Proširenje na poučku o obodnom i središnjem kutu
|
|
- Στυλιανός Τοκατλίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije povezuju kut izmedu sekanata iz te točke sa središnjim kutovima lukova koje te sekante odsijecaju na kružnici (slike u1, u). Dobivene relacije su primjenjene na nekoliko zadataka koji se ne rade na redovnoj nastavi. 1. Točka A je izvan kružnice k (slika u1), parovi točaka, u kojima pravci kroz A presjecaju kružnicu k, su {B, D} i {C, E}. Obodni kutovi iz točaka C i D nad tetivama DE i BC su ψ i ϕ, sada iz trokuta ACD dobivamo: α + ϕ = ψ α = ϕ ψ. (1) Dobivena relacija vrijedi u slučajevima kada je jedan od pravaca tangenta i kada su oba tangente (provjerite).. Točka A je unutar kružnice k (slika u), parovi točaka u kojima pravci kroz A presjecaju kružnicu k su {B, D} i {C, E}. Obodni kutovi iz točaka C i D nad tetivama DE i BC su ψ i ϕ, sada iz trokuta DBA dobivamo: α = ϕ+ψ.() 3. Napomena: U rješavanju zadataka označavat ćemo središnji kut pridružen nekom luku BC sa σbc, preciznije njegovu mjeru, i rješavanje će nam olakšati orijentacija tako da je smjer suprotan od kazaljke na satu pozitivan. Konkretno na slici 1 je CSB = σbc, što znači da mjerimo, od B do C, središnji kut luka BC. 1
2 . Zadaci Z1. Iz točke A koja je izvan kružnice k povučene su tangente i sekanta, B i C su dirališta, a D i E točke presjeka sekante s kružnicom k. Usporedno s DE povučena je tetiva BF kružnice k. Dokaži da F C raspolavlja DE. Rješenje: Točka presjeka od CF i HB je G i treba dokazati da je ona polovište od DE, nakon što nacrtamo sliku (slika z1) uočimo trokut BGF, ako je G polovište tada je to jednakokračan trokut. Točka G je unutar kružnice pa je AGC = σdc+σef, (1) a zbog paralelnosti, BF DE, je σdb = σef. Sada je AGC = σdc+σbd = σbc, (). Budući da je kut izmedu tangente AB i tetive BC jednak obodnom kutu, dobivamo ABC = BF C = σbc, (3). Sada je iz i 3 četverokut ABCG tetivan, iz čega slijedi: CAG = CBG = σhc, (4). Točka A je izvan kružnice, pa je: CAG = CAE = σec σcd = σeh+σhc σcd = σhc + σeh σcd, (5). Sada je iz 4 i 5 σeh = kroztočkeoiuσcd, dakle pravci BF, DE i CH su paralelni, ili σf E + σeh = σcd + σdb, pa je σf H = σcb, polovice ovih kutova su obodni kutovi u točkama F i B, tj. HBF = CF B, trokut BGF je jednakokračan. Z. (Teorem o leptiru) Danoj kružnici k povučena je tetiva AB i na njoj je istaknuto polovište P. Kroz P povučemo još dvije tetive CD i EF, neka su C i E na istom luku s obziron na tetivu AB. Označimo s G i H točke u kojima CF i ED presjecaju AB. Dokaži da je GP = P H. Rješenje: Povucimo kroz točku D paralelu s AB i označimo točku u kojoj ona presjeca kružnicu s I, s N označimo točku u kojoj simetrala od AB presjeca DI, ta simetrala prolazi središtem kružnice i točkom P, dobiveni trokut DP I je jednakokračan. (Slika z) Zbog jednakokračnosti trokuta DPI vrijedi DP A = IP B, (1). P je unutar kružnice pa vrijedi DP A = σad+σbc, takoder je σad = σib iz ovoga se dobije DP A = σib+σbc = σic, (). Sada iz 1 i slijedi IP B = σic i CF I = σci, zbrojimo ih IP B + CF I = σic + σci = 180, dakle PHFI je tetivan. Obodni kutovi nad tetivom EC i kolinkroz točke O i U earnost točaka {E, P, F }, {F, H, C}, {E, G, D} i{d, P, C} daju jednakosti GDP = EDC = EF C = P F H = P IH, tj. GDP = P IH, (3). Jednakokračnost trokuta DIP daje DP = P I, (4). Iz 1 i kolinearnosti je DP G = IP H, (5). Sada su zbog 3, 4, 5 trokuti GDP i HIP sukladni, dakle GP = P H.
3 Z3. Trokutu ABC opisana je kružnica k, iz neke točke P kružnice k na stranice trokuta povučene su okomice. Nožišta okomica leže na jednom pravcu (Simsonov pravac). Rješenje: Označimo (Slika z3) nožišta na BC, CA i AB s X, Y i Z. PZAY je tetivan, tada je P Y Z = P AZ, (1) PXCY je tetivan, tada je P Y X = P CB, () PACB je tetivan, tada je P AZ = P CB, (3) Iz 1, i 3 slijedi P Y Z = P Y X, dakle točke X, Y i Z su kolinearne. Z4. Dvije točke, P i Q, s kružnice opisane trokutu ABC odreduju dva Simsonova pravca, kut izmedu ta dva pravca jednak je polovici središnjeg kuta od luka PQ. Rješenje: Nacrtamo (Slika z4) prvo oba Simsonova pravca {X, Y, Z} i {U, V, W }, s obzirom na točku P imamo tetivan četverokut PBXZ iz kojega je ZXP = ZBP, (1); i obodne kutove nad tetivom AP AMP = ABP, (). Iz 1 i dobivamo ZXP = AMP, iz čega proizlazi paralelnost pravaca XZ AM, (3). Analogno se preko točke Q dobiva W V AN, (4). Iz 3 i 4 slijedi XT V = MAN, (5). MAN = σmn, (6); i iz paralelnosti P M QN je σmn = σp Q, (7). Dakle iz 5, 6 i 7 dobivamo tvdrnju, tj XT W = σqp. Z5. Dva trokuta ABC i A B C upisana su zajedničkoj kružnici, i svaki od njih za neku točku kružnice odreduje Simsonov pravac. Dokaži da kut izmedu Simsonovih pravaca ne ovisi o točki s obzirom na koju su oni povučeni. Rješenje: Označimo kao i na slici z5 Simpsonove pravce sa s i s, budući da su oni okomiti na AB i A B, a M i M su njihovi presjeci s kružnicom, prema prethodnom zadatku je s MC i s M C, (1). Takoder je prema prethodnom zadatku (s, s ) = (MC, M C ) = σmm σcc, (). Trokuti PFD i EJD su pravokutni i P DF = EDJ P DF EDJ, sada je DP F = DEJ M P M = BEB, sjajno umjesto obodnog kuta M P M uvrstimo polovicu njegovog obodnog kuta tj. σmm = BEB, (3). Točka E je unutar kružnice pa je BEB = σbb +σa A σmm = σbb +σa A, (4). Sada je iz 4 i (s, s ) = σbb +σa A σcc. Dobiveni izraz ne ovisi o odabiru točke P. 3
4 Z6. Unutar trokuta ABC odabrana je točka P tako da je AP C = β+60, BP C = α+60 i AP B = γ+60. Točke presjeka pravaca AP, BP i CP s kružnicom opisanom trokutu ABC su D, E i F. Dokaži da je trokut DEF jednakostraničan. Rješenje: Dakle ako je tvrdnja točna vrijedi σef =10, točka P je unutar kružnice pa je σea+σbd = EP A = (180 AP B) = (180 (60 +γ)) =40 γ, tako se dobije i σaf + σdc =40 β. Ako zbrojimo dobivene jednakosti imamo višak od σbd + σdc = α, iz dobivenih veza slijedi σef =480 (α + β + γ) =10. Z7. (Eulerov teorem) Neka su O i U središta opisane i upisane kružnice trokutu ABC, R i r polumjeri opisane i upisane kružnice i neka je OU = d, tada je d = R Rr. Rješenje: Povucimo kroz U tetivu BM, iz potencije točke U na kružnicu slijedi BU UM = R d, tj. u kružnicu se uz tetivu BM povuče još jedna tetiva kroz točke O i U označimo ju V T, sada tvrdnja slijedi iz T V M BUV. C je unutar kružnice pa je CUM = σcm+σxb = γ+β, (1). Takoder je UCM = XCM = σma+σax, (). Dakle iz 1 i slijedi da je UCM jednakokračan, pa je UM = CM, tj. BU CM = R d, (3). BNU i Y CM su pravokutni i UBN = CY M, iz čega slijedi BUN Y CM BU Y C = UN CM Iz 3 i 4 slijedi tvrdnja. = β+γ BU CM = UN Y C = rr, (4). 4
5 Slika 1: u1 5
6 Slika : u. 6
7 Slika 3: z1 7
8 Slika 4: z 8
9 Slika 5: z3 9
10 Slika 6: z4 10
11 Slika 7: z5 11
12 Slika 8: z6 1
13 Slika 9: z7 13
14 Slika 10: zp7 14
Proširenje na poučku o obodnom i središnjem kutu
Proširenje na poučku o obodnom i središnjem kutu Ratko Višak 1. Uvod Na osnovu poučka o obodnom i središnjem kutu izvedene su relacije kada točka nije na kružnici, nego je izvan ili unutar nje. Relacije
Διαβάστε περισσότερα1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi ako je E=C. 1.1.**
Διαβάστε περισσότερα1.1.** Dokaži da tvrdnja vrijedi ako su točke E i D na produžecima dužina AC i BC kroz C.
Geometrija 1. dio. 1.1. U trokutu ABC na dužinama AC i BC odabrane su točke E i D. Simetrale kutova CAD i CBE sijeku se u točki F. Dokaži da vrijedi: AEB + ADB = 2 AF B. 1.1.* Dokaži da tvrdnja 1.1. vrijedi
Διαβάστε περισσότεραGeometrijski trikovi i metode bez imena
Geometrijski trikovi i metode bez imena Matija Bašić lipanj 2016. U ovom tekstu želimo na jednom mjestu navesti vrlo klasične ideje u rješavanju planimetrijskih zadataka. Primjeri variraju od jednostavnih
Διαβάστε περισσότεραUdaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik 1 U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
Διαβάστε περισσότεραUdaljenosti karakterističnih točaka trokuta
Udaljenosti karakterističnih točaka trokuta Kristijan Kilassa Kvaternik U trokutu postoje četiri karakteristične točke: težište G, ortocentar H, središte upisane kružnice I i središte opisane kružnice
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότερα1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Διαβάστε περισσότεραje B 1 = B 2. Prvi teorem kojeg ćemo dokazati primjenom Menelajeva teorema je Euklidski slučaj poznatog Desargesova 2 teorema. B 2 Z B 1B 2 B 1 O
Zoran Topić, Imotski Menelajev teorem i neke primjene U ovom članku ćemo dokazati Menelajev 1 teorem i pokazati neke primjene tog teorema. Menelajevo najvažnije djelo je Sphaerica u kojem dokazuje i Menelajev
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραRIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Διαβάστε περισσότεραJoš neki dokazi leptirovog teorema
POUČAK 50 Još neki dokazi leptirovog teorema Šefket Arslanagić, Alija Muminagić U [] su dana četiri razna dokaza Leptirovog teorema (Butterfly s theorems), od kojih su dva čisto planimetrijska, jedan je
Διαβάστε περισσότεραISPITNI ZADACI FORMULE. A, B i C koeficijenti (barem jedan A ili B različiti od nule)
FORMULE Implicitni oblik jednadžbe pravca A, B i C koeficijenti (barem jedan A ili B različiti od nule) Eksplicitni oblik jednadžbe pravca ili Pravci paralelni s koordinatnim osima - Kada je u općoj jednadžbi
Διαβάστε περισσότερα6 Primjena trigonometrije u planimetriji
6 Primjena trigonometrije u planimetriji 6.1 Trgonometrijske funkcije Funkcija sinus (f(x) = sin x; f : R [ 1, 1]); sin( x) = sin x; sin x = sin(x + kπ), k Z. 0.5 1-6 -4 - -0.5 4 6-1 Slika 3. Graf funkcije
Διαβάστε περισσότερα4 Sukladnost i sličnost trokuta
4 Sukladnost i sličnost trokuta 4.1 Sukladnost trokuta Neka su ABC i A B C trokuti sa stranicama duljina a b c odnosno a b c. Kažemo da su ti trokuti sukladni ako postoji bijekcija f : {A B C} {A B C }
Διαβάστε περισσότερα- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραTRIGONOMETRIJSKE FUNKCIJE I I.1.
TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg
Διαβάστε περισσότερα3. KRIVULJE DRUGOG REDA
3. KRIVULJE DRUGOG REDA U realnoj projektivnoj ravnini konike ili krivulje drugog reda definiraju se ovako: Definicija 3.1. Skup svih točaka projektivne ravnine čije koordinate zadovoljavaju algebarsku
Διαβάστε περισσότεραĈetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.
Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove
Διαβάστε περισσότεραMatematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
Διαβάστε περισσότεραmogućih vrijednosti rs3. Za m, n N, mn+1 m 2 +n 2 m2 + n 2 mn + 1 je kvadrat prirodnog broja.
r1. Neka je n fiksan prirodan broj. Neka je k bilo koji prirodan broj ne veći od n i neka je S skup nekih k različitih prostih brojeva. Ivica i Marica igraju naizmjenično sljedeću igru. Svako od njih bira
Διαβάστε περισσότεραViše dokaza jedne poznate trigonometrijske nejednakosti u trokutu
Osječki matematički list 000), 5 9 5 Više dokaza jedne poznate trigonometrijske nejednakosti u trokutu Šefket Arslanagić Alija Muminagić Sažetak. U radu se navodi nekoliko različitih dokaza jedne poznate
Διαβάστε περισσότεραa M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραSveučilište u Zagrebu. Prirodoslovno-matematički fakultet Matematički odsjek. Tonio Škaro. Diplomski rad
Sveučilište u Zagrebu Prirodoslovno-matematički fakultet Matematički odsjek Tonio Škaro Težišnice trokuta i težište Diplomski rad Zagreb, rujan, 015 Sveučilište u Zagrebu Prirodoslovno-matematički fakultet
Διαβάστε περισσότεραINTEGRALNI RAČUN. Teorije, metodike i povijest infinitezimalnih računa. Lucija Mijić 17. veljače 2011.
INTEGRALNI RAČUN Teorije, metodike i povijest infinitezimalnih računa Lucija Mijić lucija@ktf-split.hr 17. veljače 2011. Pogledajmo Predstavimo gornju sumu sa Dodamo još jedan Dobivamo pravokutnik sa Odnosno
Διαβάστε περισσότεραMate Vijuga: Rijeseni zadaci iz matematike za srednju skolu. odsjecak pravca na osi y
. ANALITICKA GEOMETRIJA. Pravac Imlicitni oblik jednadzbe pravca: a + by + c = 0 Opci oblik pravca: gdje je : y = k+ l k koeficijent smjera pravca, k = tan α l odsjecak pravca na osi y k > 0 pravac je
Διαβάστε περισσότερα1. Trigonometrijske funkcije
. Trigonometrijske funkcije . Trigonometrijske funkcije.. Ponovimo Brojevna kružnica Kružnicu k polumjera smjestimo u koordinatnu ravninu tako da joj je središte u ishodištu. Na kružnicu k prislonimo brojevni
Διαβάστε περισσότεραFunkcije dviju varjabli (zadaci za vježbu)
Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva
Διαβάστε περισσότεραTemeljni pojmovi o trokutu
1. Temeljni pojmovi o trokutu U ovom poglavlju upoznat ćemo osnovne elemente trokuta i odnose medu - njima. Zatim ćemo definirati težišnice, visine, srednjice, simetrale stranica i simetrale kutova trokuta.
Διαβάστε περισσότερα1. PROJICIRANJE Uvod
1. PROJICIRANJE 1.1. Uvod Nacrtna geometrija je znanost o egzaktnim metodama koje omogućuju prikazivanje prostornih, trodimenzionalnih objekata na nekoj dvodimenzionalnoj ravnini i rješavanje prostornih
Διαβάστε περισσότερα2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u 1.zadatku.
. Na brojevnoj kružnici označi točke: A (05π), A 2 ( 007π 2 ), A 3 ( 553π 3 ) i A 4 ( 40 o ). 2. Bez kalkulatora odredi vrijednosti trigonometrijskih funkcija za brojeve (kutove) iz točaka u.zadatku. 3.
Διαβάστε περισσότεραMatematika 1+ - skripta za dodatnu nastavu u 1. razredu srednje škole - Kristijan Kvaternik
Matematika + - skripta za dodatnu nastavu u. razredu srednje škole - Kristijan Kvaternik Sadržaj Obodni i središnji kut 2 Zadatci za vježbu............................ 8 2 Sukladnost i sličnost 9 Zadatci
Διαβάστε περισσότεραZdaci iz trigonometrije trokuta Izračunaj ostale elemente trokuta pomoću zadanih:
Zdaci iz trigonometrije trokuta... 1. Izračunaj ostale elemente trokuta pomoću zadanih: a) a = 1 cm, α = 66, β = 5 ; b) a = 7.3 cm, β =86, γ = 51 ; c) b = 13. cm, α =1 48`, β =13 4`; d) b = 44.5 cm, α
Διαβάστε περισσότεραMATEMATIKA I 1.kolokvij zadaci za vježbu I dio
MATEMATIKA I kolokvij zadaci za vježbu I dio Odredie c 0 i kosinuse kueva koje s koordinanim osima čini vekor c = a b ako je a = i + j, b = i + k Odredie koliki je volumen paralelepipeda, čiji se bridovi
Διαβάστε περισσότερα2. KOLOKVIJ IZ MATEMATIKE 1
2 cos(3 π 4 ) sin( + π 6 ). 2. Pomoću linearnih transformacija funkcije f nacrtajte graf funkcije g ako je, g() = 2f( + 3) +. 3. Odredite domenu funkcije te odredite f i njenu domenu. log 3 2 + 3 7, 4.
Διαβάστε περισσότερα2n 2, 2n, 2n + 2. a = 2n 2, b = 2n, c = 2n + 2. a b c. a P =
Zadatak (Tomislav gimnazija) Nađite sve pravokutne trokute čije su stranice tri uzastopna parna roja Rješenje inačica pća formula za parne rojeve je n n N udući da se parni rojevi povećavaju za možemo
Διαβάστε περισσότερα4. MONGEOVO PROJICIRANJE
4. MONGEOVO PROJICIRANJE 4.1. Projiciranje točke Niti centralno ni paralelno projiciranje točaka prostora na ravninu nije bijekcija. Stoga se pri takvim preslikavanjima suočavamo s problemom nejednoznačnog
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραPošto se trebaju napisati sve nastavne cjeline i gradivo sva četiri razreda (opće i jezično) potrajati će duži vremenski period.
Zadaci s rješenjima, a ujedno i s postupkom rada biti će nadopunjavani tokom čitave školske godine. Tako da će u slijedećem vremenskom periodu nastati mala zbirka koja će biti popraćena s teorijom. Pošto
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραRiješeni zadaci: Limes funkcije. Neprekidnost
Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za
Διαβάστε περισσότεραMATEMATIKA 1 8. domaća zadaća: RADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότερα( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Διαβάστε περισσότεραPismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
Διαβάστε περισσότεραDRŽAVNO NATJECANJE IZ MATEMATIKE 1. razred srednja škola A kategorija 30. ožujka 2009.
DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola A kategorija 30. ožujka 009. Zadatak A-.. Odredi sve trojke uzastopnih neparnih prirodnih brojeva čiji je zbroj kvadrata jednak nekom četveroznamenkastom
Διαβάστε περισσότεραRijeseni neki zadaci iz poglavlja 4.5
Rijeseni neki zdci iz poglvlj 4.5 Prije rijesvnj zdtk prisjetimo se itnih stvri koje ce ns prtiti tijekom njihovog promtrnj. Definicij: (Trigonometrij prvokutnog trokut) ktet nsuprot kut ϕ sin ϕ hipotenuz
Διαβάστε περισσότερα2s v A. 0 B. 1 C. 2 D. 4 E. A. 4 B. 3 C. 2 D. 1 E. 0
17 1989 1 1.1. Ako je v = gt + v 0 i s = g 2 t2 + v 0 t, onda je t jednak A. 2s B. v + v 0 2s C. v v 0 s D. v v 0 2s v E. 2s v 1.2. Broj rješenja jednadžbe x + 1 x = 10 u skupu realnih brojeva x R, iznosi
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραDRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 25.travnja-27.travnja razred-rješenja
DRŽAVNO NATJECANJE IZ MATEMATIKE Poreč, 5.travnja-7.travnja 01. 5. razred-rješenja OVDJE JE DAN JEDAN NAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN
Διαβάστε περισσότεραParabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole
Parabola Definicija parabole Parabola u koordinatnom sustavu Parabola i pravac Uvjet dodira pravca i parabole Jednadžba tangente u točki parabole 5. 1. Definicija parabole...............................
Διαβάστε περισσότεραRJEŠENJA ZA 4. RAZRED
RJEŠENJA ZA 4. RAZRED OVDJEJEDANJEDANNAČIN RJEŠAVANJA ZADATAKA. UKOLIKO UČENIK IMA DRUGA- ČIJI POSTUPAK RJEŠAVANJA, ČLAN POVJERENSTVA DUŽAN JE I TAJ POSTUPAK OCI- JENITI I BODOVATI NA ODGOVARAJUĆI NAČIN..
Διαβάστε περισσότερα0 = 5x 20 => 5x = 20 / : 5 => x = 4.
Zadatak 00 (Denis, ekonomska škola) U kojoj točki pravac s jednadžbom = 8 siječe os? Rješenje 00 Svaka točka koja pripada osi ima koordinate T(0, ). Budući da točka pripada i pravcu = 8, uvrstit ćemo njezine
Διαβάστε περισσότεραπ π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Διαβάστε περισσότερα( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Διαβάστε περισσότεραPismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραSli cnost trouglova i Talesova teorema
Sli cnost trouglova i Talesova teorema Denicija. Dva trougla ABC i A B C su sli cna ako su im sva tri ugla redom podudarna a i ako su im odgovaraju ce stranice proporcionalne tj. a = b b = c c. Stav 1.
Διαβάστε περισσότεραNeka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.
Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +
Διαβάστε περισσότεραRADIJVEKTORI. ALGEBARSKE OPERACIJE S RADIJVEKTORIMA. LINEARNA (NE)ZAVISNOST SKUPA RADIJVEKTORA.
Napomena: U svim zadatcima O označava ishodište pravokutnoga koordinatnoga sustava u ravnini/prostoru (tj. točke (0,0) ili (0, 0, 0), ovisno o zadatku), označava skalarni umnožak, a vektorski umnožak.
Διαβάστε περισσότεραAnalitička geometrija u ravnini
Analitička geometrija u ravnini September 5, 2008 1 Vektori u koordinatnom sustavu 1.1 Udaljenost točaka u koordinatnom sustavu pravokutni koordinatni sustav potpuno je odred en ishodištem jediničnim vektorima
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )
Διαβάστε περισσότεραAnalitička geometrija Zadaci. 13. siječnja 2014.
Analitička geometrija Zadaci 13. siječnja 2014. 2 Sadržaj 1 Poglavlje 5 1.1 Ponavljanje. Uvod............................ 5 1.2 Koordinatizacija............................. 6 1.3 Skalarni produkt.............................
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότερα1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
Διαβάστε περισσότερα13. SFERNA TRIGONOMETRIJA
Geodetski fakultet, dr sc J Beban-Brkić Predavanja iz Matematike 1 13 SFERNA TRIGONOMETRIJA UVOD Trigonometrija je dio geometrije unutar koje se proučavaju odnosi između stranica i kutova u ravninskom
Διαβάστε περισσότεραKONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
Διαβάστε περισσότεραMate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
5. GEOMETRIJA 5.1 Opcenito o kutevima Poznate su slijedece vrste kuteva: siljasti kut α < 90 pravi kut α = 90 tupi kut 90 < α < 180 ravni kut α = 180 izboceni kut 180 < α < 360 puni kut α = 360 Komplementi
Διαβάστε περισσότεραMatematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Διαβάστε περισσότεραSume kvadrata. mn = (ax + by) 2 + (ay bx) 2.
Sume kvadrata Koji se prirodni brojevi mogu prikazati kao zbroj kvadrata dva cijela broja? Propozicija 1. Ako su brojevi m i n sume dva kvadrata, onda je i njihov produkt m n takoder suma dva kvadrata.
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραradni nerecenzirani materijal za predavanja R(f) = {f(x) x D}
Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραAlgebra Vektora. pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske
Algebra Vektora 1 Algebra vektora 1.1 Definicija vektora pri rješavanju fizikalnih problema najčešće susrećemo skalarne i vektorske veličine za opis skalarne veličine trebamo zadati samo njezin iznos (npr.
Διαβάστε περισσότεραPriručnik za nastavnike
XV c b d r a a Matematika između realnog i virtualnog b c d Rata Glavnica Kamata Iznos rate 0 1.08, 1,58.97,91.08, 05,6.88,97.08, 197,6.80,0.08, 187,76.71,09 5.08, 178,8.6,15 6.08, 169,88.5,1 7.08, 160,9.,7
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραVeleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika. Monotonost i ekstremi. Katica Jurasić. Rijeka, 2011.
Veleučilište u Rijeci Stručni studij sigurnosti na radu Akad. god. 2011/2012. Matematika Monotonost i ekstremi Katica Jurasić Rijeka, 2011. Ishodi učenja - predavanja Na kraju ovog predavanja moći ćete:,
Διαβάστε περισσότεραŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010.
ŠKOLSKO (GRADSKO) NATJECANJE IZ MATEMATIKE 1. razred srednja škola A varijanta 4. veljače 2010. UKOLIKO UČENIK IMA DRUGAČIJI POSTUPAK RJEŠAVANJA ZADATKA, POVJEREN- STVO JE DUŽNO I TAJ POSTUPAK BODOVATI
Διαβάστε περισσότερα2.7 Primjene odredenih integrala
. INTEGRAL 77.7 Primjene odredenih integrala.7.1 Računanje površina Pořsina lika omedenog pravcima x = a i x = b te krivuljama y = f(x) i y = g(x) je b P = f(x) g(x) dx. a Zadatak.61 Odredite površinu
Διαβάστε περισσότεραKonstruktivni zadaci. Uvod
Svaki konstruktivni zadatak ima četri dijela: 1. Analiza 2. Konstrukcija 3. Dokaz 4. Diskusija Konstruktivni zadaci Uvod U analizi pretpostavimo da je zadatak riješen, i na osnovu slike (skice) rješenja,
Διαβάστε περισσότεραKut je skup točaka ravnine odre - den dvama polupravcima sa. Polupravci a i b su krakovi kuta, a njihov zajednički početak V je vrh kuta.
UDŽBENIK 2. dio Pojam kuta Dva polupravca sa zajedničkim početkom dijele ravninu na dva dijela (jače naglašeni i manje naglašeni dio). Svaki od tih dijelova zajedno s polupravcima zove se kut. Da bi se
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότερα12 1. UVODNI DIO c 2 ) 2 2(a 4 + b 4 + c 4 ). (F1)
11 1. Uvodni dio Da bi se s potpunim razumijevanjem mogao pratiti sadržaj ove knjige, nužna su neka znanja iz srednjoškolske nastave matematike. To se u prvom redu odnosi na temeljne pojmove geometrije
Διαβάστε περισσότεραDODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU
DODATAK UDŽBENIKU ZA 7. RAZRED DEVETOGODIŠNJE ŠKOLE SUSTAVA KATOLIČKIH ŠKOLA ZA EUROPU Izrada: Dalila Ljevo Lektorisala: Ivana Mostarac Tehnička obrada: Edin Tabak Sadržaj CIJELI BROJEVI...4 Svojstva zbrajanja
Διαβάστε περισσότεραDRŽAVNO NATJECANJE IZ MATEMATIKE
DRŽAVNO NATJECANJE IZ MATEMATIKE. razred srednja škola B kategorija Pula, 30. ožujka 009. Zadatak B-.. (0 bodova) Tomislav i ja, reče Krešimir, možemo završiti posao za 0 dana. No, ako bih radio s Ivanom
Διαβάστε περισσότεραMATEMATIKA 2. Grupa 1 Rexea zadataka. Prvi pismeni kolokvijum, Dragan ori
MATEMATIKA 2 Prvi pismeni kolokvijum, 14.4.2016 Grupa 1 Rexea zadataka Dragan ori Zadaci i rexea 1. unkcija f : R 2 R definisana je sa xy 2 f(x, y) = x2 + y sin 3 2 x 2, (x, y) (0, 0) + y2 0, (x, y) =
Διαβάστε περισσότεραM086 LA 1 M106 GRP Tema: Uvod. Operacije s vektorima.
M086 LA 1 M106 GRP Tema:.. 5. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 2 M086 LA 1, M106 GRP.. 2/17 P 1 www.fizika.unios.hr/grpua/
Διαβάστε περισσότεραII. ANALITIČKA GEOMETRIJA PROSTORA
II. NLITIČK GEMETRIJ RSTR I. I (Točka. Ravia.) d. sc. Mia Rodić Lipaović 9./. Točka u postou ( ; i, j, k ) Kateijev pavokuti koodiati sustav k i j T T (,, ) oložaj točke u postou je jedoačo odeñe jeim
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα7 Algebarske jednadžbe
7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.
Διαβάστε περισσότεραPrimjer prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela dan je na slici. Odredimo prodor tih tijela.
S. Varošanec, Nacrtna geometrija, 4. Mongeovo projiciranje 90 Primjer 4.56. Osnovka ABCD uspravne četverostrane prizme je u π 1. Osnovka uspravne kvadratne piramide EFGHV je u π 2. Tlocrt i nacrt tijela
Διαβάστε περισσότερα( ) ( ) Zadatak 001 (Ines, hotelijerska škola) Ako je tg x = 4, izračunaj
Zadaak (Ines, hoelijerska škola) Ako je g, izračunaj + 5 + Rješenje Korisimo osnovnu rigonomerijsku relaciju: + Znači svaki broj n možemo zapisai n n n ( + ) + + + + 5 + 5 5 + + + + + 7 + Zadano je g Tangens
Διαβάστε περισσότεραPredavanja iz Elementarne geometrije
Predavanja iz Elementarne geometrije Jurica Perić 2017./2018. Sadržaj Povijesni pregled ii 1. Planimetrija - geometrija ravnine 1 1.1. Aksiomi euklidske geometrije ravnine.................. 1 1.1.1. Aksiomi
Διαβάστε περισσότερα7.1 Međusobni položaji točaka, pravaca i ravnina
Poglavlje 7 Stereometrija Stereometrijom nazovamo geometriju (trodimenzionalnog euklidskog) prostora. Osnovni elementi prostora su točke, pravci i ravnine. Aksiome geometrije prostora nećemo navoditi.
Διαβάστε περισσότερα12 1. GEOMETRIJA. vrhove novog trokuta. Dokažite da taj trokut ne može biti jednakostraničan.
11 1. Geometrija 1.1. Kvadratni komad papira D presavijen je tako da točka D prije - de u proizvoljnu točku D na. Novi položaj točke je.neka je E sjecište dužina i D.Označimo s r polumjer kružnice upisane
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότερα