RASTVORLJIVOST LEKOVA
|
|
- Ελπιδιος Γερμανού
- 8 χρόνια πριν
- Προβολές:
Transcript
1 FIZIČK-HEMIJSKA KARAKTERIZACIJA LEKVA RASTVRLJIVST LEKVA Rastvorljivost leka u GIT-u Portalna vena Krvna plazma Enterociti Aktivni transport Tableta Raspadanje tablete Pasivna difuzija Rastvaranje Lek u rastvoru Metabolizam Enzimi zida želuca Želudac ph, V Taloženje Degradacija ph, enzimi *Resorpcija ili apsorpcija
2 Rastvorljivost lekova dobra rastvorljivost leka u vodi: -apsorpcija leka (bioraspoloživost) -eliminacija leka (slaba rastvorljivost-precipitacija) slaba rastvorljivost leka u vodi: -lekovi čije je mesto delovanja u želucu (pirantel embonat) -lekovi sa produženim delovanjem -markiranje ukusa leka Rastvorljivost lekova Intrinzična rastvorljivost (S 0 ) -rastvorljivost neutralnog oblika kiseline ili baze; Efektivna rastvorljivost (S) -rastvorljivost svih oblika leka (jonizovanih i nejonizovanih) na odreñenoj ph -ukoliko je poznata intrinzična rastvorljivist (S 0 ) i pk a leka, može se odrediti efektivna rastvorljivost na odreñenoj ph vrednosti Rastvorljivost leka u telesnim tečnostima -rastvorljivost leka u puferima koji predstavljaju smešu telesnih tečnosti ili u telesnim tečnostima (GIT i krvna plazma); modeli rastvorljivosti u telesnim tečnostima se mogu direktno primeniti na stvarne uslove u organizmu;
3 DREðIVANJE RASTVRLJIVSTI Kinetička rastvorljivost -intrinzična rastorljivost leka u trenutku kada se talog prvi put pojavi u rastvoru in vitro; kinetička rastvorljivost se odreñuje u prvim fazama ispitivanja leka; Ravnotežna rastvorljivost -intrinzična rastvorljivost leka gde su rastvor i čvrsta faza u ravnoteži; predstavlja stvarnu rastvorljivost leka; merenja ravnotežne rastvorljivosti su veoma precizna ali spora (shake-flask metoda) Efektivna rastvorljivost (S) -rastvorljivost svih oblika leka na odreñenoj ph -odreñivanje S eksperimentalnim putem -predviñanje S primenom Henderson-Hasselbachove jednačine dreñivanje rastvorljivosti: "shake-flask" metoda rastvaranja uz mešanje (24 h ), koncentracija rastvorene supstance odreñuje se UV, HPLC/MS metodama za dobijanje profila ph zavisne rastvorljivosti, vrši se nekoliko merenje korišćenjem različitih pufera metoda je precizna ali dugotrajna standardna metoda
4 dreñivanje rastvorljivosti: ph- metrijska metoda uzorak se titrira do taloženja, meri se ph vrednost u ravnoteži za svaku tačku na osnovu pk a vrednosti i nagiba titracione krive odreñuje se intrinzična rastvorljivost ukoliko supstanca nije dovoljno rastvorljiva u vodi, odreñivanje rastvorljivosti vrši se upotrebom različitih rastvarača i intrinzična rastvorljivost se izračunava ekstrapolacijom za vodu na osnovu pk a i intrinzične rastvorljivosti mogu se izračunati profili phzavisne rastvorljivosti Disolucija kinetički parametar stepen povećanja količine rastvorene supstance tokom rastvaranja disolucija zavisi od: rastvorljivosti, površine čvrste supstance izložene rastvaraču, zapremine rastvarača, stepena mešanja, ph rastvora Noyes Whitney- eva jednačina: dm/dt = ka (S-C) m (masa komponente), t (vreme), A (površina supstance izložena rastvaraču), S (rastvorljivost), C (koncentracija supstance)
5 Polarne grupe: Uticaj hemijske strukture na rastvorljivost leka -RH, RNH 2, RCH (formiraju vodonične veze sa molekulama vode) Jonizujući centri (grupe koje mogu da formiraju hidrate sa molekulima vode) Ugljovodonični lanci ( što je veći odnos broja C atoma u odnosu na polarne grupe, rastvorljivost se smanjuje) Aromatične grupe (smanjuju polarnost jedinjenja) Potencijal stvaranja H-veza Potencijal stvaranja H-veza nekih funkcionalnih grupa: Primer stvaranja H-veza izmeñu hipotetičkog leka i vode: R H R R 3 2 R NH 2 3 R NH R 2 R N R' R'' 1 R R 2 Intramolekulske vodonične veze smanjuju rastvorljivost leka!
6 Jon-dipol interakcije -jon-dipol interakcije izmeñu katjona i anjona sa vodom -rastvorljivost zavisi od pk a vrednosti leka: soli slabih baza i slabih kiselina nisu veoma rastvorne jer slabo disosuju -rastvorljivost zavisi od MW (lekovi male MW su rastorljiviji od lekova velike MW) Intramolekulske veze Cviterjonski oblik tirozina: jon-jon interakcije -interakcija funkcionalnih grupa suprotnog naelektrisanja
7 Aromatične grupe, alkil grupe, (=) veze logp = 5.9 Rastvorljivost leka na različitim ph (ph-zavisna rastvorljivost) Henderson-Hasselbach-ova jednačina: Za monoprotonske kiseline: Za monoprotonske baze: HA(s) HA B(s) B S 0 = [HA] ([HAs]=1) S= [A-] + [HA] S 0 = [B] S = [B] + [BH+] K a = [A-][H+]/[HA] K a = [B][H+]/[BH+] S = [HA]K a /[H+] + [HA] S = [B + ] + [B][H+]/K a S = S 0 (Ka/[H + ] + 1) S = S 0 (1 + [H+]/K a ) S = S 0 (10 ph-pka +1) S = S 0 (10 pka-ph + 1)
8 Profil ph-zavisne rastvorljivosti za kiseline -1-2 pk a logs Intrinsic solubility ph (Concentration scale) S = S 0 (10 ph-pka +1) Profil ph-zavisne rastvorljivosti za baze S = S 0 (10 pka-ph + 1)
9 Potencijal rastvaranja FG Funkcionalna grupa Potencijal rastvaranja u vodi MF* PF* Karboksilne kis. Fenol Alkohol Amid Aminohidrohlorid Amin Etar Estar Aldehid, keton Fenolat Kvaternarni amonijum hlorid 5-6 C atoma 3 C atoma 6-7 C atoma 3-4 C atoma 5-6 C atoma 3 C atoma 6 C atoma 2-3 C atoma C atoma 6-7 C atoma 3 C atoma 4-5 C atoma 2C atoma 6 C atoma 3 C atoma 4-5 C atoma 2C atoma C atoma C atoma *MF (monofunkcionalna jedinjenja); PF (polifunkcionalna jedinjenja) Potencijal rastvaranja Primer 1: Fenol Phenol 3 0 Alcohol Alkohol H CH 2 CH 3 H C CH 2 CH 2 N CH 2CH Amine Funkcionalne Potencijal # groupa Ukupan potencijal grupe rastvaranja rastvaranja Phenol 3 4 C C Alcohol 3 4 C C Amine 3 C 1 3 C Ukupno 9C atoma Empirijska formula: C 19 H 31 N 2 Potencijal rastvaranja 9 C atoma, ukupno 19 C atoma: Nerastvoran u vodi, rastvoran u obliku soli hidrohlorida i Na +
10 Potencijal rastvaranja Primer 2: 3 0 Amine N CH 3 H Phenol H Ether H H 2 0 Alcohol Funkcionalne Potencijal # grupa Ukupan potencijal grupe rastvaranja rastvaranja Fenol 3 4 C C Amin 3 C 1 3 C Alkohol 3 4 C C Etar 2 C 1 2 C Ukupno C C 17 H 20 N 3 Nerastvoran u vodi, rastvoran u obliku soli Na + i hidrohlorida ptimizacija rastvorljivosti PVEĆANJE RASTVRLJIVSTI - formiranje soli uvoñenje grupa koje imaju veliki potencijal rastvaranja upotreba specijalnih doziranih oblika SMANJENJE RASTVRLJIVSTI maskiranje polarnih funkcionalnih grupa
11 Povećanje rastvorljivosti: formiranje soli kiselina i baza kiseline: soli sa metalima ili amino soli baze: soli sa organskim kiselinama Anjoni Citrati Laktati Tartarati Hloridi Sulfati Hidrogen sulfati Katjoni Natrijum Kalcijum Cink Dietanolamin N-metilglukamin Aminoetanol Povećanje rastvorljivosti: formiranje soli sa kiselinama Diklofen Diklofen natrijum H Na+ - Cl Cl HN AH A HN Cl Cl slabo rastvorljiv rastvorljiv
12 Povećanje rastvorljivosti: formiranje soli sa bazama H H H + N H R 1 X - R derivat feniletil amina: alfa agonista nerastvorljiv X: -tartarat -hlorid rastvorljiv Povećanje rastvorljivosti: uvoñenje novog jonizujućeg centra N vezivanje za enzim N vezivanje za enzim N HN Br Inhibitori EGFR kinaze N HN N Br PD (Pfizer) Iressa (AstraZeneca) veoma slabo rastvorljiv ne može se dalje razviti lek veoma rastvorljiv lek na tržištu
