnjeg kuta pri vrhu A Dan je kvadrat ABCD, okomica iz točke B na simetralu kuta ACD presjeca AC i CD u točkama P i Q. Točka E je sjecište dijagonala. Dokaži da je DQ =2 P E Na vanjskom dijelu paralelograma ABCD nad stranicama AB i AD konstruirani su jednakostranični trokuti ABE i ADF. Dokaži da je trokut F CE jednakostraničan Na vanjskom dijelu paralelograma ABCD nad svakom je stranicom konstruiran kvadrat. Dokaži da: a) su središta od tih kvadrata vrhovi kvadrata; b) su dijagonale tog kvadrata i paralelograma konkurentne, tj. prolaze kroz jednu točku. 1

2 1.10. Unutar kvadrata ABCD odabrana je točka E tako da je ECD= EDC=15. Dokaži da je trokut ABE jednakostraničan Dokaži da je zbroj duljina okomica spuštenih iz neke točke sa stranice pravokutnika na dijagonale konstantan U trokutu ABC je DE AB i F E DB. Zadano je CF =4 i F D =6. Koliko je DA? U trapezu ABCD dijagonale AC i BD sijeku se u točki P. Točka M je polovište od AB dužina DM siječe dijagonalu AC u točki E. Kroz točku E povučena je paralela s osnovicama trapeza koja drugu dijagonalu BD i njegove krakove BC i AD siječe u točkama F, G i H. Dokaži da je HE = EF = F G U trokutu ABC, Z je točka na AB. Točkom A povučena je paralela sa CZ i ona siječe BC u točki X. Točkom B povučena je paralela sa CZ i ona siječe AC u točki Y. Dokaži da je 1 AX + 1 BY = 1 CZ Dokaži da za stranice a, b, c i težišnice t a, t b, t c trokuta ABC vrijedi 3(a 2 + b 2 + c 2 ) = 4(t 2 a + t 2 b + t2 c) Točka A je izvan kružnice. Kroz točku T kružnice povučena je tangenta i na njoj je odabrana točka P tako da je P T = P A. Neka je C neka točka na kružnici, pravci AC i P C presjecaju kružnicu u točkama D i B. AB siječe kružnicu u E. Dokaži da je DE paralelno s AP. 8.2.(Cevin teorem) Vrhovi trokuta ABC spojeni su s točkama na suprotnim stranicama L, M in. Dužine AL, BM i CN sijeku se u jednoj točki (konkurentne su) P, ako samo ako je AN NB BL LC CM MA = (Butterfly theorem.) U danoj je kružnica k povučena je tetiva AB. Kroz polovište M tetive AB povučene su još dvije tetive F E i CD tako da su točke C i F s iste strane na kružnici s obzirom na AB, isto to vrijedi i za točke D i E. Dužine F D i CE sijeku AB u točkama P i Q. Dokažite da je MP = MQ. 2

3 4.38. Duljina stranice kvadrata (ABCD) je a. F je polovište stranice BC, E je nožište okomice iz vrha A na dužinu DF. Koliko je BE? Iz točke A povučene su tangente na kružnicu, B i C su točke u kojima tangente diraju kružnicu. Iz točke B povučena je tetiva BF kružnice, a iz točke A sekanta koja kružnicu presjeca u točkama D i E. Dokaži da F C raspolavlja DE Trokutu ABC opisana je kružnica k, zatim su iz neke točke P kružnice k na stranice trokuta povučene okomice. Dokažite da nožišta okomica leže na jednom pravcu (Simsonov pravac) Stranice AB, BC i CA trokuta ABC presječene su pravcem u točkama Q, R i S, tako da je R izvan dužine BC. Kružnice opisane trokutima ABC i SCR sijeku se u točki P. Dokaži da je četverokut (AP SQ) tetivan. 7.1.(Ptolemejev teorem.) U tetivnom je četverokutu umnožak duljina dijagonala jednak zbroju umnožaka nasuprotnih stranica. Dokažite (Miquelov teorem.) Na svakoj stranici trokuta odabrana je po jedna točka. Dokažite da se kružnice koje prolaze kroz vrh trokuta i dvije odabrane točke na stranicama iz tog vrha sijeku u jednoj točki (Stewartov teorem teorem.) Na stranici AB trokuta ABC odabrna je točka D. Dokažite tada za dužine tog trokuta vrijedi jednakost BC 2 AD + AC 2 DB = AB ( CD 2 + AD DB ). 2.3.ž00. U šiljastokutom trokutu ABC povučene su visine BB i CC. Kroz ortocentar H je povučen pravac koji siječe stranice AB i AC redom u točkama M i N. Neka je M nožište okomice iz M na BB i N je nožište okomice iz N na CC. Dokažite da je M C N C. 4.1.d95. U trokutu A 0 B 0 C 0 kutovi su α = 40, β = 60 i γ = 80. Neka su A 1, B 1 i C 1 nožišta visina trokuta A 0 B 0 C 0 i ona daju novi trokut A 1 B 1 C 1. Na isti način se konstruira trokut A 2 B 2 C 2. Dokaži da su trokuti A k B k C k, k = 0, 1, 2..., medusobno slični. 3

4 Domaća zadaća Za svaki pravac koji prolazi kroz težište trokuta ABC i presjeca stranice AC i BC označena su s X, Y i Z nožišta okomica iz vrhova A, B i C na taj pravac. Dokaži da je CZ = AX + BY U paralelogramu ABCD, na dijagonali AC odabrane su točke E i F tako da je AE = F C. Točka H je sjecište od BE i AD, i G je sjecište od BF i DC. Dokaži da je HG paralelno sa AC P je točka na visini CD u ABC. Pravci AP i BP sijeku stranice CB i CA u točkama Q i R, respektivno. Dokaži da je QDC = RDC Hipotenuza AB podijeljena je točkama G, E, H na četiri jednaka dijela. Točka G je nožište visine. Ako je AB = 20, koliko je CG 2 + CE 2 + CH 2? 4.3. Iz točke P koja je izvan dane kružnice povučene su tangente koje kružnicu diraju u točkama A i B. Iz točke Q koja je s većeg (ili manjeg) luka ÂB povučene su okomice na pravce AB, PA i PB. Dokaži da je okomica na AB geometrijska sredina od preostale dvije, tj. QC = QD QE. ( Pri čemu su C, D i E nožišta okomica.) 4.4. Tetive AC i DB medusobno su okomite i sijeku se u točki G. U AGD visina iz G siječe AD u E, i njen produžetak siječe BC u P. Dokaži da je BP = P C Dvije kružnice sa središtima U i V, jednakih polumjera diraju se izvana u točki T. Tetiva T M prve kružnice okomita je na tetivu T N druge kružnice. Dokaži da je MN UV i MN = UV Dvije kružnice sa središtima U i V diraju se izvana. Iz točke A koja je na unutarnjoj zajedničkoj tangenti povučene su sekante tih kružnica, jedna siječe prvu kružnicu u E i B, a druga u D i C. Ako je DE zajednička vanjska tangenta, točke C i B su kolinearne sa U i V, dokaži da je: a) ADE = ABC, i b) CAB = i4. 3./83.S. Neka je P točka unutar ABC, takva da je P AC = P BC i neka su M i L podnožja normala iz točke P redom na pravce AC i BC. Ako je D polovište stranice AB, dokažite da je DL = DM. 4

5 LK zadaci 1. Šahovskom pločom (8x8) kojoj su otkinuta dva dijagonalno suprotna polja. Da li je moguće dominama (1x2) popločiti tako okrnjenu ploču? 2. Na dvije suprotne strane kockice nalazi se po jedna točkica, na druge dvije suprotne strane po dvije i na preostale dvije po tri točkice. Od 8 takvih kockica sastavlja se kocka 2 2 2, te se prebroji koliko točaka ima na svakoj strani. Može li se na taj način dobiti šest uzastopnih prirodnih brojeva? 3. Ploču 6 6 prekrivenu dominama uvijek možemo prerezati a da ne prerežemo neku od domina. 4. Svaka točka ravnine obojana je zelenom ili crvenom bojom. Dokažite da u toj ravnini postoji pravokutnik kojem su svi vrhovi iste boje.(2.5.) 5. Dokaži da u grupi od 6 osoba postoje 3 osobe koje se sve medusobno poznaju ili 3 koje se sve medusobno ne poznaju.(2.2.) 6. Na ploči su napisani brojevi 1, 1 2, 1 3,, 1 n. a) Koji broj ostane na ploči ako u svakom koraku izbrišemo brojeve a i b i umjesto njih napišemo broj a b? b) Koji broj ostane na ploči ako u svakom koraku izbrišemo brojeve a i b i umjesto njih napišemo broj a + b + a b?(3.7.) 7. Na ploči su napisani brojevi 1, 2, 3, 4, 5, 6. U svakom koraku možemo odabrati dva broja i dodati im 1. Može li se nakon konačno mnogo koraka dobiti šest jednakih brojeva? 8. Zatvorenu izlomljena liniju pravac p presjeca u 2011 točaka. Dokaži da postoji pravac koji danu liniju presjeca u više od 2011 točaka. 9. U ravnini je dana poligonalna kružnica (jednostavna izlomljena linija koja se ne samopresjeca) kojoj su svi vrhovi u općem položaju (ne postoji pravac koji prolazi kroz tri vrha). Definiran je par od dvije nesusjedne stranice poligona od 5

6 kojih produžetak jedne od njih presijeca drugu. Dokaži da je broj parova paran. 6

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

Geometrijski trikovi i metode bez imena

Geometrijski trikovi i metode bez imena Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Proširenje na poučku o obodnom i središnjem kutu

Proširenje na poučku o obodnom i središnjem kutu Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Proširenje na poučku o obodnom i središnjem kutu

Proširenje na poučku o obodnom i središnjem kutu Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev

Διαβάστε περισσότερα

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0 17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Konstruktivni zadaci. Uvod

Konstruktivni zadaci. Uvod Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

Analitička geometrija Zadaci. 13. siječnja 2014.

Analitička geometrija Zadaci. 13. siječnja 2014. Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.

Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period. Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična.

Ako dva trougla imaju dvije stranice proporcionalne i podudaran ugao izme du njih tada su ta dva trougla slična. Sličnost trouglova i Talesova teorema Definicija sličnosti trouglova Dva trougla ABC i A B C su slična ako su im sva tri ugla redom podudarna i ako su im a odgovarajuće stranice proporcionalne tj. = b

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Aksiome podudarnosti

Aksiome podudarnosti Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;

π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1; 1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Još neki dokazi leptirovog teorema

Još neki dokazi leptirovog teorema POUČAK 50 Još neki dokazi leptirovog teorema Šefket Arslanagić, Alija Muminagić U [] su dana četiri razna dokaza Leptirovog teorema (Butterfly s theorems), od kojih su dva čisto planimetrijska, jedan je

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO

MINISTARSTVO ZNANOSTI, OBRAZOVANJA I ŠPORTA REPUBLIKE HRVATSKE AGENCIJA ZA ODGOJ I OBRAZOVANJE HRVATSKO MATEMATIČKO DRUŠTVO 4. razred-osnovna škola 1. Umjesto zvjezdica upiši odgovarajuće znamenke i obrazloži. * * 8 5 * * 5 5 * 0 + 4 * * 5 * * * * * 2. U jednoj auto-radionici u jednom mjesecu popravljena su 44 vozila i to motocikli

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007.

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007. Ministarstvo prosvjete i športa Republike Hrvatske Agencija za odgoj i obrazovanje Hrvatsko matematičko društvo DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 3. svibnja 2007. Zadatak

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.

Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011. Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 30. ožujka 2009.

DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 30. ožujka 2009. DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 30. ožujka 009. Zadatak A-.. Odredi sve trojke uzastopnih neparnih prirodnih brojeva čiji je zbroj kvadrata jednak nekom četveroznamenkastom

Διαβάστε περισσότερα

Elementarni zadaci iz Euklidske geometrije II

Elementarni zadaci iz Euklidske geometrije II Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k

Διαβάστε περισσότερα

Analitička geometrija afinog prostora

Analitička geometrija afinog prostora Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i

Διαβάστε περισσότερα

12 1. UVODNI DIO c 2 ) 2 2(a 4 + b 4 + c 4 ). (F1)

12 1. UVODNI DIO c 2 ) 2 2(a 4 + b 4 + c 4 ). (F1) 11 1. Uvodni dio Da bi se s potpunim razumijevanjem mogao pratiti sadržaj ove knjige, nužna su neka znanja iz srednjoškolske nastave matematike. To se u prvom redu odnosi na temeljne pojmove geometrije

Διαβάστε περισσότερα

Matematika 1+ - skripta za dodatnu nastavu u 1. razredu srednje škole - Kristijan Kvaternik

Matematika 1+ - skripta za dodatnu nastavu u 1. razredu srednje škole - Kristijan Kvaternik Matematika + - skripta za dodatnu nastavu u. razredu srednje škole - Kristijan Kvaternik Sadržaj Obodni i središnji kut 2 Zadatci za vježbu............................ 8 2 Sukladnost i sličnost 9 Zadatci

Διαβάστε περισσότερα

Op cinsko natjecanje Osnovna ˇskola 4. razred

Op cinsko natjecanje Osnovna ˇskola 4. razred 9 1. Općinsko natjecanje Općinsko (gradsko) natjecanje je prvi stupanj natjecanja koji se organizira po jedinstvenim kriterijima Državnog povjerenstva za matematička natjecanja. Godine 1996. ono je održano

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja

radni nerecenzirani materijal za predavanja Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Kažemo da je funkcija f : a, b R u točki x 0 a, b postiže lokalni minimum ako postoji okolina O(x 0 ) broja x 0 takva da je

Διαβάστε περισσότερα

RJEŠENJA ZA 4. RAZRED

RJEŠENJA ZA 4. RAZRED RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN..

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z + x)(x + y) =1 x 2 (y + z)+y 2 (z + x)+z 2 (x + y) = 6

x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z + x)(x + y) =1 x 2 (y + z)+y 2 (z + x)+z 2 (x + y) = 6 DRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija,. svibnja 2007. Rješenja Zadatak 1A-1. Na - dite realna rješenja sustava jednadžbi: x + y + z = 2 (x + y)(y + z)+(y + z)(z + x)+(z

Διαβάστε περισσότερα

Elementarni zadaci iz predmeta Euklidska geometrija 1

Elementarni zadaci iz predmeta Euklidska geometrija 1 Elementarni zadaci iz predmeta Euklidska geometrija 1 Trougao Računanje uglova u trouglu 1. Težišnica i visina iz vrha A u ABC djele ugao α na tri jednaka dijela. Koliki su uglovi trougla ABC. 2. U trouglu

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010. ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

3. KRIVULJE DRUGOG REDA

3. KRIVULJE DRUGOG REDA 3. KRIVULJE DRUGOG REDA U realnoj projektivnoj ravnini konike ili krivulje drugog reda definiraju se ovako: Definicija 3.1. Skup svih točaka projektivne ravnine čije koordinate zadovoljavaju algebarsku

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

7.1 Međusobni položaji točaka, pravaca i ravnina

7.1 Međusobni položaji točaka, pravaca i ravnina Poglavlje 7 Stereometrija Stereometrijom nazovamo geometriju (trodimenzionalnog euklidskog) prostora. Osnovni elementi prostora su točke, pravci i ravnine. Aksiome geometrije prostora nećemo navoditi.

Διαβάστε περισσότερα

Zadaci iz trigonometrije za seminar

Zadaci iz trigonometrije za seminar Zadaci iz trigonometrije za seminar FON: 1. Vrednost izraza sin 1 cos 6 jednaka je: ; B) 1 ; V) 1 1 + 1 ; G) ; D). 16. Broj rexea jednaqine sin x cos x + cos x = sin x + sin x na intervalu π ), π je: ;

Διαβάστε περισσότερα

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2.

Sume kvadrata. mn = (ax + by) 2 + (ay bx) 2. Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.

Διαβάστε περισσότερα

Matematička analiza 1 dodatni zadaci

Matematička analiza 1 dodatni zadaci Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka

Διαβάστε περισσότερα

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija

Ministarstvo prosvete i sporta Republike Srbije Druxtvo matematiqara Srbije Prvi razred A kategorija 18.02006. Prvi razred A kategorija Dokazati da kruжnica koja sadrжi dva temena i ortocentar trougla ima isti polupreqnik kao i kruжnica opisana oko tog trougla. Na i najve i prirodan broj koji je maƭi

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja 009. 1. Riješi nejednadžbu x + x Rješenje. 1 u skupu prirodnih brojeva. x + x 1 x + x + 0 x x < 0 x

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

PROSTORNI STATIČKI ODREĐENI SUSTAVI

PROSTORNI STATIČKI ODREĐENI SUSTAVI PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y

Διαβάστε περισσότερα

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr

KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,

Διαβάστε περισσότερα

12 1. GEOMETRIJA. vrhove novog trokuta. Dokažite da taj trokut ne može biti jednakostraničan.

12 1. GEOMETRIJA. vrhove novog trokuta. Dokažite da taj trokut ne može biti jednakostraničan. 11 1. Geometrija 1.1. Kvadratni komad papira D presavijen je tako da točka D prije - de u proizvoljnu točku D na. Novi položaj točke je.neka je E sjecište dužina i D.Označimo s r polumjer kružnice upisane

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta. UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584

http://www.mathematica.gr/forum/viewtopic.php?f=109&t=15584 Επιμέλεια: xr.tsif Σελίδα 1 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΜΑΘΗΤΙΚΟΥΣ ΔΙΑΓΩΝΙΣΜΟΥΣ ΕΚΦΩΝΗΣΕΙΣ ΤΕΥΧΟΣ 5ο ΑΣΚΗΣΕΙΣ 401-500 Αφιερωμένο σε κάθε μαθητή που ασχολείται ή πρόκειται να ασχοληθεί με Μαθηματικούς διαγωνισμούς

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače razred-rješenja OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 4. veljače 00. 4. razred-rješenja. 00 + 00 + 00 3 + 00 4 + 00 = 00 ( + + 3 + 4 + ) = 00 = 300... UKUPNO 4 BODA. 96 8 : 4 + 0 ( 68 66 ) = 96 7 + 0 = 89 + 0 = 09...

Διαβάστε περισσότερα

DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU

DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU Izrada: Dalila Ljevo Lektorisala: Ivana Mostarac Tehnička obrada: Edin Tabak Sadržaj CIJELI BROJEVI...4 Svojstva zbrajanja

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

I. OLIMPIJADA 1. Zadaci. ne može skratiti ni za koji prirodan broj. 1. Dokazati da se razlomak 21n n + 3 n.

I. OLIMPIJADA 1. Zadaci. ne može skratiti ni za koji prirodan broj. 1. Dokazati da se razlomak 21n n + 3 n. I. OLIMPIJADA 1 I. Prva MMO održana je 1959. g. u Rumunjskoj. Pored zemlje domaćina sudjelovale su još Bugarska, Čehoslovačka, DR Njemačka, Ma - darska, Poljska i SSSR. 1. Dokazati da se razlomak 21n +

Διαβάστε περισσότερα

1. Trigonometrijske funkcije realnog broja

1. Trigonometrijske funkcije realnog broja 1. Trigonometrijske funkcije realnog broja 1. Brojevna kružnica... 1 7.Adicijskeformule.... Definicija trigonometrijskih funkcija....... 8. Još neki identiteti.......... 9. Trigonometrijske funkcije kutova........

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα