Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
|
|
- Ζένια Καραμανλής
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2012/2013 TEST 1 MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš robiť tým poradím, ktorým sú dané. Všimni si, že sa úlohy rozlišujú podľa toho, ktorým spôsobom máš dať odpoveď (dopisovanie, zakrúžkovanie, spájanie, podčiarkovanie a iné). Počas práce môžeš používať grafitovú ceruzku, gumičku, pravítko, trojuholník a kružidlo, ale nie aj kalkulačku. Konečné odpovede a postup napíš chemickou ceruzkou. Odpoveď, ktorá je napísaná iba grafitovou ceruzkou sa neuzná, ako ani odpoveď, ktorá je prečiarknutá. Na tejto a na poslednej strane nepíš nič, ako ani do štvorčeka, ktorý sa nachádza na pravej strane úlohy. Ak skončíš s prácou skôr, odovzdaj test, a potichu vyjdi von. Želáme ti mnoho úspechov na skúške!
2
3 1. Zakrúžkuj písmeno pred číslom ktoré je väčšie od а) b) c) 8 33 d) e) 5 2. Vyplň nasledujúcu tabuľku tak, ako je začaté. delenec deliteľ zvyšok а) Vypočítaj absolútnu hodnotu súčtu čísel 17 a 26. Odpoveď: b) Vypočítaj súčet absolútnych hodnôt čísel 17 a 26. Odpoveď: 3
4 2012/ MAT SLO 1 Milenko na trhu predáva svieže ovocie a zeleniny, ktoré si zaobstaral na dedine. On kúpil 70 kg jahôd po cene 80 dinárov za kilogram. Počas transportu sa jahody zoschnú, a stratia desatinu svojej hmotnosti. Milenko jahody na trhu predáva po cene 150 dinárov za kilogram. Koľko Milenko zarobí, ak predá všetky jahody ktoré si zaobstaral? Milenko zarobí dinárov. 5. Ak je А = 3x2 a B = 11x2, vypočítaj: А + В, А В, А В. А + В = А В = А В = 4
5 6. Doplň dané vety. а) Hodnota funkcie у = x 3 2 pre x = 4 je číslo. b) Hodnota funkcie у = x 3 2 pre x = 0 je číslo. 7. Vypočítaj hodnotu výrazu. ( ) ( 2 ) Hodnota výrazu je. 5
6 8. Maša mala štyrikrát viacej cukríkov ako Jelena. Maša zjedla 14 svojich cukríkov, a Jelena dva svoje cukríky. Teraz má Maša trikrát viacej cukríkov ako Jelena. Koľko cukríkov má teraz Maša, a koľko Jelena? Maša teraz má cukríkov, a Jelena má cukríkov. 9. Akú veľkosť podlahy prikrýva koberec tvaru obdĺžnika, ktorý je dlhý 4,5 m a šíroký 3 m? Zakrúžkuj písmeno pred správnou odpoveďou. а) 13,5 m 2 b) 15 m 2 c) 7,5 m 2 d) 4,5 m 2 6
7 10. Pod každým obrázkom zakrúžkuj ÁNO, ak sú útvary А a В na tom obrázku zhodné alebo NIE, ak nie sú zhodné. A B A B A B ÁNO NIE ÁNO NIE ÁNO NIE 11. Plošný obsah väčšieho kruhu kruhového prsteňa (medzikružia) je 64π cm 2, a obvod menšieho kruhu je 12π cm. Aký je plošný obsah kruhového prsteňa? Plošný obsah kruhového prsteňa je cm 2. 7
8 12. Na obrázku je kocka s hranou 4 cm v ktorej sa nachádza pravidelný štvorboký ihlan. Vrcholy podstavy ihlana sú stredy hrán kocky, a vrchol ihlana je priesečník uhlopriečok protiľahlej steny kocky. Koľkokrát je objem kocky väčší ako objem ihlana? Objem kocky je -krát väčší ako ojem ihlana. 13. Dané sú merné jednotky min, m, l a cm 2. Doplň tabuľku danými mernými jednotkami tak, ako je začaté. Vzdialenosť medzi Suboticou Nišom Dĺžka autobusa Množstvo paliva v nádrži autobusa Obsah autobusového lístka Čas ktorý je potrebný aby cestujúci nastúpili do autobusa km 14. Zlatý prsteň má hmotnosť 5,292 g. Zaokrúhli hmotnosť prsteňa na а) dve desatinné miesta g b) jedno desatinné miesto g 8
9 15. V troch novoročných darčekoch sú čokoládové cukríky, hračky a knihy. Hmotnosť prvého darčeka je 1,6 kilogramov, hmotnosť druhého darčeka je 1735 gramov a hmotnosť tretieho je 2,14 kilogramov. Aký je rozdiel v gramoch, medzi darčekom s najväčšou a darčekom s najmenšou hmotnosťou? Rozdiel je gramov. 16. Miodrag si chce v Maďarsku kúpiť suvenír po cene forintov. Za jedno euro môže v zmenárni dostať 294 forinty. V peňaženke má bankovky v hodnote 5, 10, 20 a 50 eur. Ktorú bankovku má Miodrag zameniť, tak aby mu po kúpení suveníru zostalo najmenej forintov? Miodrag má zameniť bankovku v hodnote eur. 17. Urč súradnice vrcholov obdĺžnika KLHN, ktorý je daný v súradnicovej sústave na obrázku. Súradnice vrcholov sú: K(, ) L(, ) H(, ) N(, ) N K 0 1 H L
10 Text a taduľka ktorá nasleduje sa vzťahuje na úlohy 18, 19 a 20. V tabuľke* sú uvedené údaje o počte príchodu domácich a zahraničných turistov podľa regiónov. Časové obdobie Belehradský región Domáci Zahraniční Región Vojvodiny Domáci Zahraniční Región Šumadije a západného Srbska Domáci Zahraniční Región južného a východného Srbska Domáci Zahraniční Október November December Január Február Marec Apríl Máj Jún Júl August September Október *Použité sú údaje z webovej stránky Republikového ústavu pre štatistiku. 18. Ktorý región navštívil najmenší počet zahraničných turistov v apríli roku 2012.? Zakrúžkuj písmeno pred správnou odpoveďou. а) Belehradský región b) Región Vojvodiny c) Región Šumadije a západného Srbska d) Región južného a východného Srbska 10
11 19. O koľko je menší počet zahraničných turistov ktorí navštevovali uvedené regióny v Srbsku v októbri vzhľadom na október v roku 2012.? Počet zahraničných turistov je menší o. 20. O koľko percent sa zväčšil počet domácich turistov ktorý navštívili Vojvodinu v októbri vzhľadom na február roku 2012.? Počet domácich turistov sa zväčšil o %. 11
12 Výsledky na teste z matematiky Poznámka: ŽIACI NEVYPĹŇAJÚ túto stranu! Túto stranu vypĺňa Komisia! Napíš na zodpovedajúce miesto. Por. č. úlohy Nevyplnené 0 bodov 0,5 bodov 1 bod Úhrnný počet bodov, Identifikačné číslo (Šifra žiaka) Škola Sídlo Priezvisko a meno žiaka Komisia:
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY. školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU
ZÁVEREČNÁ SKÚŠKA NA KONCI ZÁKLADNÉHO VZDELÁVANIA A VÝCHOVY školský rok 2014/2015 TEST MATEMATIKA POKYNY PRE PRÁCU V teste, ktorý máš vyriešiť, je 20 úloh. Na prácu je určených 120 minút. Úlohy nemusíš
1. písomná práca z matematiky Skupina A
1. písomná práca z matematiky Skupina A 1. Vypočítajte : a) 84º 56 + 32º 38 = b) 140º 53º 24 = c) 55º 12 : 2 = 2. Vypočítajte zvyšné uhly na obrázku : β γ α = 35 12 δ a b 3. Znázornite na číselnej osi
Matematika Funkcia viac premenných, Parciálne derivácie
Matematika 2-01 Funkcia viac premenných, Parciálne derivácie Euklidovská metrika na množine R n všetkých usporiadaných n-íc reálnych čísel je reálna funkcia ρ: R n R n R definovaná nasledovne: Ak X = x
Obvod a obsah štvoruholníka
Obvod a štvoruholníka D. Štyri body roviny z ktorých žiadne tri nie sú kolineárne (neležia na jednej priamke) tvoria jeden štvoruholník. Tie body (A, B, C, D) sú vrcholy štvoruholníka. strany štvoruholníka
Moderné vzdelávanie pre vedomostnú spoločnosť Projekt je spolufinancovaný zo zdrojov EÚ M A T E M A T I K A
M A T E M A T I K A PRACOVNÝ ZOŠIT II. ROČNÍK Mgr. Agnesa Balážová Obchodná akadémia, Akademika Hronca 8, Rožňava PRACOVNÝ LIST 1 Urč typ kvadratickej rovnice : 1. x 2 3x = 0... 2. 3x 2 = - 2... 3. -4x
KOMBINOVANÝ TEST z prírodných a spoločenských vied
Republika Srbsko MINISTERSTVO OSVETY, VEDY A TECHNOLOGICKÉHO ROZVOJA ÚSTAV PRE HODNOTENIE KVALITY VZDELÁVANIA A VÝCHOVY VOJVODINSKÝ PEDAGOGICKÝ ÚSTAV KOMBINOVANÝ TEST z prírodných a spoločenských vied
Start. Vstup r. O = 2*π*r S = π*r*r. Vystup O, S. Stop. Start. Vstup P, C V = P*C*1,19. Vystup V. Stop
1) Vytvorte algoritmus (vývojový diagram) na výpočet obvodu kruhu. O=2xπxr ; S=πxrxr Vstup r O = 2*π*r S = π*r*r Vystup O, S 2) Vytvorte algoritmus (vývojový diagram) na výpočet celkovej ceny výrobku s
7. FUNKCIE POJEM FUNKCIE
7. FUNKCIE POJEM FUNKCIE Funkcia f reálnej premennej je : - každé zobrazenie f v množine všetkých reálnych čísel; - množina f všetkých usporiadaných dvojíc[,y] R R pre ktorú platí: ku každému R eistuje
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín. Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť.
Kontrolné otázky na kvíz z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej a nesprávnych odpovedí sa môže v teste meniť. Ktoré fyzikálne jednotky zodpovedajú sústave SI: a) Dĺžka, čas,
,Zohrievanie vody indukčným varičom bez pokrievky,
Farba skupiny: zelená Označenie úlohy:,zohrievanie vody indukčným varičom bez pokrievky, Úloha: Zistiť, ako závisí účinnosť zohrievania vody na indukčnom variči od priemeru použitého hrnca. Hypotéza: Účinnosť
TEST Z MATEMATIKY. Prijímacie skúšky na školský rok 2017/2018
TEST Z MATEMATIKY Prijímacie skúšky na školský rok 2017/2018 Milí žiaci, máte pred sebou test z matematiky ku prijímacím skúškam. Budete ho riešiť na dvojhárok. Najprv na nalepený štítok dvojhárku napíšte
Povrch a objem ihlana
Povrch a objem ihlana D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a jeden bod (vrchol), ktorý neleží v rovine mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme polpriamky
Povrch a objem hranola
Povrch a objem hranola D. Daný je mnohouholník (riadiaci alebo určujúci útvar) a priamka, ktorá nie je rovnobežná s rovinou mnohouholníka. Ak hraničnými bodmi mnohouholníka (stranami) vedieme priamky rovnobežné
Test. Matematika. Forma A. Štátny pedagogický ústav, Bratislava NUPSESO. a.s.
Test Matematika Forma A Štátny pedagogický ústav, Bratislava Ò NUPSESO a.s. 1. Koľkokrát je väčší najmenší spoločný násobok čísel 84 a 16 ako ich najväčší spoločný deliteľ. A. B. 3 C. 6 D.1. Koľko záporných
Metodicko pedagogické centrum. Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH ZAMESTNANCOV K INKLÚZII MARGINALIZOVANÝCH RÓMSKYCH KOMUNÍT
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
P Y T A G O R I Á D A
30 P Y T A G O R I Á D A Súťažné úlohy a riešenia celoštátneho kola Kategórie P6 - P8 30. ročník Školský rok 2008/2009 BRATISLAVA, 2009 Súťažné úlohy celoslovenského kola. Školský rok 2008/2009. Kategória
Matematika 2. časť: Analytická geometria
Matematika 2 časť: Analytická geometria RNDr. Jana Pócsová, PhD. Ústav riadenia a informatizácie výrobných procesov Fakulta BERG Technická univerzita v Košiciach e-mail: jana.pocsova@tuke.sk Súradnicové
16. Základne rovinné útvary kružnica a kruh
16. Základne rovinné útvary kružnica a kruh Kružnica k so stredom S a polomerom r nazývame množinou všetkých bodov X v rovine, ktoré majú od pevného bodu S konštantnú vzdialenosť /SX/ = r, kde r (patri)
24. Základné spôsoby zobrazovania priestoru do roviny
24. Základné spôsoby zobrazovania priestoru do roviny Voľné rovnobežné premietanie Presné metódy zobrazenia trojrozmerného priestoru do dvojrozmernej roviny skúma samostatná matematická disciplína, ktorá
HASLIM112V, HASLIM123V, HASLIM136V HASLIM112Z, HASLIM123Z, HASLIM136Z HASLIM112S, HASLIM123S, HASLIM136S
PROUKTOVÝ LIST HKL SLIM č. sklad. karty / obj. číslo: HSLIM112V, HSLIM123V, HSLIM136V HSLIM112Z, HSLIM123Z, HSLIM136Z HSLIM112S, HSLIM123S, HSLIM136S fakturačný názov výrobku: HKL SLIMv 1,2kW HKL SLIMv
2. UHLY. Zapisovanie uhlov 1. spôsob pomocou troch bodov. Pri zápise uhla pomocou troch bodov je VRCHOL VŽDY V STREDE ZÁPISU.
2. UHLY 2.1 ZÁPIS A OZNAČOVANIE UHLOV Dve polpriamky VA, VB, ktoré majú spoločný začiatok v bode V delia rovinu na dve časti. Tieto časti nazývame uhly. UHOL je časť roviny ohraničená dvoma polpriamkami,
Ekvačná a kvantifikačná logika
a kvantifikačná 3. prednáška (6. 10. 004) Prehľad 1 1 (dokončenie) ekvačných tabliel Formula A je ekvačne dokázateľná z množiny axióm T (T i A) práve vtedy, keď existuje uzavreté tablo pre cieľ A ekvačných
PRIEMER DROTU d = 0,4-6,3 mm
PRUŽINY PRUŽINY SKRUTNÉ PRUŽINY VIAC AKO 200 RUHOV SKRUTNÝCH PRUŽÍN PRIEMER ROTU d = 0,4-6,3 mm èíslo 3.0 22.8.2008 8:28:57 22.8.2008 8:28:58 PRUŽINY SKRUTNÉ PRUŽINY TECHNICKÉ PARAMETRE h d L S Legenda
Povrch a objem zrezaného ihlana
Povrch a objem zrezaného ihlana Ak je daný jeden ihlan a zobereme rovinu rovnobežnú s postavou, prechádzajúcu ihlanom, potom táto rovina rozdelí teleso na dve telesá. Jedno teleso je ihlan (pôvodný zmenšený
Prechod z 2D do 3D. Martin Florek 3. marca 2009
Počítačová grafika 2 Prechod z 2D do 3D Martin Florek florek@sccg.sk FMFI UK 3. marca 2009 Prechod z 2D do 3D Čo to znamená? Ako zobraziť? Súradnicové systémy Čo to znamená? Ako zobraziť? tretia súradnica
Motivácia Denícia determinantu Výpo et determinantov Determinant sú inu matíc Vyuºitie determinantov. Determinanty. 14. decembra 2010.
14. decembra 2010 Rie²enie sústav Plocha rovnobeºníka Objem rovnobeºnostena Rie²enie sústav Príklad a 11 x 1 + a 12 x 2 = c 1 a 21 x 1 + a 22 x 2 = c 2 Dostaneme: x 1 = c 1a 22 c 2 a 12 a 11 a 22 a 12
1. Limita, spojitost a diferenciálny počet funkcie jednej premennej
. Limita, spojitost a diferenciálny počet funkcie jednej premennej Definícia.: Hromadný bod a R množiny A R: v každom jeho okolí leží aspoň jeden bod z množiny A, ktorý je rôzny od bodu a Zadanie množiny
Zlomky sčítanie, odčítanie. A forma. B forma. 1. Kontrolná práca z matematiky 7. ročník. 1. Vypočítajte : = d) ( ) Vypočítajte : a) 5 + =
1. Kontrolná práca z matematiky 7. ročník Zlomky sčítanie, odčítanie 1. Vypočítajte : 6 2 5 7 2 2 2 a) + + = c) + = 7 3 21 9 3 3 9 3 5 1 1 + + 1 = d) ( ) 5 + 3,7 + 1 4 15 6 = 2. Vypočítajte : a) 1 5 5
MONITOR 9 (2007) riešenia úloh testu z matematiky
MONITOR 9 (007) riešenia úloh testu z matematiky Autormi nasledujúcich riešení sú pracovníci spoločnosti EXAM testing Nejde teda o oficiálne riešenia, ktoré môže vydať ia Štátny pedagogický ústav (wwwstatpedusk)
4. POVRCH A OBJEM TELIES
Mgr. Mariana Sahajdová 4. POVRCH A OBJEM TELIES Obsah tematického celku: Povrch a objem kocky, kvádra a hranola Povrch a objem ihlana 4.1 Povrch a objem kocky, kvádra a hranola Základné pojmy povrch kocky
Testy a úlohy z matematiky
Testy a úlohy z matematiky Spracovala a zostavila: c Mgr. Hedviga Soósová 008 Vydavateľ: Copyright c VARIA PRINT, s. r. o. 008. Prvé vydanie. Kontakt: VARIA PRINT, s. r. o. Mgr. Marta Varsányiová Ul. františkánov
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH
6 APLIKÁCIE FUNKCIE DVOCH PREMENNÝCH 6. Otázky Definujte pojem produkčná funkcia. Definujte pojem marginálny produkt. 6. Produkčná funkcia a marginálny produkt Definícia 6. Ak v ekonomickom procese počet
PYTAGORIÁDA Súťažné úlohy republikového kola 35. ročník, školský rok 2013/2014
Kategória P 6 1. Napíšte číslo, ktoré sa skrýva pod hviezdičkou: *. 5 = 9,55 2. Janko Hraško je 25 - krát menší ako Ďuro Truľo. Napíšte, koľko centimetrov meria Janko Hraško, ak Ďuro Truľo meria 1,75 metra.
PYTAGORIÁDA. 9. Napíš písmeno, ktoré označuje najmenší výsledok: A: B: (17 + 8). (5 2) C: (5 2)
Súťažné úlohy okresného kola Školský rok 2006/2007 kategória P 3 1. Margitka išla s dedkom a babkou do múzea. Lístok pre dospelých stál 30 korún. Detský lístok stojí polovicu z lístka pre dospelého. Koľko
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti rozvodu tepla
Rozsah hodnotenia a spôsob výpočtu energetickej účinnosti príloha č. 7 k vyhláške č. 428/2010 Názov prevádzkovateľa verejného : Spravbytkomfort a.s. Prešov Adresa: IČO: Volgogradská 88, 080 01 Prešov 31718523
Tematický výchovno-vzdelávací plán k pracovnému zošitu
Február Mesiac Týždeň Tematický výchovno-vzdelávací plán k pracovnému zošitu NOVÝ POMOCNÍK Z MATEMATIKY 8, časť Stupeň vzdelania: ISCED 2 - nižšie sekundárne vzdelávanie Vzdelávacia oblasť: Matematika
Matematika prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad
Matematika 3-13. prednáška 4 Postupnosti a rady 4.5 Funkcionálne rady - mocninové rady - Taylorov rad, MacLaurinov rad Erika Škrabul áková F BERG, TU Košice 15. 12. 2015 Erika Škrabul áková (TUKE) Taylorov
Kód testu NEOTVÁRAJTE, POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU!
Kód testu 1203 NEOTVÁRJTE, POČKJTE N POKYN! PREČÍTJTE SI NJPRV POKYNY K TESTU! MTURIT 2015 EXTERNÁ ČSŤ Časť I Vyriešte úlohy 01 až 20 a do odpoveďového hárka zapíšte vždy iba výsledok nemusíte ho zdôvodňovať
3. Striedavé prúdy. Sínusoida
. Striedavé prúdy VZNIK: Striedavý elektrický prúd prechádza obvodom, ktorý je pripojený na zdroj striedavého napätia. Striedavé napätie vyrába synchrónny generátor, kde na koncoch rotorového vinutia sa
Harmonizované technické špecifikácie Trieda GP - CS lv EN Pevnosť v tlaku 6 N/mm² EN Prídržnosť
Baumit Prednástrek / Vorspritzer Vyhlásenie o parametroch č.: 01-BSK- Prednástrek / Vorspritzer 1. Jedinečný identifikačný kód typu a výrobku: Baumit Prednástrek / Vorspritzer 2. Typ, číslo výrobnej dávky
Priamkové plochy. Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava
Priamkové plochy Priamkové plochy Ak každým bodom plochy Φ prechádza aspoň jedna priamka, ktorá (celá) na nej leží potom plocha Φ je priamková. Santiago Calatrava Priamkové plochy rozdeľujeme na: Rozvinuteľné
Mocniny : 1. časť. A forma. B forma. 1. Kontrolná práca z matematiky 8. ročník
1. Kontrolná práca z matematiky 8. ročník Mocniny : 1. časť 1. Vypočítajte pomocou tabuliek : a) 100 ; 876 ; 15,89 ; 1, ; 0,065 ; b) 5600 ; 16 ; 0,9 ;,64 ; 1,4 ; c) 1,5 ; 170 ; 0,01 ; 148 0, 56 ; 64, 5
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2
1 Prevod miestneho stredného slnečného času LMT 1 na iný miestny stredný slnečný čas LMT 2 Rozdiel LMT medzi dvoma miestami sa rovná rozdielu ich zemepisných dĺžok. Pre prevod miestnych časov platí, že
Kontrolné otázky z jednotiek fyzikálnych veličín
Verzia zo dňa 6. 9. 008. Kontrolné otázky z jednotiek fyzikálnych veličín Upozornenie: Umiestnenie správnej odpovede sa môže v kontrolnom teste meniť. Takisto aj znenie nesprávnych odpovedí. Uvedomte si
Objem a povrch telies
Objem a povrch telies Kváder má: 8 vrcholov označujeme ich veľkými tlačenými písmenami 12 hrán hrany môžu mať tri veľkosti - a, b, c 6 stien steny sú tvorené obdĺžnikmi s rozmermi a, b, c Veľkosti troch
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2014/2015 ARMA modely časť 2: moving average modely(ma) p.1/24 V. Moving average proces prvého rádu - MA(1) ARMA modely
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R
Život vedca krajší od vysnívaného... s prírodou na hladine α R-P-R Ako nadprirodzené stretnutie s murárikom červenokrídlym naformátovalo môj profesijný i súkromný život... Osudové stretnutie s murárikom
Chí kvadrát test dobrej zhody. Metódy riešenia úloh z pravdepodobnosti a štatistiky
Chí kvadrát test dobrej zhody Metódy riešenia úloh z pravdepodobnosti a štatistiky www.iam.fmph.uniba.sk/institute/stehlikova Test dobrej zhody I. Chceme overiť, či naše dáta pochádzajú z konkrétneho pravdep.
1. Trojuholník - definícia
1. Trojuholník - definícia Trojuholník ABC sa nazýva množina takých bodov, ktoré ležia súčasne v polrovinách ABC, BCA a CAB, kde body A, B, C sú body neležiace na jednej priamke.. Označenie základných
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy
Jednotkový koreň (unit root), diferencovanie časového radu, unit root testy Beáta Stehlíková Časové rady, FMFI UK, 2012/2013 Jednotkový koreň(unit root),diferencovanie časového radu, unit root testy p.1/18
CHÉMIA Ing. Iveta Bruončová
Výpočet hmotnostného zlomku, látkovej koncentrácie, výpočty zamerané na zloženie roztokov CHÉMIA Ing. Iveta Bruončová Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov
22 ). Stačí, ak napíšeš, že dĺžka kružnice
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 Σ PRIJÍMACIE KÚŠKY Z MATEMATIKY Milý študent, vítame Ťa na našom gymnáziu, Gymnáziu Vazovova 6 v Bratislave. Teší nás, že si sa pri výbere školy
M6: Model Hydraulický systém dvoch zásobníkov kvapaliny s interakciou
M6: Model Hydraulický ytém dvoch záobníkov kvapaliny interakciou Úlohy:. Zotavte matematický popi modelu Hydraulický ytém. Vytvorte imulačný model v jazyku: a. Matlab b. imulink 3. Linearizujte nelineárny
2. Aký obsah má vyfarbený útvar? Dĺţka strany štvorca je 3 m.
Dĺžka kružnice, obsah kruhu 1. Na obrázku je kruţnica vpísaná do štvorca so stranou 4cm a štyri kruţnicové oblúky so stredmi vo vrcholoch štvorca. ký obsah má vyfarbený útvar? 4 + π cm 16 - π cm 8π 16
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015
Vyriešený test z matematiky Celoslovenské testovanie žiakov 9. ročníka ZŠ T9-2015 Zdroj zadaní príkladov: NÚCEM - Národný ústav certifikovaných meraní vzdelávania http://www.nucem.sk/documents//26/testovanie_9_2015/testy_t9_2015/t9_2015_test_z_matemati
Definícia parciálna derivácia funkcie podľa premennej x. Definícia parciálna derivácia funkcie podľa premennej y. Ak existuje limita.
Teória prednáška č. 9 Deinícia parciálna deriácia nkcie podľa premennej Nech nkcia Ak eistje limita je deinoaná okolí bod [ ] lim. tak túto limit nazýame parciálno deriácio nkcie podľa premennej bode [
1. V klobúku je 20 červených, 16 modrých a 12 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.
1. V klobúku je 0 červených, 16 modrých a 1 žltých guličiek. Vyjadri v percentách pravdepodobnosť, že náhodne vybraná gulička je žltá.. Riešením rovnice 3x 6 7 0 je: A x = 0 B x = C x = 7 D x = 3. Riešením
Objem a povrch valca, kužeľa, ihlana a gule
Objem a povrch valca, kužeľa, ihlana a ule 1. Plášť valca má rovnaký obsah ako jedna jeho podstav. Valec je vysoký 4 dm. Aký polomer má podstav tohto valca? 2. Vypočítaj objem a povrch valca, ktorého polomer
Podnikateľ 90 Mobilný telefón Cena 95 % 50 % 25 %
Podnikateľ 90 Samsung S5230 Samsung C3530 Nokia C5 Samsung Shark Slider S3550 Samsung Xcover 271 T-Mobile Pulse Mini Sony Ericsson ZYLO Sony Ericsson Cedar LG GM360 Viewty Snap Nokia C3 Sony Ericsson ZYLO
wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor: 3178F00 VK opasdfghjklzxcvbnmqwertyuiopasdfg Mgr. Mária Hanková STREDNÁ ODBORNÁ ŠKOLA V LIPANOCH
qwertyuiopasdfghjklzxcvbnmqwerty uiopasdfghjklzxcvbnmqwertyuiopasd fghjklzxcvbnmqwertyuiopasdfghjklzx cvbnmqwertyuiopasdfghjklzxcvbnmq MATEMATIKA 2.ročník wertyuiopasdfghjklzxcvbnmqwertyui Učebný odbor:
Cvičenie č. 4,5 Limita funkcie
Cvičenie č. 4,5 Limita funkcie Definícia ity Limita funkcie (vlastná vo vlastnom bode) Nech funkcia f je definovaná na nejakom okolí U( ) bodu. Hovoríme, že funkcia f má v bode itu rovnú A, ak ( ε > )(
Zobrazenia v rovine. Každé zhodné zobrazenie v rovine je prosté a existuje k nemu inverzné zobrazenie.
Zobrazenia v rovine Zobrazením Z z množiny A do množiny B nazývame predpis, ktorý každému prvku x množiny A priraďuje práve jeden prvok y množiny B. Zobrazenie v rovine priraďuje každému bodu X danej roviny
MATEMATIKA - úlohy z MONITOROV a MSK
MATEMATIKA - úlohy z MONITOROV a MSK P.č. Tematické celky Strana 1 1.1 - Výroky 1 1.. - Množiny 4 3.1. - Výrazy 6 4 3.1. - Teória čísel 7 5 4.1. - Rovnice 9 6 4.. - Nerovnice 11 7 4.3. - Sústavy rovníc
6 Limita funkcie. 6.1 Myšlienka limity, interval bez bodu
6 Limita funkcie 6 Myšlienka ity, interval bez bodu Intuitívna myšlienka ity je prirodzená, ale definovať presne pojem ity je značne obtiažne Nech f je funkcia a nech a je reálne číslo Čo znamená zápis
23. Zhodné zobrazenia
23. Zhodné zobrazenia Zhodné zobrazenie sa nazýva zhodné ak pre každé dva vzorové body X,Y a ich obrazy X,Y platí: X,Y = X,Y {Vzdialenosť vzorov sa rovná vzdialenosti obrazov} Medzi zhodné zobrazenia patria:
Goniometrické rovnice a nerovnice. Základné goniometrické rovnice
Goniometrické rovnice a nerovnice Definícia: Rovnice (nerovnice) obsahujúce neznámu x alebo výrazy s neznámou x ako argumenty jednej alebo niekoľkých goniometrických funkcií nazývame goniometrickými rovnicami
Maturitné úlohy. Matematiky. Pre gymnázium
Jozef Vozár Maturitné úlohy Z Matematiky Pre gymnázium I. (Úlohy s krátkou odpoveďou) OBSAH ÚVOD... 3 1. ZÁKLADY MATEMATIKY... 3 1.1 Logika a množiny... 3 1.2 Čísla, premenné a výrazy... 7 1.3 Teória čísel...
9 Planimetria. identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov,
9 Planimetria Ciele Preštudovanie tejto kapitoly vám lepšie umožní: identifikovať rovinné geometrické útvary a ich vlastnosti, vysvetliť podstatu merania obvodu a obsahu rovinných útvarov, používať jednotky
Obvod a obsah nepravidelného a pravidelného mnohouholníka
Obvod a obsah nepravidelného a pravidelného mnohouholníka Ak máme nepravidelný mnohouholník, tak skúsime ho rozdeliť na útvary, ktorým vieme vypočítať obsah z daných údajov najvšeobecnejší spôsob: rozdeliť
ZÁKLADNÉ GEOMETRICKÉ TELESÁ. Hranolová plocha Hranolový priestor Hranol
II. ZÁKLADNÉ GEOMETRICKÉ TELESÁ Hranolová plocha Hranolový priestor Hranol Definícia II.1 Nech P n je ľubovoľný n-uholník v rovine α a l je priamka rôznobežná s rovinou α. Hranolová plocha - množina bodov
Základy metodológie vedy I. 9. prednáška
Základy metodológie vedy I. 9. prednáška Triedenie dát: Triedny znak - x i Absolútna početnosť n i (súčet všetkých absolútnych početností sa rovná rozsahu súboru n) ni fi = Relatívna početnosť fi n (relatívna
ARMA modely čast 2: moving average modely (MA)
ARMA modely čast 2: moving average modely (MA) Beáta Stehlíková Časové rady, FMFI UK, 2011/2012 ARMA modely časť 2: moving average modely(ma) p.1/25 V. Moving average proces prvého rádu - MA(1) ARMA modely
Deliteľnosť a znaky deliteľnosti
Deliteľnosť a znaky deliteľnosti Medzi základné pojmy v aritmetike celých čísel patrí aj pojem deliteľnosť. Najprv si povieme, čo znamená, že celé číslo a delí celé číslo b a ako to zapisujeme. Nech a
KATEDRA DOPRAVNEJ A MANIPULAČNEJ TECHNIKY Strojnícka fakulta, Žilinská Univerzita
132 1 Absolútna chyba: ) = - skut absolútna ochýlka: ) ' = - spr. relatívna chyba: alebo Chyby (ochýlky): M systematické, M náhoné, M hrubé. Korekcia: k = spr - = - Î' pomerná korekcia: Správna honota:
ZADANIE 1_ ÚLOHA 3_Všeobecná rovinná silová sústava ZADANIE 1 _ ÚLOHA 3
ZDNIE _ ÚLOH 3_Všeobecná rovinná silová sústv ZDNIE _ ÚLOH 3 ÚLOH 3.: Vypočítjte veľkosti rekcií vo väzbách nosník zťženého podľ obrázku 3.. Veľkosti známych síl, momentov dĺžkové rozmery sú uvedené v
Učebný materiál pre cvičenia z matematiky v 6. ročníku ZŠ
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
MATURITA 2012 MATEMATIKA
KÓD TESTU 606 MATURITA 202 EXTERNÁ ČASŤ MATEMATIKA NEOTVÁRAJTE POČKAJTE NA POKYN! PREČÍTAJTE SI NAJPRV POKYNY K TESTU. Test obsahuje 0 úloh. Na vypracovanie testu budete mať 20 minút. V teste sa stretnete
Matematika test M-1 I. oddiel forma A
Matematika test M- I. oddiel forma A Na obrázku je graf funkcie g : =. Ktoré z tvrdení o funkcii g je nepravdivé? (A) Definičným oborom funkcie g sú všetk reálne čísla. (B) V bode = nadobúda funkcia g
Návrh vzduchotesnosti pre detaily napojení
Výpočet lineárneho stratového súčiniteľa tepelného mosta vzťahujúceho sa k vonkajším rozmerom: Ψ e podľa STN EN ISO 10211 Návrh vzduchotesnosti pre detaily napojení Objednávateľ: Ing. Natália Voltmannová
Modelovanie dynamickej podmienenej korelácie kurzov V4
Modelovanie dynamickej podmienenej korelácie menových kurzov V4 Podnikovohospodárska fakulta so sídlom v Košiciach Ekonomická univerzita v Bratislave Cieľ a motivácia Východiská Cieľ a motivácia Cieľ Kvantifikovať
Tomáš Madaras Prvočísla
Prvočísla Tomáš Madaras 2011 Definícia Nech a Z. Čísla 1, 1, a, a sa nazývajú triviálne delitele čísla a. Cele číslo a / {0, 1, 1} sa nazýva prvočíslo, ak má iba triviálne delitele; ak má aj iné delitele,
TVORIVÁ MATEMATIKA I - SÚBOR PRACOVNÝCH LISTOV PRE 5. A 6. ROČNÍK ZŠ
Moderné vzdelávanie pre vedomostnú spoločnosť / Projekt je spolufinancovaný zo zdrojov EÚ Kód ITMS: 26130130051 číslo zmluvy: OPV/24/2011 Metodicko pedagogické centrum Národný projekt VZDELÁVANÍM PEDAGOGICKÝCH
Pevné ložiská. Voľné ložiská
SUPPORTS D EXTREMITES DE PRECISION - SUPPORT UNIT FOR BALLSCREWS LOŽISKA PRE GULIČKOVÉ SKRUTKY A TRAPÉZOVÉ SKRUTKY Výber správnej podpory konca uličkovej skrutky či trapézovej skrutky je dôležité pre správnu
Technická univerzita v Košiciach. Zbierka riešených a neriešených úloh. z matematiky. pre uchádzačov o štúdium na TU v Košiciach
Technická univerzita v Košiciach Zbierka riešených a neriešených úloh z matematiky pre uchádzačov o štúdium na TU v Košiciach Martin Bača Ján Buša Andrea Feňovčíková Zuzana Kimáková Denisa Olekšáková Štefan
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr.
Katolícka univerzita v Ružomberku Pedagogická fakulta Rovinná geometria v starej Mezopotámii Miroslava Kyrczová História matematiky h. Doc. RNDr. Štefan Tkačik, PhD..5.009 V tejto práci sa pokúsime objasniť
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok:
Kategória P 6 1. Vypíšte nepárne číslice nachádzajúce sa vo výsledku príkladu: 2,2. 2,02. 2,002 = 2. Vypočítajte a napíšte výsledok: 5. 5 1. 5 1. 5 1. 5 1. 5 5 = ( ( ( ( ( ))))) 3. Zo štyroch kartičiek,
V každom prípade zapíšte vzájomnú polohu dvoch kružníc.
Kruh, kružnica 1. Polomer kružnice má veľkosť r = 5 cm, jej tetiva t = 8 cm. Vypočítaj vzdialenosť tejto tetivy od stredu kružnice.. Obsah kruhu je 78,5 cm. ký je jeho priemer? 3. Polomer kružnice k má
u R Pasívne prvky R, L, C v obvode striedavého prúdu Činný odpor R Napätie zdroja sa rovná úbytku napätia na činnom odpore.
Pasívne prvky, L, C v obvode stredavého prúdu Čnný odpor u u prebeh prúdu a napäta fázorový dagram prúdu a napäta u u /2 /2 t Napäte zdroja sa rovná úbytku napäta na čnnom odpore. Prúd je vo fáze s napätím.
3. ročník. 1. polrok šk. roka 2016/2017
Príklady z MAT 3. ročník 1. polrok šk. roka 016/017 GONIOMETRIA 1. Načrtnite grafy daných funkcií na intervale 0, : f: y= tg x, g: y = -3.cos x, h: y = sin (x + ) -1. Určte hodnoty ostatných goniometrických
Výpočet. grafický návrh
Výočet aaetov a afcký návh ostuu vtýčena odobných bodov echodníc a kužncových obúkov Píoha. Výočet aaetov a afcký návh ostuu vtýčena... Vtýčene kajnej echodnce č. Vstuné údaje: = 00 ; = 8 ; o = 8 S ohľado
Nezabudnite vyplniť všetky údaje (meno a priezvisko, škola, atď.).
INŠTRUKCIE: Samostatný hárok pre riešenie úloh (hárok pre odpovede) Nezabudnite vyplniť všetky údaje (meno a priezvisko, škola, email atď.). Testy Na vyriešenie 5 otázok máte 45 minút. Správna je vždy
Obvod a obsah rovinných útvarov
Obvod a obsah rovinných útvarov Z topologického hľadiska bod môže byť vnútorný, hraničný a vonkajší vzhľadom na nejaký rovinný útvar. D. Bod je vnútorný, ak môžeme nájsť taký polomer r, že kruh so stredom
Stereometria Základné stereometrické pojmy Základné pojmy: Základné vzťahy: (incidencie) Veta 1: Def: Veta 2:
Stereometria 1. K úlohe č.1 v príklade vidíte sklenenú kocku, na ktorej je natiahnutý drôt. Vedľa vidíte 3 pohľady na túto kocku zhora, spredu a z pravého boku. Pre ďalšie kocky nakreslite takéto 3 pohľady.
2 záhrady. Na koľko % má splnenú úlohu?
CVIČNÝ MONITOR 11 1. Zásoba materiálu pre 6 pracovníkov vystačí na 30 dní. Namiesto 6 pracovníkov firma prijala 9. Na koľko im vystačí zásoba materiálu? 2. Urč číslo, ktoré dostaneš podielom delenca -22
Komplexné čísla, Diskrétna Fourierova transformácia 1
Komplexné čísla, Diskrétna Fourierova transformácia Komplexné čísla C - množina všetkých komplexných čísel komplexné číslo: z = a + bi, kde a, b R, i - imaginárna jednotka i =, t.j. i =. komplexne združené
Akumulátory. Membránové akumulátory Vakové akumulátory Piestové akumulátory
www.eurofluid.sk 20-1 Membránové akumulátory... -3 Vakové akumulátory... -4 Piestové akumulátory... -5 Bezpečnostné a uzatváracie bloky, príslušenstvo... -7 Hydromotory 20 www.eurofluid.sk -2 www.eurofluid.sk
Maturita z matematiky T E S T Y
RNr. Mário oroš Maturita z matematiky príprava na prijímacie skúšky na vysokú školu T E S T Y Všetky práva sú vyhradené. Nijaká časť tejto knihy sa nesmie reprodukovať mechanicky, elektronicky, fotokopírovaním
Objem a povrch rotačného valca
Ma-Te-03-T List 1 Objem a povrch rotačného valca RNDr. Marián Macko Ž: Prečo má valec prívlastok rotačný? U: Vysvetľuje podstatu vzniku tohto telesa. Rotačný valec vznikne rotáciou, čiže otočením obdĺžnika