Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period."

Transcript

1 Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period. Hvala na razumijevanju i strpljivosti. PRAVAC I KRUŽNICA DODATNI ZADACI (ne ispitni) - PRAVAC VEKTORI PRIMJENA TRIGONOMETRIJE

2 FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi pravca ili njenom implicitnom obliku A = 0

3 nagib pravca ili koeficijent smjera Uvrstimo k=0 u eksplicitnu jednadžbu pravca jednadžbu pravca paralelnu s osi apcise x dobivamo - Kada je u općoj jednadžbi pravca ili njenom implicitnom obliku B = 0 Segmentni oblik jednadžbe pravca Kriterij paralelnosti dva pravca i k 1 = k ili

4 A B 1 1 A B Kriterij okomitosti dva pravca i Kut između dva pravca i : Jednadžba pravca kada je zadana točka A (x 1, y 1 )-kojom prolazi i koeficijent smjera k Jednadžba pravca kada su zadane dvije točke A (x 1, y 1 ) i B (x, y )

5 Udaljenost točke T (X 0, Y 0 ) od pravca 0 0 B A C B y A x d Simetrala kuta α - udaljenost točke od pravca - SVAKA TOČKA simetrale jednako je udaljena od pravaca: Formule koje se koriste za kružnicu nalaze se u zadacima B A C y B x A B A C y B x A

6 Nastavna cjelina: PRAVAC I KRUŽNICA 1. Kolika je udaljenost pravca od ishodište koordinatnog sustava? f x = 3 x d

7 Udaljenost pravca od ishodište koordinatnog sustava O (0, 0):. Na pravcu odredi točku koja je jednako udaljena od točaka A (-1, 0) i B (5, ) T AT = BT B f x = x+3 A A (-1, 0) B (5, )

8 Točka T leži na pravcu, koordinate tražene točke su: x, A (-1, 0) B (5, )

9 3. Točka T (-4, 5) vrh je kvadrata kojem je dijagonala na pravcu Odredi duljinu stranice kvadrata. Jedan od načina rada 1. 8 T Y x = 7 x Naći udaljenost zadana točka T (-4, 5) od gore napisanog pravca

10 8 T d =? Y x = 7 x Duljina dijagonale: 4. Duljina stranice:

11 8 D T 6 4 C a B Y x = 7 x Kako dobiti točke računskim putem (može na dva načina)? B (-1, 1) -8 C (3, 4) D (0, 8) 4. Točka A (1, 3) jedan je vrh trokuta ABC, pravci i dvije su njegove težišnice. Odredi koordinate vrhova B i C trokuta. A (1, 3)

12 8 6 f x = 1 x+ 1 4 A g x = 1 T =? B =? C =? Odrediti točku T-sjecište dviju težišnica. T (1, 1). Odrediti polovište P stranice iz uvjeta P (1, 0)

13 8 6 f x = 1 x+ 1 4 A g x = 1 AT : TP = T (1, 1) P (1,0) - -4 B =? C =? -6-8 ujedno vrijedi: jer točka C leži na pravcu-težišnici 3. Točka B pripada težišnici pravca 4. Odredite iz gore postavljenog sustava jednadžbi

14 8 6 f x = 1 x+ 1 4 A g x = 1 T (1, 1) C B - -4 P (1,0) B ( -3, -1) C (5, 1) -6-8 B (-3, -1) C (5, 1) 8 6 f x = 1 x+ 1 4 A g x = 1 T (1, 1) C B - -4 P (1,0) B ( -3, -1) C (5, 1) -6-8

15 5. Nađite kut između pravaca i Za izračunavanje kuta između dva pravca postoji još jedna formula uz nama opće znanu formulu u koju su uključeni slučajevi kada su pravci paralelni s jednom ili obje koordinatne osi: Kut između pravaca možemo izračunati kao kut između njihovih vektora smjerova vektor smjera f y = g x = -1 x A = 1 B = 0 C = 3

16 A = 1 B = C = - 3

17 6. Koliki kut zatvaraju pravci,? 8 f y = g x = -3 x vektor smjera A = 1 B = 0 C = 3

18 A = 3 B = C = 0

19 7. Koliki kut zatvaraju pravci? 8 f y = g x = - 3 x vektor smjera vektor smjera

20 vektor smjera

21 8. Odredi kut između pravca 8 6 f x = 5 x-8 g x = -3 x Upute: Koristiti opće poznatu formulu za šiljasti kut između dva pravca: k k tg 1 1 k k 1

22 k k tg 1 1 k k 1

23 9. Odredi unutarnje kutove trokuta kojem stranice leže na pravcima, 8 g x = 3 x+11 f x = x+4 6 h x = -1 x Samostalno! 10. Nađi jednadžbu kružnice opisane trokutu ABC ako je A (-1, 5), B(6, 4) i C (7, 1). 8 A 6 4 B C

24 Jednadžba kružnice sa središtem u točki S (p, q) i polumjerom r: A (-1, 5) (1) B (6, 4) C (7, 1) () (3) Samostalno riješite sustav jednadžbi s tri nepoznanice-dobiti će te p, q i r.

25 11. Napiši jednadžbu kružnice koja dira pravac x 8 = 0 i y 3 = 0, a središte joj je na osi ordinata. 8 6 f y = 8 g x = Pošto je središte kružnice na osi ordinate i kružnicu dira pravac x 8 = 0 zaključujemo da je polumjer kružnice r = 8. r= 8 Zašto iz uvjeta da pravac x 8 = 0 dira kružnicu zaključujemo koliki je polumjer, a ne iz uvjeta da pravac y 3 = 0 dira kružnicu? Drugi pravac paralelan je s osi x, a središte kružnice je na osi ordinata. Da bi kružnica dodirivala oba pravca gdje se nalazi središte u kojoj točki (pogledajmo graf i zaključimo)? središte kružnice na osi ordinate: S (0, q)

26 Uvjet dodira pravca i kružnice: Pravac polumjerom dodiruje kružnicu sa središtem u točki S (p, q) i onda i samo onda ako vrijedi: y 3 = 0 y = 3 k = 0 l = 3 S (0, - 5) S (0, 11) I

27 g x = S S 1. Kružnica prolazi točkom T (1, 0) i dira pravce i. Kako glasi jednadžba kružnice? f x = - x g x = - x T

28 Na koliko načina možemo riješiti ovaj zadatak? Za rješavanje ovog zadatka poslužimo se dole jednadžbama i knjigom za drugi način st. 81, 8, 83? Kružnica prolazi točkom T (1, 0) (1) Uvjet dodira pravca i kružnice: Uočavamo da su zadani pravci koji dodiruju kružnicu paralelni: k = - l = -..() k = - l= 18 (3)

29 Riješiti sustav tri jednadžbi s tri nepoznanice p = 5 q = - r = S (5, -) p = i q = r = S (, ) f x = - x S g x = - x T - S i

30 13. Točkom T (7, -) kružnice položena je tangenta na kružnicu. Kako glasi jednadžba tangente? 1. Grupirati članove uz pojedine nepoznanice:. Svaku zagradu nadopunjavamo do potpunog kvadrata i sredimo:..jednadžba kružnice r = p = 4 q = 1 S (4, 1) Točkom T (7, -) kružnice položena je tangenta i okomita je na pravac ST

31 3. Napisati jednadžbu pravca kroz dvije točke S (4, 1) i T (7, -) S (x 1, y 1 ) T (x, y ) k = -1..koeficijent smjera pravca ST 4. Točkom T (7, -) kružnice položena je tangenta i okomita je na pravac ST uvijet okomitosti dva pravca i..koeficijent smjera tangente 5. Napisati jednadžbu pravca točkom T (7, -) s gore napisanim koeficjentom..jednadžba tangente

32 8 6 f x = x-9 4 S t T

33 Zadaci za vježbu - nisu ispitni FORMULE EKSPLICITNI I IMPLICITNI OBLIK JEDNADŽBE PRAVCA SEGMENTNI OBLIK JEDNADŽBE PRAVCA KUT DVAJU PRAVCA PARALELNOST I OKOMITOST PRAVCA UDALJENOST TOČKE OD PRAVCA SIMETRALA KUTA

34 1. Jednadžbe pravaca zadane su u implicitnom obliku odredite koeficijente: a) x + 3y + 4 = 0 b) x y + 4 = 0 A = 1 A = 1 B = 3 B = - C = 4 C = 4 c) x +6y - 4 = 0 d) 3x + y = 0 A = - A = 3 B = 6 B = 1 C = -4 C = 0 e) x - 3 = 0 f) y + 7 = 0 A = 1 A = 0 B = 0 B = C = - 3 C = 7. Jednadžba pravaca zadana je u implicitnom obliku odredite nagib pravca i odsječak na osi y: 4x 3y + 6 = 0 A = 4 B = - 3 C = 6

35 Nagib pravca ili koeficijent smjera: Odsječak na osi y:. Jednadžbu pravca danu u implicitnom obliku prevedi u eksplicitni oblik te odredi nagib pravca i odsječak na osi y: 1) x + y 6 = 0

36 Nagib pravca ili koeficijent smjera: Odsječak na osi y: 5) 3x + 5y = 0 Nagib pravca ili koeficijent smjera: Odsječak na osi y: Zaključak: Pravac ne siječe os y, prolazi kroz ishodište koordinatnog sustava (drugi i četvrti kvadrant).

37 3. Jednadžba pravaca zadana je u implicitnom obliku odredite nagib pravca, odsječak na osi y i nultočku (točku na osi x kroz koju prolazi pravac): 3x - 4y + 1 = 0 I način: A = 3 B = -4 C = 1 Nagib pravca ili koeficijent smjera: Odsječak na osi y: Nultočka (točku na osi x kroz koju prolazi pravac): 3x - 4y + 1 = 0 3x + 1 = 4y / : 4

38 za y = 0 4. Jednadžba pravaca dana je u implicitnom obliku. Prevedi je u segmentni oblik. Nacrtaj potom pravce. 3) 4x 3y 1 = 0

39 8 4 x - 3 y -1 = 0 y = 4 3 x y x = 4 3 x m = 3 - n = x m + y n = 1 segmentni oblik jednadžbe pravca x 3 + y - 4 = 1-8 5) x + y + 5 = 0

40 8 y x = -x-5 6 x + y + 5 = 0 y = - x m = x n = - 5 m + y n = 1 segmentni oblik jednadžbe pravca x y - 5 = Jednadžbu pravaca prevedi iz eksplicitnog u segmentni oblik i nacrtaj pravac. )

41 8 y x = -x-5 6 x + y + 5 = 0 y = - x m = x n = - 5 m + y n = 1 segmentni oblik jednadžbe pravca x y - 5 = Jednadžbu pravaca prevedi iz eksplicitnog u segmentni oblik i nacrtaj pravac. )

42 8 6 y x = x m = n = x m + y n = 1 segmentni oblik jednadžbe pravca x + y - 4 = )

43 8 y x = -1 x+ 6 4 n = x m + y = 1 segmentni oblik jednadžbe pravca n x 4 + y = m = Ucrtaj u koordinatnoj ravnini točke A i B, odredi nagib pravca AB i kut što ga taj pravac zatvara s pozitivnim smjerom osi x, ako je: 1) A (-3, 3), B (5, 7) Nagib pravca ili koeficijent smjera kada su zadane dvije točke A (x 1, y 1 ) i B (x, y ):

44 1. Uvrštavamo koordinate zdanih točaka A (-3, 3), B (5, 7) u. Nagib pravca k: POZITIVAN broj RASTUĆI pravac.

45 5) A (-3, ), B (-1, 1) 1. Uvrštavamo koordinate zdanih točaka A (-3, ), B (-1, -1) u. Nagib pravca k: NEGATIVAN broj PADAJUĆI pravac.

46 5) A (, 5), B (, - 1)

47 1. Uvrštavamo koordinate zdanih točaka A (, 5), B (, -1) u.

48 Nastavna cjelina: VEKTORI - VEKTORI 1. Dan je paralelogram ABCD. Točka S je sjecište dijagonala. Izrazi vektore kao linearnu kombinaciju vektora. ( 5 bodova) D a S b C A B (1) (1) (1) ()

49 . Zadan je paralelogram ABCD, točka S je sjecište njegovih dijagonala, a točke M i N su polovište stranica Pomoću vektora prikaži vektore. ( 5 bodova) D m S n N C A M B ) 3 Prikaži vektor kao linearnu kombinaciju vektora i. ne može krivo prepisan zadatak 4. Vektor prikaži kao linearnu kombinaciju vektora i ( boda)

50 5. Vektor prikaži kao linearnu kombinaciju vektora i. Kliko iznosi X i Y da dobijemo vektor? X = -3 Y = 6. Dan je pravilni šesterokut ABCDEF. Točka S je njegovo središte. Izrazi vektore ( 5 bodova)

51 7. Dan je pravilni šesterokut ABCDEF. Ako je, izrazi pomoću i vektora ( 5 bodova) E D F S C b A a B 8. Odredi tako da vektori i budu kolinearni. ( boda)

52 9. Odredi vektor kolinearan s, ako je, Početak vektora i vektora su u ishodištu koordinatnog sustava. Kolinearni vektori imaju isti smjer. (1)

53

54 ili b = - 6 i + 3 j a = - i + j b = 6 i - 3 j

55 10. Nađi kut između vektora i. ( 4 boda) 11. Koliki kut zatvaraju vektori i, ako je i.

56

57 1. Koliki kut zatvaraju vektori i, ako je i.

58 13. Izračunaj duljinu vektora ako je i ( a, b) 45. Skalarni umnožak

59 14. Odredi najveći kut trokuta ABC ako je A (-7, -7), B (, -9) i C (5, -1) A (-7, -7) B (,-9) C (5, -1) - -4 C A -6-8 ABC =? B

60 15. Za koje su vrednoti realnog parametra m vektori okomiti. Uvjet okomitosti:

61 16. Odredi vektor okomit na vektor i duljine 4. Početak vektora i vektora su u ishodištu koordinatnog sustava. Uvjet okomitosti:

62

63 8 6 b = 4 i + 8 j 4 a = - i + 8 j b = - 4 i - 8 j Težište T trokuta leži na osi ordinata. Dva su vrha točke B (1, -) i C (, 5), a treći je vrh na osi apscisa. Odredi koordinate točaka A i T. A ( T (0, A (-3, 0)

64 T (0, 1) 18. Zadane su točke A (-3, 5), B (6, 7), C (1, -5). Odredi jedinične vektore u smjeru vektora,,. Nađite koordinatu x točke T (x, 0) tako da vektori i budu okomiti. Upute za rad: Općenito jedinični vektor u smjeru vektora označavamo sa Da bi vektor bio jedinični mora zadovoljavati: Izračunati jedinični vektor u smjeru vektora formulama: po gore napisanim

65 Izračunati jedinični vektor u smjeru vektora formulama: po gore napisanim Izračunati jedinični vektor u smjeru vektora formulama: po gore napisanim Točki T (x, 0) treba naći koordinatu x Uvjet okomitosti:

66 Riješite kvadratnu jednadžbu: 19. Ako su A (-, 0), B (1, -3) i C (, 4) vrhovi trokuta izračunajte opseg trokuta C A B -6-8

67 0. Početak vektora je u točki (-3, 1), odredi polovište vektora B (-6, ) P A (-3, 1) Polovište vektora A (-3, 1) B (-6, )

68

69 Nastavna cjelina: PRIMJENA TRIGONOMETRIJE 1. U trokutu ABC je a = 5 cm, b = 7 cm,. Kolika je duljina treće stranice trokuta? R:. Duljine stranica trokuta jednake su. Koliki je najveći kut toga trokuta? R: 3. Duljine stranica trokuta su : 4 : 5. Koliki je najveći kut trokuta? R: 4. Ako je a : b = 3 : 5, b : c = 9 : 11, gdje su a, b i c duljine stranica trokuta, odredi kutove trokuta. R: 5. Veličine kutova trokuta su u omjeru : 3 :4. U kojem su omjeru duljine stranica trokuta? R: 6. Veličine kutova u trokuta u omjeru su : 3 : 5. Ako je duljina najkraće stranice 13 cm, kolika je duljina najdulje? R:

70 7. Koliki su kutovi pravokutnog trokuta ABC, ako je, gdje su a i b duljine kateta a v duljina visine na hipotenuzu? R: 7. Duljine visina trokutu u omjeru su 4 : 5 : 6. Koliki su kutovi trokuta? R: 8. Koliki kut zatvaraju visine povučene iz vrhova A i C trokuta ako su duljine stranica trokuta u omjeru a : b : c = 4 : 5 :7? R: 9. Zbroj duljina dviju stranica trokuta jednaka je 10 cm, a nasuprot tim stranicama nalaze se kutovi od i. Odredi duljinu stranice što je nasuprot trećeg kuta trokuta. R: 10. Kolika je duljina simetrale pravog kuta pravokutnog trokuta, u kojem je jedan kut a duljina hipotenuze 0 cm? R:

71 11. Opseg trokuta jednak je cm, veličine njegovih kutova u omjeru su : 3 : 4. Kolike su duljine stranica ovog trokuta? R: 11. Duljina stranica trokuta u omjeru su 4 : 5 : 8 duljina promjera trokuta opisane kružnice jednaka je 9 cm. Kolika je površina ovog trokuta? R: 1. Površina trokuta jednaka je 148 cm, veličina kutova iznose odnosno Kolika je duljina najkraće stranice sličnog trokuta površina R: 13. Polumjer r kružnice upisane trokuta ABC jednak je.5 cm. Ako je, kolika je površina ovog trokuta? R: 14. Duljina dijagonala paralelograma iznose cm i 38 cm, a zatvaraju kut od dijagonale. Kolika je površina paralelograma? R:

72 15. Duljine su stranice paralelograma jednake 11 cm i 6 cm, a tupi kut iznosi. Kolike su duljine dijagonala ovog paralelograma? R: 16. Izračunaj duljine dijagonala paralelograma, ako su duljine njegovih stranica jednake 4.3 cm i 67.8 cm, a šiljasti kut paralelograma iznosi. R: 17.Duljine stranica paralelograma iznose 1.5 cm i 7 cm, duljina kraće dijagonale jednaka je 8 cm. Koliki je kut između dijagonala paralelograma? R: 18. Duljine stranica pravokutnika ABCD iznose 11, odnosno 5 cm. Točka M polovište je stranice, a točka N stranice. Koliki je kut R: 19. Točka M polovište je stranice, kvadrata ABCD, a točka N je na stranici takva da je Ako je duljina stranice kvadrata jednaka a, koliki je kut R:

73 0. Točka M i N nalaze se na stranicama i kvadrata ABCD, te je je. Koliki je kut R: 1. Ako su duljine stranica trapeza kolike su duljine dijagonala trapeza? R:. Duljine osnovica trapeza iznose 11 cm i 5 cm, šiljasti su kutovi Izračunaj površinu trapeza. R: 3. Osnovica trapeza duga je 13 cm, duljine dijagonala jednake su 8 cm i 11 cm. Ako je kut među njima kolika je površina trapeza? R: 4. Dijagonala jednakokračnog trapeza duga je 5 cm i dijeli njegov tupi kut na dijelove od. Kolike su duljine stranica trapeza? R:

74 5. Veličina kuta što ga zatvaraju dijagonale jednakokračnog trapeza iznosi duljine osnovice trapeza su 11 cm i 14 cm. Kolika je duljina kraka ovog trapeza? R: 6. Jednakokrčnom trapezu duljine osnovica može se upisati kružnica. Kolika je duljina dijagonale tog trapeza? R: 7. Kružnici polumjera R upisan je trapez. Njegova dijagonala s kracima trapeza zatvara kutove. Koliki je opseg ovog trapeza? 8. Duljine dviju stranica deltoida iznose 8 cm i 5 cm, a duljina veće dijagonale je 10 cm. Koliki su kutovi deltoida? R: 9. Površina pravilnog šesterokuta ABCDEF jednaka je preko vrha B, zatim Ako stranice tog šesterokuta produžimo redom, preko vrha C, itd za dužinu duljina 1 cm, dobit ćemo šest točka koje su vrhovi novog šesterokuta. Kolika je njegova površina? R:

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)

ISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule) FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

6 Primjena trigonometrije u planimetriji

6 Primjena trigonometrije u planimetriji 6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:

Zdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih: Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

0 = 5x 20 => 5x = 20 / : 5 => x = 4.

0 = 5x 20 => 5x = 20 / : 5 => x = 4. Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine

Διαβάστε περισσότερα

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

MATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =

2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P = Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo

Διαβάστε περισσότερα

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0

2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0 17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi

Διαβάστε περισσότερα

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.

RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA. Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.

Διαβάστε περισσότερα

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.

2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku. . Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.

Διαβάστε περισσότερα

Analitička geometrija Zadaci. 13. siječnja 2014.

Analitička geometrija Zadaci. 13. siječnja 2014. Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y . ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

4 Sukladnost i sličnost trokuta

4 Sukladnost i sličnost trokuta 4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }

Διαβάστε περισσότερα

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio

MATEMATIKA I 1.kolokvij zadaci za vježbu I dio MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi

Διαβάστε περισσότερα

Analitička geometrija u ravnini

Analitička geometrija u ravnini Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**

Διαβάστε περισσότερα

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole

Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................

Διαβάστε περισσότερα

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1

Ispit održan dana i tačka A ( 3,3, 4 ) x x + 1 Ispit održan dana 9 0 009 Naći sve vrijednosti korjena 4 z ako je ( ) 8 y+ z Data je prava a : = = kroz tačku A i okomita je na pravu a z = + i i tačka A (,, 4 ) Naći jednačinu prave b koja prolazi ( +

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) x y

( ) ( ) ( ) ( ) x y Zadatak 4 (Vlado, srednja škola) Poprečni presjek rakete je u obliku elipse kojoj je velika os 4.8 m, a mala 4. m. U nju treba staviti meteorološki satelit koji je u presjeku pravokutnog oblika. Koliko

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

NASTAVNI PREDMET: MATEMATIKA 3

NASTAVNI PREDMET: MATEMATIKA 3 GIMNZIJ I STRUKOVN ŠKOL JURJ DORILE PZIN NSTVNI PREDMET: MTEMTIK nalitiča geometrija u ravnini. GORTN ROERT..00 Nastavno pismo NSTVNO PISMO - MTEMTIK TEHNIČR Z ELEKTROTEHNIKU TLI SDRŽJ. NLITIČK GEOMETRIJ

Διαβάστε περισσότερα

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.

1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C. Geometrija 1. dio. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi

Διαβάστε περισσότερα

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE

PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE PRIMJERI ZADATAKA ZA TEST IZ MATEMATIKE . 0.: 0.0 0. 0.0 je: 5000 0.0 5 0.00. Izračunajte 0.% od : 0. 4 0. 0.0 0.00 0.. Skratite razlomak a a a 4a + 4 + a a a a a a 0.77 4. Rješenje jednadžbe =. 5 je -

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Geometrijski trikovi i metode bez imena

Geometrijski trikovi i metode bez imena Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Priprema za ispit znanja Vektori

Priprema za ispit znanja Vektori Priprema za ispit znanja Vektori 1. Dan je pravilni šesterokut ABCDEF. Ako je =, = izrazi pomoću vektore,,. + + =0 = E D = + F S C + + =0 = = A B + + =0 = = =+ 2. Točke A, B, C, D, E i F vrhovi su pravilnog

Διαβάστε περισσότερα

ALFA List - 1. Festival matematike "Split 2013." Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013.

ALFA List - 1. Festival matematike Split 2013. Otvoreno ekipno natjecanje učenika osnovnih i srednjih škola Split, 10. svibnja 2013. ALFA List - 1 Točan odgovor: 10 bodova Pogrešan odgovor: 5 bodova Bez odgovora: 0 bodova 1. Ako je (x+ 3): 4=( x ):3, onda je x jednako: A) 1 B) 1 C) 17 D) 17 E) 6. Kut od 1º30' gleda se kroz povećalo

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

Analitička geometrija prostora

Analitička geometrija prostora Analitička geometrija prostora Franka Miriam Brückler U analitičkog geometriji u ravnini se pomoću koordinata (uredenih parova realnih brojeva) proučavaju točke ravnine i njihovi jednodimenzionalni skupovi:

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

2. KOLOKVIJ IZ MATEMATIKE 1

2. KOLOKVIJ IZ MATEMATIKE 1 2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.

Διαβάστε περισσότερα

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y)

AB rab xi y j. Formule. rt OT xi y j. xi y j. a x1 i y1 j i b x2 i y 2 j. Jedinični vektor vektora O T točke T(x,y) Formule Jedinični vektor vektora O T točke T(x,y) r xi y j r T0 T rt x y 1 x y xi y j Radijvektor u koordinatnoj ravnini koji pripada točki T(x,y) rt OT xi y j Vektor AB ako su: AB rab ( x x1 )i ( y y1

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE

OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE OPĆINSKO/ŠKOLSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 9. siječnja 009. 1. Riješi nejednadžbu x + x Rješenje. 1 u skupu prirodnih brojeva. x + x 1 x + x + 0 x x < 0 x

Διαβάστε περισσότερα

Repetitorij matematike zadaci za maturu 2008.

Repetitorij matematike zadaci za maturu 2008. Repetitorij matematike zadaci za maturu 008 Izračunaj : 7 : 5 + : = 5 5 8 Izračunaj : a ( 05 y ) = y b 8 n 7 9 n+ n n Rastavi na faktore : 5 a + a 8a 6= Skrati razlomke : a ( ) + + a b a b a + a b+ ab

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske

Algebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.

Διαβάστε περισσότερα

1. Trigonometrijske funkcije

1. Trigonometrijske funkcije . Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni

Διαβάστε περισσότερα

Elementarni zadaci iz Euklidske geometrije II

Elementarni zadaci iz Euklidske geometrije II Elementarni zadaci iz Euklidske geometrije II Sličnost trouglova 1. Neka su dati krugovi k 1 (O 1, r 1 ), k 2 (O 2, r 2 ) i k 3 (O 3, r 3 ) takvi da k 1 dodiruje krug k 2 u tački P, k 2 dodiruje krug k

Διαβάστε περισσότερα

Analitička geometrija i linearna algebra

Analitička geometrija i linearna algebra 1. VEKTORI POJAM VEKTORA Svakodnevno se susrećemo s veličinama za čije je određivanje potrean samo jedan roj. Na primjer udaljenost, površina, volumen,. Njih zovemo skalarnim veličinama. Međutim, postoje

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Planimetrija. Sličnost trouglova. GF 000 Dužine stranica trougla su 5cm, cm i 8cm. Dužina najduže stranice njemu sličnog

Διαβάστε περισσότερα

Rijeseni neki zadaci iz poglavlja 4.5

Rijeseni neki zadaci iz poglavlja 4.5 Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz

Διαβάστε περισσότερα

Prostorni spojeni sistemi

Prostorni spojeni sistemi Prostorni spojeni sistemi K. F. (poopćeni) pomaci i stupnjevi slobode tijela u prostoru: 1. pomak po pravcu (translacija): dva kuta kojima je odreden orijentirani pravac (os) i orijentirana duljina pomaka

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.

Kut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta. UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

Skalarni umnozak vektora je skalar: a b = a b cos ϕ ; ϕ kut izmedju vektor a i b.

Skalarni umnozak vektora je skalar: a b = a b cos ϕ ; ϕ kut izmedju vektor a i b. 5. VEKTORI U PROSTORU 5. Opcenito o vektorima a Jedinicni vektor (ort) je vektor sa intenzitetom. a a a Zbroj dva vektora je vektor: a+ b c. Graficki, zbroj se dobije ulancavanjem dva vektora. Na kraj

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

Analitička geometrija afinog prostora

Analitička geometrija afinog prostora Analitička geometrija afinog prostora Linearno zavisan i linearno nezavisan skup točaka U realnom afinom prostoru A n dane točke A i (r i ), i =,,, k, k +, k + pripadaju istoj s ravnini π s, s k, ako i

Διαβάστε περισσότερα

Konstruktivni zadaci. Uvod

Konstruktivni zadaci. Uvod Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,

Διαβάστε περισσότερα

2 Mature i državni ispiti iz matematike u europskim zemljama ( a) 4,zaa = 2 i. 27b. b = 3. 2 x sin. 2 +x. 1. Mature u Sloveniji

2 Mature i državni ispiti iz matematike u europskim zemljama ( a) 4,zaa = 2 i. 27b. b = 3. 2 x sin. 2 +x. 1. Mature u Sloveniji Ljetni rok, 995. godine Osnovna razina Zadatak. Ako od broja b oduzmemo dvokratnik broja a, dobije se 2. Ako se peterokratnik broja a umanji za (b + ), dobije se 6. Izračunajte brojeve a i b. Rješenje:

Διαβάστε περισσότερα

Temeljni pojmovi trigonometrije i vektorskog računa

Temeljni pojmovi trigonometrije i vektorskog računa 1 Temeljni pojmovi trigonometrije i vektorskog računa 1. Trigonometrijske funkcije Trigonometrijske funkcije su omjeri stranica u pravokutnom trokutu. Mjerenjem je utvrdeno - da medusobni - omjeri stranica

Διαβάστε περισσότερα

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010.

ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 2010. ŽUPANIJSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 15. ožujka 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I OCIJENITI

Διαβάστε περισσότερα

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010.

ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 2010. ŠKOLSKO/GRADSKO NATJECANJE IZ MATEMATIKE 1. razred srednja škola B kategorija 4. veljače 010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI I

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

Matematika 1. kolokviji. Sadržaj

Matematika 1. kolokviji. Sadržaj Matematika kolokviji Sadržaj. kolokvij, 2..2004.............................................. 2. kolokvij, 2..2004.............................................. 3 2. kolokvij, 7.2.2004..............................................

Διαβάστε περισσότερα

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.

mogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja. r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira

Διαβάστε περισσότερα

Udaljenosti karakterističnih točaka trokuta

Udaljenosti karakterističnih točaka trokuta Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice

Διαβάστε περισσότερα

DRŽAVNO NATJECANJE IZ MATEMATIKE

DRŽAVNO NATJECANJE IZ MATEMATIKE DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola B kategorija Pula, 30. ožujka 009. Zadatak B-.. (0 bodova) Tomislav i ja, reče Krešimir, možemo završiti posao za 0 dana. No, ako bih radio s Ivanom

Διαβάστε περισσότερα

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad

Sveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet

Διαβάστε περισσότερα

II. ANALITIČKA GEOMETRIJA PROSTORA

II. ANALITIČKA GEOMETRIJA PROSTORA II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim

Διαβάστε περισσότερα

Aksiome podudarnosti

Aksiome podudarnosti Aksiome podudarnosti Postoji pet aksioma podudarnosti (tri aksiome podudarnosti za duži + dvije aksiome podudarnosti za uglove) III 1 Za svaku polupravu a sa početnom tačkom A i za svaku duž AB, postoji

Διαβάστε περισσότερα

Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se:

Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u okolini tocke, i aplikate, tocke, : Uvede li se zamjena: i dobije se: 4. FUNKCIJE DVIJU ILI VISE PROMJENJIVIH 4. Ekstremi funkcija dviju promjenjivih z = f y ( y) ( y) z ( y) ( ) ( ) (, ) (, ) Funkcija (, ) ima ekstrem u tocki, ako je razlika izmedju bilo koje aplikate u

Διαβάστε περισσότερα

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK

OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika

Διαβάστε περισσότερα

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A :

PRAVAC. riješeni zadaci 1 od 8 1. Nađite parametarski i kanonski oblik jednadžbe pravca koji prolazi točkama. i kroz A : PRAVAC iješeni adaci od 8 Nađie aameaski i kanonski oblik jednadžbe aca koji olai očkama a) A ( ) B ( ) b) A ( ) B ( ) c) A ( ) B ( ) a) n a AB { } i ko A : j b) n a AB { 00 } ili { 00 } i ko A : j 0 0

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:

Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom: Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Racionalni algebarski izrazi

Racionalni algebarski izrazi . Skratimo razlomak Racionalni algebarski izrazi [MM.4-()6] 5 + 6 +. Ako je a + b + c = dokazati da je a + b + c = abc [MM.4-()] 5 6 5. Reši jednačinu: y y y + + = 7 4 y = [MM.4-(4)] 4. Reši jednačinu:

Διαβάστε περισσότερα

1. Trigonometrijske funkcije realnog broja

1. Trigonometrijske funkcije realnog broja 1. Trigonometrijske funkcije realnog broja 1. Brojevna kružnica... 1 7.Adicijskeformule.... Definicija trigonometrijskih funkcija....... 8. Još neki identiteti.......... 9. Trigonometrijske funkcije kutova........

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

5. PARCIJALNE DERIVACIJE

5. PARCIJALNE DERIVACIJE 5. PARCIJALNE DERIVACIJE 5.1. Izračunajte parcijalne derivacije sljedećih funkcija: (a) f (x y) = x 2 + y (b) f (x y) = xy + xy 2 (c) f (x y) = x 2 y + y 3 x x + y 2 (d) f (x y) = x cos x cos y (e) f (x

Διαβάστε περισσότερα

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu

Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu 5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi

Διαβάστε περισσότερα

2.7 Primjene odredenih integrala

2.7 Primjene odredenih integrala . INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

Pitanja za usmeni dio ispita iz matematike

Pitanja za usmeni dio ispita iz matematike PITANJA ZA MATURALNI ISPIT Pitanja za usmeni dio ispita iz matematike. Dokazati da je zbroj unutarnjih kutova u trokutu 80 0,a spoljnjih 60 0.. Dokazati da je spoljnji kut trokuta jednak zbroju dva nesusjedna

Διαβάστε περισσότερα

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.

INTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011. INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno

Διαβάστε περισσότερα

Temeljni pojmovi o trokutu

Temeljni pojmovi o trokutu 1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.

Διαβάστε περισσότερα

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.

M086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima. M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/

Διαβάστε περισσότερα

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O

je B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

Op cinsko natjecanje Osnovna ˇskola 4. razred

Op cinsko natjecanje Osnovna ˇskola 4. razred 9 1. Općinsko natjecanje Općinsko (gradsko) natjecanje je prvi stupanj natjecanja koji se organizira po jedinstvenim kriterijima Državnog povjerenstva za matematička natjecanja. Godine 1996. ono je održano

Διαβάστε περισσότερα

DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU

DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU Izrada: Dalila Ljevo Lektorisala: Ivana Mostarac Tehnička obrada: Edin Tabak Sadržaj CIJELI BROJEVI...4 Svojstva zbrajanja

Διαβάστε περισσότερα

Vektori. 28. studenoga 2017.

Vektori. 28. studenoga 2017. Vektori 28. studenoga 2017. 1 / 42 Skalarna veličina: veličina odredena samo jednim (realnim) brojem ili skalarom npr. skalarne veličine su udaljenost, masa, površina, volumen,... Vektorska veličina: veličina

Διαβάστε περισσότερα