13 Smanjenje rastvorljivosti: maskiranje polarnih funkcionalnih grupa polarne grupe koje se maskiraju mogu biti uslov za dejstvo! Primer: lek koji pokazuje dobru in vitro aktivnost, ali se ne može koristiti u kliničkoj praksi jer ne prolazi biološke membrane, a lipofilnost se ne može modifikovati jer polarne grupe predstavljaju uslov za dejstvo H NH 2 H N CH H H H Smanjenje rastvorljivosti: depo preparati CH 3 C CH 2 CH H Estradiol prolek (prodrag) - stabilnost - depo dejstvo
14 Uvoñenje novih grupa Istraživanja novog analoga jer aktivnost može biti promenjena! kisele grupe: -hemolitičke osobine -aromatične kisele grupe (antiinflamatorna aktivnost) -kisele grupe u strukturi sa baznim grupama (slabije rastvorljivi cviterjoni metalni joni soli: -prezasićenost metalnim jonima bazne grupe: -promena aktivnosti leka jer su baze uglavnom uključene u interakcije sa neurotransmiterima i u biološke procese koji uključuju amine Predviñanje rastvorljivosti: faktori koji utiču na rastvorljivost Molekulski deskriptori opisuju odreñene osobine molekula oblik molekula veličina molekula jonizacija lipofilnost intramolekulske H-veze intermolekulske H-veze (kristalna struktura)
15 Predviñanje rastvorljivosti korišćenjem molekulskih deskriptora Abraham-ova jednačina: logs aq = R π H +2.17Σα H +4.24Σβ H 3.36Σα H Σβ H 4.00Vx n=659, r2=0.920, S=0.557, F=1256 R-molarna refraktivnost π H -dipolarnost/polarizabilnost ΣαH- donori H-veza ΣβH-akceptori H-veza Vx- zapremina po McGowan-u Rastvorljivost lekova Benzotiazid Hlorzoksazon Log S = -2.97
16 Rastvorljivost lekova Nortriptilin Benzokain Papaverin Amitriptilin Primeri za vežbanje Modifikovati sledeće jedinjenje (na dva načina) da bi smanjili njegovu rastvorljivost. CH H Na osnovu empirijskih formula jedinjenja i potencijala rastvaranja funkcionalnih grupa, predvideti da li je sledeće jedinjenje rastvorljivo u vodi: C 16 H 16 F 2 7 Izračunati efektivnu rastvorljivost slabe monoprotonske kiseline u želucu (ph =2), ukoliko je intrinzična rastvorljivost date kiseline S 0 = 0.06 mg/ml i pk a =4.0.
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Uvod u QSAR. Quantitative Structure Activity Relationships- QSAR. Quantitative Structure Property Relationships- QSPR
Uvod u QSAR Quantitative Structure Activity Relationships- QSAR Quantitative Structure Property Relationships- QSPR Postoji korelacija izmedju strukture i hemijske i biološke aktivnosti. SAR -tradicionalni
KVANTITATIVNI ODNOSI STRUKTURE I DEJSTVA LEKOVA
FAMACEUTSKA HEMIJA 1 KVATITATIVI DSI STUKTUE I DEJSTVA LEKVA Predavač: Doc. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X H 4-X-pirazoli X heksil pentil propil metil J -propil -izopropil
Kvantitativni odnosi strukture i dejstva
FARMAEUTSKA HEMIJA 1 KVANTITATIVNI DNSI STRUKTURE I DEJSTVA LEKVA Predavač: Prof. dr. Slavica Erić Kvantitativni odnosi strukture i dejstva X N H N 4-X-pirazoli X Log1/Ki heksil 6.9 pentil 6.82 propil
Kiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Kiselo-bazne ravnoteže
Uvod u biohemiju (školska 2016/17.) Kiselo-bazne ravnoteže NB: Prerađena/adaptirana prezentacija američkih profesora! Primeri kiselina i baza iz svakodnevnog života Arrhenius-ova definicija kiselina i
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
HEMIJSKE RAVNOTEŽE. a = f = f c.
II RAČUNSKE VEŽBE HEMIJSKE RAVNOTEŽE TEORIJSKI DEO I POJAM AKTIVNOSTI JONA Razblaženi rastvori (do 0,1 mol/dm ) u kojima je interakcija između čestica rastvorene supstance zanemarljiva ponašaju se kao
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA
SADRŽAJ PREDMETA PREDAVANJA ~ PRINCIPI HEMIJSKE RAVNOTEŽE ~ KISELINE, BAZE I SOLI RAVNOTEŽA U VODENIM RASTVORIMA ~ RAVNOTEŽA U HETEROGENIM SISTEMIMA SLABO RASTVORLJIVA JEDINJENJA ~ KOORDINACIONA JEDINJENJA
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
RASTVORI. više e komponenata. Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda
RASTVORI Rastvori su homogene smeše e 2 ili više e komponenata Šećer u vodi, O 2 u vodi, zubne plombe, vazduh, morska voda Fizička stanja rastvora Rastvori mogu da postoje u bilo kom od 3 agregatna stanja:
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu
Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x
RAVNOTEŽE U RASTVORIMA KISELINA I BAZA
III RAČUNSE VEŽBE RAVNOTEŽE U RASTVORIMA ISELINA I BAZA U izračunavanju karakterističnih veličina u kiselinsko-baznim sistemima mogu se slediti Arenijusova (Arrhenius, 1888) teorija elektrolitičke disocijacije
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
Rastvori rastvaračem rastvorenom supstancom
Rastvori Rastvor je homogen sistem sastavljen od najmanje dvije supstance-jedne koja je po pravilu u velikom višku i naziva se rastvaračem i one druge, koja se naziva rastvorenom supstancom. Rastvorene
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
Rastvori i osobine rastvora
Rastvori i osobine rastvora U srpskom jeziku reč rasvor predstavlja homogenu tečnu smešu. U engleskom reč solution predstavlja više od toga smešu dva gasa, legure (homogene smeše dva metala)... Na ovom
Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.
Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati
10. STABILNOST KOSINA
MEHANIKA TLA: Stabilnot koina 101 10. STABILNOST KOSINA 10.1 Metode proračuna koina Problem analize tabilnoti zemljanih maa vodi e na određivanje odnoa između rapoložive mičuće čvrtoće i proečnog mičućeg
Zavrxni ispit iz Matematiqke analize 1
Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1
UKUPAN BROJ OSVOJENIH BODOVA
ŠIFRA DRŽAVNO TAKMIČENJE II razred UKUPAN BROJ OSVOJENIH BODOVA Test regledala/regledao...... Podgorica,... 008. godine 1. Izračunati steen disocijacije slabe kiseline, HA, ako je oznata analitička koncentracija
HEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
BETA ADRENERGIČKI BLOKATORI
BETA ADRENERGIČKI BLOKATORI KOMPETITIVNI INHIBITORI KATEHOLAMINA NA BETA ADRENERGIČKIM RECEPTORIMA LEKOVI KOJI SPECIFIČNO BLOKIRAJU BIOLOŠKI ODGOVOR NA IZOPRENALIN, A DELIMIČNO NA ADRENALIN PARCIJALNI
ANALITIČKA HEMIJA. Kvalitativna analiza Kvantitativna analiza
ANALITIČKA HEMIJA Kvalitativna analiza Kvantitativna analiza RAZLIKE Kvalitativnom hemijskom analizom dolazi se do saznanja o sastavu uzorka, tj. dobija se odgovor na pitanje od kojih komponenti se uzorak
= T 2. AgBr (s) + ½ Cl 2(g) + ½ Br 2(g) = AgCl (s) O (l) O (g) +1/2O 2(g) H 2(g) =H 2. značaj navođenja agregatnog stanja
TERMOEMIJA Termohemija proučava toplotne promene koje prate hemijske reakcije, fazne prelaze (topljenje, isparavanje, sublimacija, polimorfne promene), rastvaranje supstance, razblaživanje rastvora itd.
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
MEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE
MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Supstituisane k.k. Sinteza Aminokiseline Biodegradabilni polimeri Peptidi. Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori
Supstituisane k.k. Značaj Sinteza Aminokiseline Biodegradabilni polimeri Peptidi Industrijska primena Aminokiseline Stočarstvo Hiralni katalizatori Hidroksikiseline Kozmetička industrija kreme Biološki
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI
RASTVORI DISPERZNI SISTEMI OSOBINE PRAVIH RASTVORA ELEKTROLITI RAVNOTEŽE U RASTVORIMA ELEKTROLITA KOLOIDI DISPERZNI SISTEMI Disperzija (lat.) raspršivanje, rasipanje Disperzni sistem je smeša u kojoj su
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4
UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log
Konstruisanje. Dobro došli na... SREDNJA MAŠINSKA ŠKOLA NOVI SAD DEPARTMAN ZA PROJEKTOVANJE I KONSTRUISANJE
Dobro došli na... Konstruisanje GRANIČNI I KRITIČNI NAPON slajd 2 Kritični naponi Izazivaju kritične promene oblika Delovi ne mogu ispravno da vrše funkciju Izazivaju plastične deformacije Može doći i
Računarska grafika. Rasterizacija linije
Računarska grafika Osnovni inkrementalni algoritam Drugi naziv u literaturi digitalni diferencijalni analizator (DDA) Pretpostavke (privremena ograničenja koja se mogu otkloniti jednostavnim uopštavanjem
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.
Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Matematka 1 Zadaci za drugi kolokvijum
Matematka Zadaci za drugi kolokvijum 8 Limesi funkcija i neprekidnost 8.. Dokazati po definiciji + + = + = ( ) = + ln( ) = + 8.. Odrediti levi i desni es funkcije u datoj tački f() = sgn, = g() =, = h()
ADICIJA AMINA NA KARBONILNU GRUPU. AldehIdi i ketoni
ADIIJA AMIA A KABILU GUPU AldehIdi i ketoni eakcije sa = : Primarni amini grade imine Sekundarni amini grade enamine Tercijarni amini ne reaguju AMII: primarni sekundarni tercijarni PIMAI AMII IMII Adicija-Eliminacija
Mašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
CILJNA MESTA DEJSTVA LEKOVA
FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači
REAKCIJE ELIMINACIJE
REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova
Osnovne veličine, jedinice i izračunavanja u hemiji
Osnovne veličine, jedinice i izračunavanja u hemiji Pregled pojmova veličina i njihovih jedinica koje se koriste pri osnovnim izračunavanjima u hemiji dat je u Tabeli 1. Tabela 1. Veličine i njihove jedinice
Prvi kolokvijum. y 4 dy = 0. Drugi kolokvijum. Treći kolokvijum
27. septembar 205.. Izračunati neodredjeni integral cos 3 x (sin 2 x 4)(sin 2 x + 3). 2. Izračunati zapreminu tela koje nastaje rotacijom dela površi ograničene krivama y = 3 x 2, y = x + oko x ose. 3.
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
MEHANIKA FLUIDA. Isticanje kroz otvore sa promenljivim nivoom tečnosti
MEHANIKA FLUIDA Isticanje kroz otvore sa promenljivim nivoom tečnosti zadatak Prizmatična sud podeljen je vertikalnom pregradom, u kojoj je otvor prečnika d, na dve komore Leva komora je napunjena vodom
Osnovne teoreme diferencijalnog računa
Osnovne teoreme diferencijalnog računa Teorema Rolova) Neka je funkcija f definisana na [a, b], pri čemu važi f je neprekidna na [a, b], f je diferencijabilna na a, b) i fa) fb). Tada postoji ξ a, b) tako
STVARANJE VEZE C-C POMO]U ORGANOBORANA
STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
RIJEŠENI ZADACI I TEORIJA IZ
RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM. 5. Navesti osobine amfoternih oksida i napisati 3 primera amfoternih oksida.
Dr Sanja Podunavac-Kuzmanović, redovni profesor tel: (+381) 21 / 485-3693 fax: (+381) 21 / 450-413 e-mail: sanya@uns.ac.rs web page: hemijatf.weebly.com ISPITNA PITANJA Opšta i neorganska hemija I KOLOKVIJUM
Fizika Biologija i druge prirodne nauke. Dva glavna vida materije su masa i energija. E = m c 2
HEMIJA je nauka o materiji i njenim promenama Fizika Biologija i druge prirodne nauke Dva glavna vida materije su masa i energija. Ajnštajnova veza između energije i materije E = m c 2 Materija ima dualna
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής Κατεύθυνσης Χημεία Γ Λυκείου ΚΑΛΟΓΝΩΜΗΣ ΗΛΙΑΣΚΟΣ e-mail: info@iliaskosgr wwwiliaskosgr 0 2 7 1s 2s ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ 2p 3s 14 2 2 6
SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE
1 SOPSTVENE VREDNOSTI I SOPSTVENI VEKTORI LINEARNOG OPERATORA I KVADRATNE MATRICE Neka je (V, +,, F ) vektorski prostor konačne dimenzije i neka je f : V V linearno preslikavanje. Definicija. (1) Skalar
Klasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA
Katedra za elektroniku Elementi elektronike Laboratorijske vežbe Vežba br. 2 STATIČKE KARAKTERISTIKE DIODA I TRANZISTORA Datum: Vreme: Studenti: 1. grupa 2. grupa Dežurni: Ocena: Elementi elektronike -
INŽENJERSTVO NAFTE I GASA. 2. vežbe. 2. vežbe Tehnologija bušenja II Slide 1 of 50
INŽENJERSTVO NAFTE I GASA Tehnologija bušenja II 2. vežbe 2. vežbe Tehnologija bušenja II Slide 1 of 50 Proračuni trajektorija koso-usmerenih bušotina 2. vežbe Tehnologija bušenja II Slide 2 of 50 Proračun
SISTEMI NELINEARNIH JEDNAČINA
SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije
(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.
1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f
IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe
POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE
**** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA
II RASTVORI. Borko Matijević
Borko Matijević II RASTVORI Rastvori predstavljaju složene disperzne sisteme u kojima su fino usitnjene čestice jedne supstance ravnomerno raspoređene između čestica druge supstance. Supstanca koja se
OBRTNA TELA. Vladimir Marinkov OBRTNA TELA VALJAK
OBRTNA TELA VALJAK P = 2B + M B = r 2 π M = 2rπH V = BH 1. Zapremina pravog valjka je 240π, a njegova visina 15. Izračunati površinu valjka. Rešenje: P = 152π 2. Površina valjka je 112π, a odnos poluprečnika
Molekuli sa hiralnim centrom su optički aktivne supstance - rotiraju ravan polarizovane svetlosti (sve AK sem glicina).
Proteini Molekuli sa hiralnim centrom su optički aktivne supstance - rotiraju ravan polarizovane svetlosti (sve AK sem glicina). Aminokiseline su amfoterna jedinjenja U vodenim rastvorima predominantno
1 Promjena baze vektora
Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis
LANCI & ELEMENTI ZA KAČENJE
LANCI & ELEMENTI ZA KAČENJE 0 4 0 1 Lanci za vešanje tereta prema standardu MSZ EN 818-2 Lanci su izuzetno pogodni za obavljanje zahtevnih operacija prenošenja tereta. Opseg radne temperature se kreće
A L D O L N A R E A K C I J A
A L D L A E A K C I J A * U PTI^IM USLVIMA * Katalizovane bazama * Katalizovane kiselinama * U APTI^IM USLVIMA (eakcije preformiranih enolata ili dirigovane adicije) * U baznim uslovima * U kiselim uslovima
1. Arrhenius. Ion equilibrium. ก - (Acid- Base) 2. Bronsted-Lowry *** ก - (conjugate acid-base pairs) HCl (aq) H + (aq) + Cl - (aq)
Ion equilibrium ก ก 1. ก 2. ก - ก ก ก 3. ก ก 4. (ph) 5. 6. 7. ก 8. ก ก 9. ก 10. 1 2 สารล ลายอ เล กโทรไลต (Electrolyte solution) ก 1. strong electrolyte ก HCl HNO 3 HClO 4 NaOH KOH NH 4 Cl NaCl 2. weak
OSNOVNA ŠKOLA HEMIJA
OSNOVNA ŠKOLA HEMIJA Zadatak broj Bodovi 1. 8 2. 8 3. 6 4. 10 5. 10 6. 6 7. 10 8. 8 9. 8 10. 10 11. 8 12. 8 Ukupno 100 Za izradu testa planirano je 120 minuta. U toku izrade testa učenici mogu koristiti
Odred eni integrali. Osnovne osobine odred enog integrala: f(x)dx = 0, f(x)dx = f(x)dx + f(x)dx.
Odred eni integrli Osnovne osobine odred enog integrl: fx), fx) fx) b c fx), fx) + c fx), 4 ) b αfx) + βgx) α fx) + β gx), 5 fx) F x) b F b) F ), gde je F x) fx), 6 Ako je f prn funkcij fx) f x), x R ),
2log. se zove numerus (logaritmand), je osnova (baza) log. log. log =
( > 0, 0)!" # > 0 je najčešći uslov koji postavljamo a još je,, > 0 se zove numerus (aritmand), je osnova (baza). 0.. ( ) +... 7.. 8. Za prelazak na neku novu bazu c: 9. Ako je baza (osnova) 0 takvi se
PRILOG. Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C)
PRILOG Tab. 1.a. Dozvoljena trajna opterećenja bakarnih pravougaonih profila u(a) za θ at =35 C i θ=30 C, (θ tdt =65 C) Tab 3. Vrednosti sačinilaca α i β za tipične konstrukcije SN-sabirnica Tab 4. Minimalni
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA
II. ODREĐIVANJE POLOŽAJA TEŽIŠTA Poožaj težišta vozia predstavja jednu od bitnih konstruktivnih karakteristika vozia s obzirom da ova konstruktivna karakteristika ima veiki uticaj na vučne karakteristike
5. Karakteristične funkcije
5. Karakteristične funkcije Profesor Milan Merkle emerkle@etf.rs milanmerkle.etf.rs Verovatnoća i Statistika-proleće 2018 Milan Merkle Karakteristične funkcije ETF Beograd 1 / 10 Definicija Karakteristična
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Heterogene ravnoteže taloženje i otapanje. u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima
Heterogene ravnoteže taloženje i otapanje u vodi u prisustvu zajedničkog iona u prisustvu kompleksirajućegreagensa pri različitim ph vrijednostima Ako je BA teško topljiva sol (npr. AgCl) dodatkom
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
III VEŽBA: FURIJEOVI REDOVI
III VEŽBA: URIJEOVI REDOVI 3.1. eorijska osnova Posmatrajmo neki vremenski kontinualan signal x(t) na intervalu definisati: t + t t. ada se može X [ k ] = 1 t + t x ( t ) e j 2 π kf t dt, gde je f = 1/.
Osnove biokemije Seminar 2
Osnove biokemije Seminar 2 B. Mildner Rješenje zadaće 1.(zadaća od 4. 3. 2014) 1. D 11. C 2. C 12. B 3. B 13. C 4. B 14. B 5. C 15. D 6. D 16. A 7. A 17. C 8. B 18. D 9. D 19. A 10. C 20. C 1 1. Za vodu
Periodičke izmjenične veličine
EHNČK FAKULE SVEUČLŠA U RJEC Zavod za elekroenergeiku Sudij: Preddiploski sručni sudij elekroehnike Kolegij: Osnove elekroehnike Nosielj kolegija: Branka Dobraš Periodičke izjenične veličine Osnove elekroehnike
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA
IV RAČUNSKE VEŽBE RAVNOTEŽE U REDOKS SISTEMIMA Redoks reakcije su reakcije razmene elektrona. U ovim reakcijama dolazi do promene oksidacionog broja supstanci koje učestvuju u procesu oksidacije i redukcije.
C kao nukleofil (Organometalni spojevi)
C kao nukleofil (Organometalni spojevi) 1 Nastajanje nukleofilnih C atoma i njihova adicija na karbonilnu grupu Ukupan proces je jedan od najkorisnijih sintetskih postupaka za stvaranje C-C veze 2 Priroda
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp