ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ ΙΙ Εξαναγκαςμζνη ςυναγωγή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ ΙΙ Εξαναγκαςμζνη ςυναγωγή"

Transcript

1 ΜΕΣΑΔΟΗ ΘΕΡΜΟΣΗΣΑ ΙΙ Εξαναγκαςμζνη ςυναγωγή Θράςοσ Πανίδησ ΕΡΓΑΣΗΡΙΟ ΣΕΧΝΙΚΗ ΘΕΡΜΟΔΤΝΑΜΙΚΗ & ΕΦΑΡΜΟΓΩΝ ΣΑΣΙΣΙΚΗ ΜΗΧΑΝΙΚΗ ΣΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ & ΑΕΡΟΝΑΤΠΗΓΩΝ ΠΑΝΕΠΙΣΗΜΙΟ ΠΑΣΡΩΝ

2 υνοριακό ςτρώμα θερμοκραςίασ Re 1 < Re 2 < Re 3

3 υνοριακό ςτρώμα ταχφτητασ δ ν u ν u ν u f (Re ) x Ux f

4 Πάχοσ ςυνοριακοφ ςτρώματοσ Ux f(re x ) f δ

5 Πάχοσ ςυνοριακοφ ςτρώματοσ θερμοκραςίασ x 5Re x 12 t Rex Pr x

6 Ομοιότητα ςυνοριακοφ ςτρώματοσ ταχφτητασ και θερμοκραςίασ u U y f t t s y f tf ts t

7 Κατανομή ταχφτητασ ςτη ςτρωτή ροή x Re x Re x Ux u U y f du dy s x x x10 5 x Re x

8 Κατανομή θερμοκραςίασ ςτη ςτρωτή ροή Rex Pr x t tf y f t t s f q dt k dy s x x10 5 Re x

9 Εξάρτηςη τησ κατανομήσ θερμοκραςίασ από τον Pr

10 Αςτάθεια μετάβαςη από ςτρωτή ςε τυρβώδη ροή

11 Κατανομή ταχφτητασ ςτη ςτρωτή και την τυρβώδη ροή u δ x τρωτή ροή, λφση Blasius Συρβώδης ροή, Γενικευμζνη κατανομή

12 Κατανομή ταχφτητασ ςτη ςτρωτή και την τυρβώδη ροή t x 0.381Re 15 x x l 5Re x 12 x x x10 6 Re x

13 Κατανομή θερμοκραςίασ ςτη ςτρωτή και την τυρβώδη ροή θ δ θ,x Συρβώδης ροή τρωτή ροή

14 Κατανομή θερμοκραςίασ ςτη ςτρωτή και την τυρβώδη ροή x x10 6 Re x

15 Εξάρτηςη του τοπικοφ ςυντελεςτή ςυναγωγήσ από τον Re x h x x10 6 Re x

16 Εξάρτηςη του τοπικοφ ςυντελεςτή ςυναγωγήσ από τον Re x

17 Εξάρτηςη του τοπικοφ αριθμοφ Nu από τον Re x Nu x h x x k

18 τρωτή ροή * Αναλυτική λφςη 50 Nu x = Re x 1/2 Pr 1/3 h x L L h 0 xdx h L L L L L 1hxx 1 Nu L = = Nu dx Nu 0 0 xdx k k L = Re 1/2 x k L Pr 1/3 x Μζσος συντελεστής συναγωγής 1 h = h L = L L 0 h dx x Re x Re L 0.6 < Pr < 50 Re < Re x,c = 5 x 10 5 ιδιότητεσ ςε θ m

19 τρωτή ροή * Kays-Crawford Nu x = (Re x Pr) 1/2 Nu L = (Re L Pr) 1/2 Pr < 0.05 (υγρά μζταλλα, δ θ >> δ) Re < Re x,c = 5 x 10 5 ιδιότητεσ ςε θ m

20 τρωτή ροή * Churchill-Ozoe N = Re Pr u [1+ ( / Pr ) ] 1/ 2 1/ 3 x x 2 / 3 1/ N = Re Pr u [1+ ( / Pr ) ] 1/ 2 1/ 3 L L 2 / 3 1/ 4 Re Pr > 100 ιδιότητεσ ςε θ m

21 Συρβώδησ ροή Αναλογία von Karman 1 C f Re xpr N 2 u x = f C [(Pr -1)+ ln(1+ (Pr -1))] 2 6 C f = Re x -1/5 5 x 10 5 < Re x < 10 7 C f = 0.37 (log 10 Re x ) < Re x Pr κοντά ςτη μονάδα ιδιότητεσ ςε θ m

22 Συρβώδησ ροή * Αναλογία Colburn Nu x = Re x 0.8 Pr 1/3 5 x 10 5 < Re x < 10 7 Nu x = Re x (log 10 Re x ) Pr 1/ < Re x 0.6 < Pr < 60 ιδιότητεσ ςε θ m

23 0.6 < Pr < 60 ιδιόηηηες ζε θ m Ο ςυντελεςτήσ ςυναγωγήσ για διάφορεσ ςυςχετίςεισ h (W/m 2 s) 10 Pr = 80 h (W/m 2 s) 10 Pr = 1 h (W/m 2 s) 10 Αναλυτική λύση Churchill-Ozoe Kays-Crawford Colburn von Karman Pr = E+05 1.E+06 Re x 1.E+07 1.E+05 1.E+06 Re x 1.E+07 1.E+05 1.E+06 Re x 1.E+07

24

25 Μζςοσ ςυντελεςτήσ ςυναγωγήσ 1 L h = hl= 0 hxdx L h L 1 k x L L N ul= = N 0 uxdx 1 2 xcr 1 U x 1 L 1 U x N u L = Pr 0 dx Pr dx x xcr x Στρωτή ροή Τυρβϊδησ ροή Αναλυτική λφςη Αναλογία Colburn 0.8 1/ 3 1/ 2 1/ Nu L = Pr Re x cr Pr Re L - Re x cr

26 * Μικτή Ροή (Αναλυτική λφςη + Αναλογία Colburn, Re xcr = 5 x 10 5 ) Nu L = [0.037 Re L ] Pr 1/3, 5 x 10 5 < Re L < 10 7 Nu L = [0.228 Re L (log 10 Re L ) ] Pr 1/3, 10 7 < Re L < < Pr < 60 ιδιότητεσ ςε θ m Re x,cr = 5 x 10 5

27 Εξαναγκαςμζνη Μεταφορά Θερμότητασ ε ωλήνεσ Nu = Nu(Re,Pr) Re D UD b = R 0 R 0 c p 2 r d r c p 2 r d r

28 τρωτή ροή ςε ςωλήνα Παραβολική κατανομή ταχφτητασ

29 Αρχικό μήκοσ

30 Αρχικό μήκοσ - Ανάπτυξη κατανομήσ ταχφτητασ

31 Αρχικό μήκοσ υντελεςτζσ αντίςταςησ και ςυναγωγήσ

32 Αρχικό μήκοσ Εξάρτηςη αριθμοφ Nu x από Re D

33 υνοριακζσ ςυνθήκεσ

34 Κατανομζσ θερμοκραςίασ ανάλογα με τισ ςυνοριακζσ ςυνθήκεσ αρχικό μήκοσ

35 Κατανομζσ θερμοκραςίασ ανάλογα με τισ ςυνοριακζσ ςυνθήκεσ πλήρωσ αναπτυγμζνη θερμικά ροή

36 τρωτή ροή * Nusselt Nu = < Pr < (D / L) Re D Pr < 10 (ςωλήνασ μεγάλου μήκουσ) ιδιότητεσ ςτη μζςη θ b Για ςυνοριακή ςυνθήκη Σταθερήσ ροήσ θερμότητασ h D N u D = = 4.36 k

37 τρωτή ροή Hausen h D (D / L) Re Pr N u = = Re D D 2 / 3 k [(D / L) D Pr ] πλήρωσ αναπτυγμζνη θερμικά ροή ιδιότητεσ ςε θ b

38 τρωτή ροή * Sieder-Tate D NuD 1.86 ReDPr L s < Pr < (D / L) Re D Pr > 10 (κριτήριο κοντοφ ςωλήνα) ιδιότητεσ ςτη μζςη θ b μ s ςε θ s

39 τρωτή ροή Hausen h D (D / L) Re Pr N u = = Re D D 2 / 3 k [(D / L) D Pr ] πλήρωσ αναπτυγμζνη θερμικά ροή ιδιότητεσ ςε θ b

40 Διαφορζσ ςτρωτήσ τυρβώδουσ ροήσ Κατανομή Σαχφτητασ

41 Διαφορζσ ςτρωτήσ τυρβώδουσ ροήσ Κατανομή Θερμοκραςίασ

42 Συρβώδεισ κατανομζσ ταχφτητασ και θερμοκραςίασ (πλήρωσ αναπτυγμζνη ροή)

43 Συρβώδησ ροή Nu D Αναλογία von Karman f Re Pr 8 D 1+ 5 f 5 Pr- 1 + ln Pr 1 f = Re D -1/4, 10 4 < Re D < 5 x 10 4 f = Re D -1/5, 3 x 10 4 < Re D < 10 6 Pr κοντά ςτη μονάδα ιδιότητεσ ςε θ b

44 Συρβώδησ ροή Αναλογία Colburn D = D D x Nu Re Pr,10 Re D = D x D Nu 0.023Re Pr, 3 10 Re 10 πλήρωσ αναπτυγμζνη ροή ςε λείουσ ςωλήνεσ ιδιότητεσ ςε θ b

45 Συρβώδησ ροή * Dittus-Boelter N = n u D ReD Pr n = 0.4 για θ s > θ b n = 0.3 για θ s < θ b 0.7 < Pr < < Re D < 10 6 θ s - θ b < 6 C για υγρά θ s - θ b < 60 C για αζρια L/D > 60 (πλήρωσ αναπτυγμζνη ροή) ακρίβεια 20% ιδιότητεσ ςτη μζςη θ b

46 Συρβώδησ ροή * Sieder-Tate / 3 N u D= ReD Pr ( ) s < Pr < < Re D < 10 6 L/D > 60 (πλήρωσ αναπτυγμζνη ροή) ακρίβεια 20% ιδιότητεσ ςτη μζςη θ b (μ s ςε θ s )

47 Συρβώδησ ροή * Petukhov N u D = f / 8 ReD Pr 2 / f / 8-1 Pr n s f = (1.82 log10 Re D ) -2 (για λείουσ ςωλήνεσ, ή αλλιϊσ διάγραμμα Moody) n = 0.11 για υγρά, θ s > θ b n = 0.25 για υγρά, θ s < θ b n = 0 για αζρια 0.5 < Pr < 200 (ακρίβεια 6%) 200 < Pr < 2000 (ακρίβεια 10%) 10 4 < Re D < 5 x < μ / μ s < 40 L/D > 60 (πλήρωσ αναπτυγμζνη ροή) ιδιότητεσ ςτη μζςη θ b (μ s ςε θ s )

48 Συρβώδησ ροή - κοντοί ςωλήνεσ Nusselt Το αρχικό μήκοσ ςε τυρβϊδεισ ροζσ θεωρείται ότι είναι ςημαντικά μικρότερο από το αντίςτοιχο τησ ςτρωτήσ ροήσ. N = (D / L ) 0.8 1/ 3 u D ReD Pr 10 < L/D < 400 ιδιότητεσ ςε θ b 1/ 8

49 Τγρά μζταλλα αριθμόσ Peclet Seban και Shimazaki Azer και Chao U L Pe = Pr Re = 0.8 u D= PeD N = u D PeD Pr Pe D > 100 L/D > 60 ιδιόηηηερ ζε θ b Pe D > Pr < 0.1 ιδιόηηηερ ζε θ b Sliecher et al Nu D = Pe 0.85 D Pr 0.08 Re D < 5 x < Pr < 0.1 ιδιόηηηερ ζε θ b

50 Εξαναγκαςμζνη Μεταφορά ε Μη Κυκλικζσ Διατομζσ. h 4A = P ορθογϊνιεσ διατομζσ με πλευρζσ a και b (Kays) D b/a Nu Dh ομοαξονική δίοδοσ >8.0 D h = D ο - D i Ο ςυντελεςτήσ h που προκφπτει αναφζρεται και ςτισ δυο επιφάνειεσ τησ διόδου.

51 Ροή μζςα από ςωλήνα με ιςοθερμοκραςιακή επιφάνεια Q m c ha p fo fi s f m s f dq h C dx dq mcp df 1 hc fo L d f fi 0 s f mcp dx hc ln s fo ln s fi 0 mc L p mc p h CL s fo ln s fi

52 Ροή μζςα από ςωλήνα με ιςοθερμοκραςιακή επιφάνεια mc fo fi Q m c h CL ha s fo ln s fi p h CL s fo ln s fi s f m Q m c ha p fo fi s f m p fo fi s f m s fo s fi s fo ln s fi Μζςη λογαριθμική διαφορά θερμοκραςίασ

53 Ροή πίςω από πιάτο Στρωτή ροή Τυρβϊδησ ροή

54 Ροή κάθετα ςε ζναν κφλινδρο. Στρωτή ροή Τυρβϊδησ ροή

55 Αποκόλληςη

56 Ροή κάθετα ςε ζναν κφλινδρο. Re = 0 Re = 5 Re = 40 Re = 150 Re = 3x10 5 Re = 35x10 5

57 Αποκόλληςη ςε ςφαίρα

58 Η μπάλα του γκόλφ

59 Μπάλεσ

60

61 Zhukauskas N = C m n u D ReD Pr Pr Pr s 1/ 4 ςνηελεζηέρ C και m γιά ηην εξίζωζη Zhukauskas 0.7 < Pr < < Re D <10 6 n = 0.37, Pr 10 n = 0.36, Pr > 10 Πεπιοσή Re C m x x ιδιότητεσ ςε θ m Pr ςε θ και Pr s ςε θ s

62 Churchill - Bernstein 0.62 Re N = Re u [ 1 + (0.4 / Pr ) ] 2.82 x 10 1/ 2 1/ 3 D Pr D D 2 / 3 1/ / 8 4 / 5 Re D Pr > 0.2 ιδιότητεσ ςε θ m

63 Ροή κάθετα ςε μη κυλινδρικοφσ αγωγοφσ Jakοb Re D C m N = C m 1/ 3 u D ReD Pr D 5 x D 5 x ιδιότητεσ ςε θ m D 5 x x x D 5 x D 4 x x

64 Ροή κάθετα ςε ςυςτοιχία ςωλήνων Re Dm = U m D S D U m = U ST ST - D αν 2 (S D -D) < S T - D = S S T Um U 2 ( D - D)

65 Grimisοn n 1/ 3 u D = 1.12 C ( ReDm ) Pr Prandtl ~ 1 Re Dm = N σωλήνων> 10 σειρζς. S T / D Διάηαξη ζωλήνων S L /D C n C n C n C n Οπθογωνική Ρομβοειδήρ

66 Zhukauskas 1/ 4 n 0.36 Pr u D = C ReDm Pr s Pr 0.7 < Pr < < Re Dm < 10 6 ιδιότητεσ ςε θ m Pr ςε θ και Pr s ςε θ σ Re Dm Οπθογωνική διάηαξη Ρομβοειδήρ διάηαξη C n C n x x ζςζσέηιζη για ένα ζωλήνα S T /S L < 0.7 δεν ζςνιζηάηαι S T /S L > ζςζσέηιζη για ένα ζωλήνα S T /S L < (S T /S L ) 1/5 0.6 S T /S L >

67 Διορθωτικόσ ςυντελεςτήσ τησ εξίςωςησ Zhukauskas Nu D Nu 20 Ορθογωνική Ρομβοειδής N, Αριθμός ζειρών

68 Παράδειγμα 1: Μια τετράγωνη επίπεδη πλάκα με διαςτάςεισ 11 x 11 cm 2 ζχει θερμοκραςία 200 ο C. Kαι από τισ δυο πλευρζσ τησ πλάκασ ρζει υδράργυροσ με θερμοκραςία 55 ο C και ταχφτητα 20 m/min. Nα βρεθοφν: α. Ο μζςοσ αριθμόσ Νusselt. β. Ο ρυθμόσ μετάδοςησ θερμότητασ.

69 Παράδειγμα 2: Ατμοςφαιρικόσ αζρασ 15 C ρζει με ταχφτητα 7 m/s πάνω από επίπεδη πλάκα μήκουσ 24 cm που διατηρείται ςε θερμοκραςία 45 C. Βρείτε: α. Τον τοπικό ςυντελεςτή μεταφοράσ θερμότητασ ςτα 6, 12, 18 και 24 cm από την αρχή τησ πλάκασ. β. Τον μζςο ςυντελεςτή μεταφοράσ θερμότητασ για ολόκληρη την πλάκα.

70 Παράδειγμα 3: Αζρασ με πίεςη 4 atm και θερμοκραςία 250 ο C ρζει με ταχφτητα 6 m/sec μζςα ςε ςωλήνα εςωτερικήσ διαμζτρου 5 cm. Η θερμοκραςία τησ εςωτερικήσ επιφάνειασ του ςωλήνα είναι 80 ο C. Να υπολογιςτεί ο ςυντελεςτήσ μεταφοράσ θερμότητασ.

71 Εξάρτηςη των ςυντελεςτών μοριακήσ διάχυςησ από την πίεςη και την θερμοκραςία

72 Παράδειγμα 4: Το αιςθητήριο θερμοφ ςφρματοσ χρηςιμοποιείται για μετρήςεισ ταχφτητασ ςε ιςοθερμοκραςιακζσ ροζσ. Ειναι καταςκευαςμζνο από ζναν ηλεκτρικό αγωγό ο οποίοσ με κατάλληλο ηλεκτρικό κφκλωμα διατηρείται ςε ςταθερή θερμοκραςία μζςα ςε μιά ροή. Η ιςχφσ που καταναλϊνεται ςτο ςφρμα είναι ςυνάρτηςη τησ ταχφτητασ του ρευςτοφ. Για ζνα ςφρμα διαμζτρου 5μm και μήκουσ 1mm να βρεθεί η εξίςωςη που δίνει την ταχφτητα του ρευςτοφ κάθετα ςτο ςφρμα ςε ςυνάρτηςη με την καταναλιςκόμενη ιςχφ. Το ρευςτό είναι αζρασ 20 ο C, που η ταχφτητά του αναμζνεται να κυμανθεί μεταξφ 10 και 100m/s. Το ςφρμα διατηρείται ςε θερμοκραςία 80 ο C. Να θεωρηθεί ότι όλο το ποςό θερμότητασ απάγεται με μεταφορά (να αγνοηθοφν φαινόμενα αγωγήσ προσ τα ςτηρίγματα του αιςθητηρίου ή ακτινοβολίασ.

73 Παράδειγμα 5: Φωτοβολταϊκά πάνελ μήκουσ 1.0 m και πλάτουσ 0.4 m πρόκειται να τοποθετηθοφν παράλληλα με το ζδαφοσ ςε πλαγιά λόφου ςτην οποία ςυνήθωσ φυςάει βόρειοσ άνεμοσ ταχφτητασ 10 m/s. Δεδομζνου ότι η απόδοςη των φωτοβολταϊκϊν μειϊνεται καθϊσ αυξάνεται η θερμοκραςία τουσ να προςδιοριςτεί η διεφθυνςη ςτην οποία είναι ςκόπιμο να τοποθετηθοφν τα πάνελ (κφριοσ άξονασ ςτη διεφθυνςη ΒΝ ή ΑΔ) ζτςι ϊςτε να επιτυγχάνεται η καλφτερη ψφξη τουσ. Αναφζρετε ςαφϊσ τισ παραδοχζσ ςασ.

74 Παράδειγμα 5 (εξήγηςη αποτελζςματοσ) 50 h x 25 h L2 h L1 0 0.E+00 Re x 5.E+05

75 Παράδειγμα 6: Σε ζνα οικιακό ςφςτημα γεωθερμίασ το λειτουργοφν ρευςτό, με παροχή 0.03 kg/s, φεφγει από την αντλία θερμότητασ ςε θερμοκραςία 5 ο C και πρζπει να θερμανθεί ςτον υπόγειο εναλλάκτη ςτουσ 14 ο C. Ο υπόγειοσ εναλλάκτησ αποτελείται από ζνα ςωλήνα εςωτερικήσ διαμζτρου 25 mm και η θερμοκραςία τησ εςωτερικήσ του επιφάνειασ θεωρείται ότι παραμζνει ςταθερή ςτουσ 17 ο C. Να εκτιμηθεί το απαραίτητο μήκοσ ςωλήνα του υπόγειου εναλλάκτη (θεωρείςτε ότι το λειτουργοφν ρευςτό ζχει τισ ιδιότητεσ του νεροφ ςτουσ 10 ο C).

76 Παράδειγμα 7: Αζρασ 300K και 1atm ρζει με παροχή 2.0kg/s μζςα ςε αγωγό με διατομή 1m x 0.4 m. Στον αγωγό βρίςκεται τοποθετημζνο ζνασ εναλλάκτησ που αποτελείται από ςωλήνεσ μήκουσ 1m με διάμετρο 15mm ςε ρομβοειδή διάταξη. Οι αποςτάςεισ μεταξφ των αξόνων των ςωλήνων κάθε ςειράσ και μεταξφ διαδοχικϊν ςειρϊν είναι 30mm. Εάν μζςα ςτουσ ςωλήνεσ ςυμπυκνϊνεται ατμόσ ςε ατμοςφαιρική πίεςη να εκτιμηθεί ο αριθμόσ ςειρϊν ςωλήνων που απαιτείται για να θερμανθεί ο αζρασ ςτουσ 324K. S D

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 3: Βασικές Αρχές Θερμικής Συναγωγιμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 6 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΣΩΤΕΡΙΚΗ ΡΟΗ ΣΕ ΑΓΩΓΟ Σκοπός της άσκησης Σκοπός της πειραματικής

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Συναγωγή Γενικές αρχές Κεφάλαιο 6 2 Ορισµός Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση Εξαναγκασµένη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 4: Εξαναγκασμένη Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 12.Μεταφορά Θερμότητας σε Ρευστά Χωρίς Αλλαγή Φάσης Συχνές Εφαρμογές Το θερμό ρεύμα εξόδου ενός αντιδραστήρα, όπου λαμβάνει χώρα

Διαβάστε περισσότερα

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ. Ενότητα 3: Συναγωγή. Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Συναγωγή Χατζηαθανασίου Βασίλειος Καδή Στυλιανή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας. Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 5: Ελεύθερη ή Φυσική Θερμική Συναγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών

Διαβάστε περισσότερα

Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες

Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών

Διαβάστε περισσότερα

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 ΜΜΚ 31 Μεταφορά Θερμότητας Εξαναγκασμένη Συναγωγή και Σφαίρες ΜΜΚ 31 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 και Σφαίρες (flow across cylinders

Διαβάστε περισσότερα

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας. 5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 10 η : Μεταβατική Διάχυση και Συναγωγή Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 2 η : Αγωγή Μονοδιάστατη αγωγή ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα η : Αγωγή Μονοδιάστατη αγωγή Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Cmmns.

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Εξαναγκασμένη Συναγωγή Ροή Πάνω από μία Επίπεδη Επιφάνεια Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Εξαναγκασμένη συναγωγή: Στρωτή ροή σε επίπεδες πλάκες (orced convection

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Εξαναγκασµένη συναγωγή Κεφάλαιο 7 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση

Διαβάστε περισσότερα

website:

website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 6 Ιουνίου 18 1 Οριακό στρώμα και χαρακτηριστικά μεγέθη Στις αρχές του ου αιώνα ο Prandtl θεμελίωσε τη θεωρία

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

Χειμερινό εξάμηνο 2007 1

Χειμερινό εξάμηνο 2007 1 Εξαναγκασμένη Συναγωγή Εσωτερική Ροή Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 31 Μεταφορά Θερμότητας 1 Ροή σε Σωλήνες (ie and tube flw) Σε αυτή την διάλεξη θα ασχοληθούμε με τους συντελεστές

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

Η Λ Ι Α Κ Η ΕΝ Ε Ρ Γ Ε Ι Α. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τοµέας Περιβαλλοντικής Μηχανικής & Επιστήµης ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

Η Λ Ι Α Κ Η ΕΝ Ε Ρ Γ Ε Ι Α. ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τοµέας Περιβαλλοντικής Μηχανικής & Επιστήµης ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τοµέας Περιβαλλοντικής Μηχανικής & Επιστήµης ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Η Λ Ι Α Κ Η ΕΝ Ε Ρ Γ Ε Ι Α ίας Α. Χαραλαµπόπουλος 1. ΕΙΣΑΓΩΓΗ... 3 2. ΜΕΤΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ...

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Φυσική (ελεύθερη) συναγωγή Κεφάλαιο 8 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται

Διαβάστε περισσότερα

Ροη αέρα σε Επίπεδη Πλάκα

Ροη αέρα σε Επίπεδη Πλάκα Ροη αέρα σε Επίπεδη Πλάκα Η ροή του αέρα γύρω από ένα σώμα επηρεάζεται από παράγοντες όπως το σχήμα του σώματος, το μέγεθός του, ο προσανατολισμός του, η ταχύτητά του όπως επίσης και οι ιδιότητες του ρευστού.

Διαβάστε περισσότερα

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ

ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ. Σημειώσεις. Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ ΟΡΙΑΚΟ ΣΤΡΩΜΑ: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΘΕΩΡΗΤΙΚΗ ΑΝΑΛΥΣΗ Σημειώσεις Επιμέλεια: Άγγελος Θ. Παπαϊωάννου, Ομοτ. Καθηγητής ΕΜΠ Αθήνα, Απρίλιος 13 1. Η Έννοια του Οριακού Στρώματος Το οριακό στρώμα επινοήθηκε για

Διαβάστε περισσότερα

Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές

Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΤΟΥ ΘΕΡΜΙΚΟΥ ΙΣΟΖΥΓΙΟΥ ΟΡΙΖΟΝΤΙΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΘΕΡΜΑΝΤΗΡΑΣΕ ΕΓΚΑΡΣΙΑ ΡΟΗ ΜΕ ΡΕΥΜΑ ΑΕΡΑ

ΜΕΛΕΤΗ ΤΟΥ ΘΕΡΜΙΚΟΥ ΙΣΟΖΥΓΙΟΥ ΟΡΙΖΟΝΤΙΟΥ ΚΥΛΙΝΔΡΙΚΟΥ ΘΕΡΜΑΝΤΗΡΑΣΕ ΕΓΚΑΡΣΙΑ ΡΟΗ ΜΕ ΡΕΥΜΑ ΑΕΡΑ 1 Τ.Ε.Ι. ΑΘΗΝΑΣ / Σ.ΤΕ.Φ. ΤΜΗΜΑ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΟΣ Οδός Αγ.Σπυρίδωνος,110 Αιγάλεω,Αθήνα Τηλ.: 105385355, email: tiling@teiath.gr ΜΕΛΕΤΗ ΤΟΥ ΘΕΡΜΙΚΟΥ ΙΣΟΖΥΓΙΟΥ ΟΡΙΖΟΝΤΙΟΥ

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 Μετρήσεις ταχύτητας ροής αέρα με τη βοήθεια σωλήνα Prandtl και απεικόνιση του πεδίου

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ ΤΟΠΙΚΟΣ ΣΥΝΤΕΛΕΣΤΗΣ ΘΕΡΜΙΚΗΣ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑΣ

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 5 ο : Το οριακό

Διαβάστε περισσότερα

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό... - v - Πρόλογος...- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί... - xii - ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό.... - v - Πρόλογος.....- vii - Μετατροπές Μονάδων.. - x - Συμβολισμοί..... - xii - ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΈΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΚΑΙ ΜΕΤΑΔΟΣΗ

Διαβάστε περισσότερα

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών»

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» : Στρωτή και τυρβώδης ροή σε λείο σωλήνα Συντάκτες: Α. Φιλιός, Κ. Μουστρής, Κ.-Σ. Νίκας 1 Αντικείμενο της εργαστηριακής άσκησης

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url 0.Μεταφορά Θερμότητας σε Ρευστά Εναλλάκτης Κελύφους-Αυλών E 2 Β 2 Ατμός F C K Εξαέρωση Β Θερμό Υγρό J E D 2 Α D H Ψυχρό Υγρό Eικόνα

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 3 η : Αγωγή Σύνθετα τοιχώματα Άθροιση αντιστάσεων Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς

Διαβάστε περισσότερα

ΤΕΙ ΚΑΒΑΛΑΣ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΤΕΙ ΚΑΒΑΛΑΣ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΤΕΙ ΚΑΒΑΛΑΣ ΤΜΗΜΑ ΜΗΧ/ΚΩΝ ΤΕΧΝ. ΠΕΤΡΕΛΑΙΟΥ ΚΑΙ Φ.Α. Τ.Ε. & ΜΗΧ/ΓΩΝ ΜΗΧ/ΚΩΝ Τ.Ε. ΚΑΤΕΥΘΥΝΣΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΑΣΚΗΣΕΙΣ - ΠΡΑΞΗΣ Καθηγήτρια, Ε. ΑΠΟΣΤΟΛΙΔΟΥ 2017-2018 Άσκηση 1

Διαβάστε περισσότερα

Φαινόμενα Μεταφοράς Μάζας θερμότητας

Φαινόμενα Μεταφοράς Μάζας θερμότητας Φαινόμενα Μεταφοράς Μάζας θερμότητας 2 η Διάλεξη Μηχανισμοί μετάδοσης θερμότητας Εμμανουήλ Σουλιώτης Τμήμα Μηχανικών Περιβάλλοντος Πανεπιστήμιο Δυτικής Μακεδονίας Ακαδημαϊκό Έτος 2018-2019 Μαθησιακοί στόχοι

Διαβάστε περισσότερα

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών

κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Ύλη που διδάχτηκε κατά το χειµερινό εξάµηνο του ακαδηµαϊκού έτους 2005-2006 στα πλαίσια του µαθήµατος ΜΑΘΗΜΑΤΙΚΗ ΘΕΩΡΙΑ ΥΛΙΚΩΝ Ι ΕΜ-351 του Τµήµατος Εφαρµοσµένων Μαθηµατικών της Σχολής Θετικών Επιστηµών

Διαβάστε περισσότερα

Χειμερινό εξάμηνο

Χειμερινό εξάμηνο Μεταβατική Αγωγή Θερμότητας: Ανάλυση Ολοκληρωτικού Συστήματος Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής 1 Μεταβατική Αγωγή (ranen conducon Πολλά προβλήματα μεταφοράς θερμότητας εξαρτώνται από

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 5 η : Διδιάστατη και τριδιάστατη αγωγή θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Περιεχόµενα Παρουσίασης 2.9

Περιεχόµενα Παρουσίασης 2.9 Πυρηνική Τεχνολογία - ΣΕΜΦΕ Κ ε φ ά λ α ι ο ο Π α ρ ο υ σ ί α σ η. 9 1 Περιεχόµενα Παρουσίασης.9 1. Αρχή Λειτουργίας των ΠΑΙ : Η Σχάση. Πυρηνική Ηλεκτροπαραγωγή ΠΗΣ 3. Πυρηνικά Υλικά και Τύποι ΠΑΙ 4. Σύγχρονοι

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα 1. Εισαγωγή Βασικές έννοιες Αγωγή

ΠΕΡΙΕΧΟΜΕΝΑ Σελίδα 1. Εισαγωγή Βασικές έννοιες Αγωγή ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή Βασικές έννοιες 11 1.1 Εισαγωγή... 11 1.2 Μηχανισμοί μετάδοσης θερμότητας... 12 1.2.1 Αγωγή... 12 1.2.2 Συναγωγή... 13 1.2.3 Ακτινοβολία... 14 2. Αγωγή 19 2.1 Ο φυσικός μηχανισμός...

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 8 η : Εναλλάκτες θερμότητας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης reative mmns.

Διαβάστε περισσότερα

Προσομοιώματα του μικροκλίματος του θερμοκηπίου. Θ. Μπαρτζάνας

Προσομοιώματα του μικροκλίματος του θερμοκηπίου. Θ. Μπαρτζάνας Προσομοιώματα του μικροκλίματος του θερμοκηπίου Θ. Μπαρτζάνας 1 Αναγκαιότητα χρήσης προσομοιωμάτων Τα τελευταία χρόνια τα θερμοκήπια γίνονται όλο και περισσότερο αποτελεσματικά στο θέμα της εξοικονόμησης

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation)

Μεταφορά Θερμότητας. Βρασμός και συμπύκνωση (boiling and condensation) ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 312 1 Βρασμός και συμπύκνωση (boiing and condenion Όταν η θερμοκρασία ενός υγρού (σε συγκεκριμένη πίεση αυξάνεται μέχρι τη θερμοκρασία

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΘΕΡΜΟΤΗΤΑΣ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Ι ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΘEMA ο Επίπεδο κατακόρυφο σώµα από αλουµίνιο, µήκους 430 mm, ύψους 60 mm και πάχους

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ ΚΑΙ ΜΑΖΑΣ ΑΓΩΓΗ () Νυμφοδώρα Παπασιώπη Φαινόμενα Μεταφοράς ΙΙ. Μεταφορά Θερμότητας και Μάζας

Διαβάστε περισσότερα

Ενότητα 4: Ηλιακά θερμικά συστήματα. Χρήστος Τάντος

Ενότητα 4: Ηλιακά θερμικά συστήματα. Χρήστος Τάντος Ενότητα 4: Ηλιακά θερμικά συστήματα Χρήστος Τάντος christantos@uth.gr Πανεπιστημίου Θεσσαλίας (ΠΘ) Τμήμα Μηχανολόγων Μηχανικών (ΤΜΜ) 4 Μαΐου 2018 Εφαρμογές Μετάδοσης Θερμότητας (MM618) 4/4/2018 http://mie.uth.gr/n_ekp_yliko.asp?id=44

Διαβάστε περισσότερα

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L

Ανάλυση: όπου, με αντικατάσταση των δεδομένων, οι ζητούμενες απώλειες είναι: o C. 4400W ή 4.4kW 0.30m Συζήτηση: ka ka ka dx x L Κεφάλαιο 1 Εισαγωγικές Έννοιες της Μετάδοσης Θερμότητας ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΆΣΚΗΣΗ 1.1 Ένα διαχωριστικό τοίχωμα σκυροδέματος, επιφάνειας 30m, διαθέτει επιφανειακές θερμοκρασίες 5 ο C και 15 ο C, ενώ έχει

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 1: Εισαγωγή στη Μετάδοση Θερμότητας Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Διαβάστε περισσότερα

Μεταφορά Θερμότητας. ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής

Μεταφορά Θερμότητας. ΜΜK 312 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜK 3 Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής γής MMK 3 Φυσική συναγωγή Στο προηγούμενο μάθημα είχαμε μία εισαγωγή στην φυσική συναγωγή. Παρ ότι ο μηχανισμός της είναι πλήρως κατανοητός η πολύπλοκη

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου.

ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου. ΠΘ ΤΜΜ ΠΜΣ ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ - 1 10-3-2010 : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου. Διδάσκοντες : Α. Σταματέλλος, Ε. Σταπουντζής Εκτέλεση : Ο. Ζώγου

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ II Ροή σε Αγωγούς

Διαβάστε περισσότερα

Σημειώσεις Εγγειοβελτιωτικά Έργα

Σημειώσεις Εγγειοβελτιωτικά Έργα 4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των

Διαβάστε περισσότερα

ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 4 ΕΝΑΛΛΑΚΤΕΣ ΘΕΡΜΟΤΗΤΑΣ 4.1 Εισαγωγή - τύποι εναλλακτών Εναλλάκτες θερμότητας είναι οι συσκευές στις οποίες έχουμε μεταφορά ε- νέργειας, με τη μορφή θερμότητας, μεταξύ δύο ρευστών που βρίσκονται

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για

Διαβάστε περισσότερα

800 W/m 2 χρησιμοποιώντας νερό ως φέρον ρευστό με Tf, in. o C και παροχή m W/m 2 με θερμοκρασία περιβάλλοντος Ta.

800 W/m 2 χρησιμοποιώντας νερό ως φέρον ρευστό με Tf, in. o C και παροχή m W/m 2 με θερμοκρασία περιβάλλοντος Ta. ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ Βαλουγεώργης, Εαρινό εξάμηνο 05-06 ΕΡΓΑΣΙΑ #3: Ηλιακά θερμικά συστήματα Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 7-4-06 Ημερομηνία παράδοσης

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Αγωγή Χρονικά µεταβαλλόµενη κατάσταση Κεφάλαιο 4 Ορισµός του προβλήµατος Σε πολλές τεχνικές εφαρµογές απαιτείται ο υπολογισµός της θερµικής αγωγής σε χρονικά

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Μετάδοση Θερμότητας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Μετάδοση Θερμότητας Ενότητα 2: Θερμική Αγωγιμότητα Κωνσταντίνος - Στέφανος Νίκας Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα

ΑΣΚΗΣΕΙΣ ΣΥΣΚΕΥΩΝ ΘΕΡΜΙΚΩΝ ΔΙΕΡΓΑΣΙΩΝ. 1η ενότητα 1η ενότητα 1. Εναλλάκτης σχεδιάζεται ώστε να θερμαίνει 2kg/s νερού από τους 20 στους 60 C. Το θερμό ρευστό είναι επίσης νερό με θερμοκρασία εισόδου 95 C. Οι συντελεστές συναγωγής στους αυλούς και το κέλυφος

Διαβάστε περισσότερα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...

Διαβάστε περισσότερα

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ

ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΤΕΧΝΙΚΗΣ ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΣΤΑΤΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΜΕΤΑ ΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΠΑΝΕΠΙΣΤΗΜΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ Θ. ΠΑΝΙ ΗΣ ΠΑΤΡΑ 00 ΠΡΟΛΟΓΟΣ Οι σηµειώσεις

Διαβάστε περισσότερα

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi. ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Περιεχόμενα ΠΕΡΙΕΧΟΜΕΝΑ Σύντομο Βιογραφικό v Πρόλογος vii Μετατροπές Μονάδων ix Συμβολισμοί xi ΚΕΦΑΛΑΙΟ 1 ο : ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1.1 Θερμοδυναμική και Μετάδοση Θερμότητας 1 1.2

Διαβάστε περισσότερα

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης

σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης σχηματική αναπαράσταση των βασικών τμημάτων μίας βιομηχανικής εγκατάστασης Αρχές μεταφοράς μάζας Αρχές σχεδιασμού συσκευών μεταφοράς μάζας Διεργασίες μεταφοράς μάζας - Απορρόφηση - Απόσταξη - Εκχύλιση

Διαβάστε περισσότερα

Εργαστήριο Μετάδοσης Θερμότητας

Εργαστήριο Μετάδοσης Θερμότητας ΑΣΚΗΣΗ ΕΝΑΛΛΑΚΤΩΝ ΘΕΡΜΟΤΗΤΑΣ ΣΚΟΠΟΣ Ο υπολογισμός του μεταφερόμενου ποσού θερμότητας σε εναλλάκτη ομόκεντρων σωλήνων, ο συνολικός θερμικός βαθμός απόδοσης, οι θερμοκρασιακές αποδόσεις των δύο ρευμάτων

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς 9.Μεταφορά Θερμότητας, Αγωγή Αγωγή Αν σε συνεχές μέσο υπάρχει βάθμωση θερμοκρασίας τότε υπάρχει ροή θερμότητας χωρίς ορατή κίνηση της ύλης.

Διαβάστε περισσότερα

Συμπύκνωση (Condensation)

Συμπύκνωση (Condensation) Τμήμα Μηχανολόγων Μηχανικών Πανεπιστημίου Θεσσαλίας Μεταπτυχιακό Πρόγραμμα 014-015 Εισαγωγή Μεταφορά θερμότητας σε μία Εμβάθυνση στα Φαινόμενα Μεταφοράς επιφάνεια συμβαίνει με συμπύκνωση όταν η θερμοκρασία

Διαβάστε περισσότερα

1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ

1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ ΑEI ΠΕΙΡΑΙΑ (ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 1 η ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΑΓΩΓΙΜΟΤΗΤΑ ΣΕ ΑΠΛΟ ΤΟΙΧΩΜΑ Σκοπός της άσκησης Η κατανόηση της χρήσης της εξίσωσης Fourier

Διαβάστε περισσότερα

0 500 o Kg / m. sat 1/ παραδοχή της εντοπισμένης χωρητικότητας, και να θεωρήσουμε πως η σφαίρα έχει ομοιόμορφη θερμοκρασία.

0 500 o Kg / m. sat 1/ παραδοχή της εντοπισμένης χωρητικότητας, και να θεωρήσουμε πως η σφαίρα έχει ομοιόμορφη θερμοκρασία. Άσκηση ΕΦΑΡΜΟΓΕΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Διδάσκων: Δ. Βαλουγεώργης, Εαρινό εξάμηνο 015-016 ΕΡΓΑΣΙΑ #4: Βρασμός και συμπύκνωση Ημερομηνία ανάρτησης εργασίας στην ιστοσελίδα του μαθήματος: 11-05-016 Ημερομηνία

Διαβάστε περισσότερα

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ (σε «κλειστούς αγωγούς») Οι απώλειες υδραυλικής ενέργειας λόγω ιξωδών τριβών σε μια υδραυλική εγκατάσταση που αποτελείται

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

Ενότητα 3: Πολυμορφική μετάδοση θερμότητας

Ενότητα 3: Πολυμορφική μετάδοση θερμότητας Ενότητα 3: Πολυμορφική μετάδοση θερμότητας Χρήστος Τάντος christantos@uth.gr Πανεπιστημίου Θεσσαλίας (ΠΘ) Τμήμα Μηχανολόγων Μηχανικών (ΤΜΜ) 9 Μαρτίου 2018 9/3/2018 http://mie.uth.gr/n_ekp_yliko.asp?id=44

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία.

ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ. όπου το κ εξαρτάται από το υλικό και τη θερμοκρασία. Εισαγωγή Έστω ιδιότητα Ρ. ΘΕΡΜΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ α) Ρ = Ρ(r, t) => μη μόνιμη, μεταβατική κατάσταση. β) P = P(r), P =/= P(t) => μόνιμη κατάσταση (μη ισορροπίας). γ) P =/= P(r), P(t) σε μακροσκοπικό χωρίο =>

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Μεταφορά θερµότητας Εναλλάκτες θερµότητας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Μεταφορά θερµότητας Εναλλάκτες θερµότητας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Μεταφορά θερµότητας Εναλλάκτες θερµότητας Μεταφορά θερµότητας Για την θέρµανση ενός σώµατος (γενικότερα) ή ενός τροφίµου (ειδικότερα) απαιτείται µεταφορά θερµότητας από ένα θερµαντικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

17-Oct-16. Εναλλάκτες Θερμότητας. Περιεχόμενα. Εξίσωση Θερμοροής. Ωθούσα Δύναμη. Συντελεστές Μεταφοράς Θερμότητας. Ισοζύγια Μάζας

17-Oct-16. Εναλλάκτες Θερμότητας. Περιεχόμενα. Εξίσωση Θερμοροής. Ωθούσα Δύναμη. Συντελεστές Μεταφοράς Θερμότητας. Ισοζύγια Μάζας Εναλλάκτες Θερμότητας Περιεχόμενα Εξίσωση Θερμοροής Ωθούσα Δύναμη Συντελεστές Μεταφοράς Θερμότητας Ισοζύγια Μάζας Απλά Μαθηματικά Μοντέλα Εναλλάκτες Κελύφους και Σωλήνων Γεωμετρικές Εξισώσεις Πιο Λεπτομερή

Διαβάστε περισσότερα

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2 ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή

Διαβάστε περισσότερα

Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής

Υπολογισμός Παροχής Μάζας σε Αγωγό Τετραγωνικής Διατομής ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΕΝΕΡΓΕΙΑΣ, ΑΕΡΟΝΑΥΤΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ I Υπολογισμός

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας

Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας Μόνιμη Μονοδιάστατη Αγωγή Θερμότητας Χωρίς Παραγωγή Θερμικής Ενέργειας ΜΜΚ 3 Μεταφορά Θερμότητας Τμήμα Μηχανολόγων Μηχανικών και Μηχανικών Παραγωγής ΜΜΚ 3 Μεταφορά Θερμότητας Κεφάλαιο 3 Μεθοδολογία για

Διαβάστε περισσότερα

Στοιχεία Μηχανολογικού Εξοπλισμού

Στοιχεία Μηχανολογικού Εξοπλισμού Στοιχεία Μηχανολογικού Εξοπλισμού Σκοπός Η γνωριμία και η εξοικείωση των φοιτητών με τον μηχανολογικό εξοπλισμό (σωληνώσεις, αντλίες, ανεμιστήρες, συμπιεστές, μετρητικά όργανα) που χρησιμοποιείται στη

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα