ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ. ii. iv. x vi. 2x viii x. 3 2 xii. x
|
|
- ĒΜιχαήλ Αγγελοπούλου
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΑΣΚΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ Να συμπληρώσετε τα κενά στις παρακάτω ισότητες: i ii ii 6 iv 5 iii 4 4 vi 0 iv viii v vi ii vii iv 6 ΤΑΥΤΟΤΗΤΕΣ Να βρείτε τα αναπτύγματα: i ( + y) ii (+) iii (α + ) iv (4 + y) v( + 7y) vi (5α + 9β) vi i y (α + yβ) 4 Να βρείτε τα αναπτύγματα: vi vii y i ( - y) ii (-) iii (8-α) iv (5κ-λ) viii a v( + 7y) vi (8ν-μ) vi vi (α -4) vii (-αβ) viii (0,5α - 0,8β) i(0,5α - 0,8β) (,5 - l,6y) i y ii a 9 iii (-α-β) iv (-4κ + λ) v (αβ - γδ) vi (αβγ - ) vii ( - κλ) viii 4 Να υπολογιστούν οι παραστάσεις: i ii iii 5 iv 4 v 4 vi 5 Να βρεθούν τα αναπτύγματα: i y 5 5 vii 7 7 ii y iii y y, y 59
2 iv, v a, α > β 6 Να βρείτε τα αναπτύγματα: i (-α+) ii (α + ) iii(-α-) iv (-y) v ( + y) vi (y-) vii( y-y ) viii i iii ( y y ),, y 0 a 7 Να βρείτε τα αναπτύγματα: i y i y ii iii 5 iv va, 0 vi(4 4 a ii a 8 Nα βρείτε τα αναπτύγματα: i( + y + z) ii ( + y-z) iii ( -y + z) iv (- + y-z) v(α-β-) vi ( ) vii viii i( + y + z) (-y + z) i (α-β + ) ii iii iv 9 Να βρείτε τα παρακάτω αναπτύγματα : )( ) ) ( ) ),(, 0) i y ii a y iii a a iv)( y z) v) ( ) vi) y z vii a viii y i )( ) ) ( ) ) a 4 0 Nα κάνετε τις πράξεις: i ( + y)(y-) - ( + y) ii (+) 4 - iii (-)(+) + iv (α + β) - (α - 6αβ + 9αβ ) v ( + y) + (-y) -(-y)( + y) vi (-y) -(y-) vii (-y) - ( + y) + 6(y+l) viii (4-y) - (y-)(+y)-4(+y) i (-) + (+) - (-) -(-) +(+) -(+) Να κάνετε τις πράξεις: i ( + y-z)( + y + z) ii (α-β + γ)(α-β-γ) iii ( --)( + + ) iv (α + β + γ)(α-β + γ) 60
3 v ( )( ) vi 5 5 Να βρεθούν τα γινόμενα: i [ -(+)] [ + ( + )] ii (α-)(α + )(α -α+ 9)(α + α + 9) iii (α-β)(α + β)(α + β ) iv ( + )(-)( - + 4)( + + 4) ΑΠΟΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Να αποδείξετε ότι: i 4 5 ii iii y y y y iv Να αποδείξετε τις ταυτότητες : i (- ) - ( -) = - ii 4α (β -)-4β (α -) = 4(β-α)(β + α) iii(α -β )(α + αβ + β ) - α 4 + β 4 = αβ(α - β ) 5 Να αποδείξετε τις ταυτότητες: 9( ) i 4 6 Να αποδείξετε ότι: i (α-β-γ) = α + β + γ - αβ + βγ - γα ii (α + β )( + y )-(αy-β) = (α + βy) iii (α-β) - (α + β) = -4αβ iv (α + β ) - (α - β ) = (αβ) v (α-β-γ) - (γ α + β) = 0 vi(α - β) + αβ(α - β) = α - β ii ( 7) 7 7 Να αποδείξετε τις ταυτότητες: i ( + 4)(y + ) - (y + ) = (y -) ii (+y) +(y+l) + (l+) -4 - y - l = ( + y+l) iii (α - y) - (y - α) + 8α = 8y iv (-y) + (y-z) + (z+) - -y -z = ( -y + z) 8 Να αποδείξετε τις ταυτότητες: i (α + β) - (α-β) (α + β) = 4αβ(α + β) ii 4 -y 4 - (-y) ( + y) = y( -y ) iiiα( -α ) + α ( + α) = α( + α ) 9 Να αποδείξετε ότι: i (α - β) + (α - β) (β - α) ++(α - β)(β - α) + (β - α) = 8α ii (α + β + γ) + (α-β-γ) - (α + β-γ) - (α-β + γ) = 8βγ 0 Να αποδείξετε ότι: i α β(α + β) = α 4 -β 4 - (α + β) (α-β) + β(α + β ) ii (y - - ω) + ( - y) + 4y = = ( + y) + (-y + ω) 6
4 Να αποδείξετε ότι: i αν α + γ = β, τότε (α-β) + β + (β-γ) = α -4β(α-β) ii αν α γ = β, τότε γ(α - β) = α(β - γ) Να αποδείξετε ότι αν, τότε Να αποδείξετε τις ταυτότητες: 4 4 α) β) ( ) ( ) γ) (α-β) -(β-γ) + (γ-α) = (α-γ)(α-β) δ) (α + β + γ) -(α + β-γ) + (α - β + γ) - (α - β - γ) =8αγ ΤΑΥΤΟΤΗΤΕΣ ΥΠΟ ΣΥΝΘΗΚΗ 4 Αν ισχύει 5 Αν ισχύει,να αποδείξετε ότι ( ) ( ) 4,να αποδείξετε ότι ( ) ( ) ( )( ) 6 6 Αν ισχύει,να αποδείξετε ότι ( ) ( ) 0 7 Αν ισχύει α+β=,να αποδείξετε ότι ( ) ( ) 8 Αν ισχύει α-β=,να αποδείξετε ότι 4 9 Αν ισχύει ( ) 4, με α,β 0,να αποδείξετε ότι α=β 0 Αν ισχύει α+β+γ=0,να αποδείξετε ότι Αν για τους αριθμούς α,β,γ 0 ισχύει α+β+γ=0,να αποδείξετε ότι Για τους πραγματικούς αριθμούς α,β,γ ισχύει : ( ) ( ) ( )( ) i Να αποδείξετε ότι α =β ii Να βρείτε την τιμή της παράστασης Α = α 00 -β 00 Αν ισχύει α+β+γ=,να αποδείξετε ότι ( ) ( ) ( ) ( ) ( )( ) 4 Αν για τους αριθμούς α,β,γ 0 ισχύουν α+β+γ= και 0 iνα βρείτε την τιμή της παράστασης Α=αβ+βγ+γα iiνα αποδείξετε ότι α +β +γ =9 5 Για τους πραγματικούς αριθμούς α,β 0 ισχύει : ( ) ( ) Να αποδείξετε ότι 6
5 6 Αν ισχύει α+β+γ=0,να αποδείξετε ότι : i α(α+β)(α+γ) = β(β+γ)(β+α) ii ( ) ( ) ( ) ΑΠΑΓΩΓΗ ΣΕ ΑΤΟΠΟ 7 Αν ο αριθμός είναι άρρητος,να αποδείξετε ότι ο αριθμός είναι άρρητος 8 Ο αριθμός α είναι ακέραιοςνα αποδείξετε ότι : i αν ο αριθμός (α+) είναι άρτιος,τότε ο αριθμός α είναι περιττός, ii αν ο αριθμός (α-6) είναι άρτιος,τότε ο αριθμός α είναι άρτιος 9 Οι αριθμοί α και β είναι ακέραιοιαν ο αριθμός ( ) είναι άρτιος,να αποδείξετε ότι ο αριθμός α είναι περιττός 4 40 Δίνονται οι ακέραιοι αριθμοί α και β Αν οι αριθμοί β και είναι άρτιοι, να αποδείξετε ότι ο αριθμός α είναι άρτιος 4 Δίνονται οι ακέραιοι αριθμοί α και β Αν οι αριθμοί β και είναι περιττοί, να αποδείξετε ότι ο αριθμός α είναι άρτιος ΑΡΙΘΜΗΤΙΚΟΙ ΥΠΟΛΟΓΙΣΜΟΙ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΑΥΤΟΤΗΤΩΝ 4 Με τη βοήθεια των ταυτοτήτων να βρείτε τις παρακάτω τιμές: 6 i 99 ii 00 iii iv v vi iνα αποδείξετε την ταυτότητα : ( )( ) 4 iiνα βρείτε την τιμή της παράστασης :,45,45 5,45 44 iαν α,β 0,να αποδείξετε ότι : ( ) 99 9 ii Να βρείτε την τιμή της παράστασης : iνα αποδείξετε την ταυτότητα : iiνα βρείτε το άθροισμα των ψηφίων του αριθμού : 46 iνα αποδείξετε την ταυτότητα : ( )( ) ( )( ) ( )( ) iiνα βρείτε την τιμή της παράστασης: iνα αποδείξετε την ταυτότητα : ( )( )( iiνα βρείτε την τιμή της παράστασης:
6 ΥΠΟΛΟΓΙΣΜΟΙ ΤΙΜΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΣΥΝΘΗΚΗ 48 α)να αποδείξετε τις ταυτότητες : i) ( ) ii) ( ) 4 β) Αν,να βρείτε την τιμή της παράστασης, γ) Αν y 4,να βρείτε την τιμή της παράστασης B y y y 49 iνα αποδείξετε την ταυτότητα : ( ) ( a ) ii Αν,να βρείτε την τιμή της παράστασης 50 Αν ισχύει 7 y και y,να βρείτε τις τιμές των παραστάσεων : i A y ii B ( y) iii y iv y y 5 Αν ισχύει,να βρείτε τις τιμές των παραστάσεων : 4 7 i A ii iii iv Αν ισχύει α+β=4 και α +β =9,να βρείτε τις τιμές των παραστάσεων : iα=αβ ii Β= α +β 5 Αν ισχύει α+β= και α +β =8,να βρείτε τις τιμές των παραστάσεων : i ii Β=αβ iiiγ= α +β ivδ =(α-β) 54 Αν ισχύει,όπου 0,να βρείτε τις τιμές των παραστάσεων : i A ii ΣΥΝΔΥΑΣΤΙΚΑ ΘΕΜΑΤΑ 55 Για τους αριθμούς α και β ισχύει : iνα βρείτε τον αριθμό 0 0 ( ) ( )( ) ( )( ) iiνα βρείτε την τιμή της παράστασης : ( ) ( ) ( ) 56 Για τους αριθμούς α και β ισχύουν οι σχέσεις : Και ( )( ) ( ) () α)να αποδείξετε ότι οι αριθμοί α και β είναι αντίστροφοι β)να υπολογίσετε το άθροισμα α +β γ)να βρείτε τις τιμές των παραστάσεων : 4 4 i A( a ) ii 0 0 ( ) ( ) ( ) ( ) 4 () 64
7 57 Δίνονται οι παραστάσεις ( ) ( ) α 0 α)να απλοποιήσετε τις παραστάσεις Κ και λ β) Αν ισχύει Κ = Λ,να βρείτε τις τιμές των παραστάσεων: i A a a 4 ii Ba iii a 4 a a iv 58 Για τους αριθμούς α,β,γ ισχύει : α+β+γ=0 και 6 και 99 iνα αποδείξετε ότι : ( ) iiνα βρείτε την τιμή του γινομένου αβγ, iiiνα βρείτε την τιμή της παράστασης ( ) ( ) ( )( ) ( ) ( 7),όπου 6 6 A a a 65
x. 8α 4 x 3-12α 3 x 2 + 6α 2 x 4-10α 2 x
ΑΣΚΗΣΕΙΣ ΣΤΗ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ 1. Να γραφούν ως γινόμενο οι παραστάσεις: α+ 8 i α + 6β ii α + αβ i α - α α -α v β - β vi y - y vii - y v 5-10 vi α-9α vii - 6y +y. y - y 5-4. Να γραφούν ως γινόμενο οι παραστάσεις:
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΡΑΞΕΙΣ
Παραστάσεις ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΠΡΑΞΕΙΣ. Να υπολογίσετε τις τιμές των παραστάσεων, αφού προηγουμένως απαλείψετε τις παρενθέσεις τις αγκύλες. α. Α = + [5-(-6 + )] β. Β = --[-7 + (-3 + 5-7)]-(-5 + 3). Να κάνετε
ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΤΑΞΗ 1. Αν α, β, γ, δ θετικοί, α < β και γ < δ, να αποδείξετε ότι: i) 2α + γ < 2β + δ ii) α - δ < β - γ iii) δ - α > γ β
ΑΣΚΗΣΕΙΣ ΣΤΗ ΔΙΑΤΑΞΗ. Αν α, β, γ, δ θετικοί, α < β και γ < δ, να αποδείξετε ότι: i) α + γ < β + δ ii) α - δ < β - γ iii) δ - α > γ β. Αν α, β, γ, δ θετικοί, α < β και γ > δ, να αποδείξετε ότι: i) 3α+ δ
1. Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ). i)
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΡΙΖΕΣ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΑΣΚΗΣΕΙΣ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Να χαρακτηρίσετε τις παρακάτω προτάσεις με Σωστό (Σ) ή Λάθος (Λ), 0 i Αν αβ 0 τότε Αν β 0 τότε Αν α 0 τότε v Αν α 0 τότε v Αν α 0 τότε
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΤΑΥΤΟΤΗΤΕΣ Α ΟΜΑΔΑ. Να βρεθούν τα αναπτύγματα: ι) ιν) ιι) y ιιι) 3 4 3 a 4 ν) ( +y 3 ) νι) (3y+) 4 y νιιι) (5αα +3β y) ι) 5 a ay 3 νιι) 3 4 5 3 ) (β-) ι) (3-7y) ιι) (5α-8βy) ιιι) (9-5) ιν)
Α. Οι πραγματικοί αριθμοί και οι πράξεις τους
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ - -. Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Αν + y = -, να βρείτε τις τιμές των παραστάσεων: α A = + y + ( + y β B = ( - y -( y γ Γ = -(
Φ1: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
Φ: ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ: ΓΙΑΝΝΗΣ ΧΡΑΣ 0-0 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α - ΘΕΩΡΙΑ - ΣΩΣΤΟ-ΛΑΘΟΣ - ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ - ΑΝΤΙΣΤΟΙΧΗΣΗΣ - ΠΑΡΑΤΗΡΗΣΕΙΣ-ΜΕΘΟΔΟΛΟΓΙΑ ΘΕΜΑ Β - ΑΣΚΗΣΕΙΣ
Άλγεβρα Α Λυκείου Κεφάλαιο 2ο. οι πράξεις και οι ιδιότητές τους
οι πράξεις και οι ιδιότητές τους Μερικές ακόμη ταυτότητες (επιπλέον από τις αξιοσημείωτες που βρίσκονται στο σχολικό βιβλίο) ) Διαφορά δυνάμεων με ίδιο εκθέτη: ειδικά αν ο εκθέτης ν είναι άρτιος υπάρχει
1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1
,, Β,,λ. Δίνονται τα σημεία Β.Αν τα Α,Β είναι συμμετρικά ως προς τον άξονα y y να βρείτε το λ. Β. Βρείτε τις τιμές του λ, ώστε το σημείο Β να βρίσκεται στο ο τεταρτημόριο του ορθοκανονικού συστήματος.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΕΣΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ ΟΡΙΣΜΟΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ ΕΣΩΤΕΡΙΚΟΥ ΓΙΝΟΜΕΝΟΥ 1. Να υπολογιστεί το εσωτερικό γινόμενο a δύο διανυσμάτων a και αν: ι) a a 5, 7,(, ) 5, ιι) a 5,,( a, ). 6 6. Το διάνυσμα
1 ο ΓΕΛ ΠΤΟΛΕΜΑΙΔΑΣ ΠΟΛΥΧΡΟΝΙΑΔΗΣ ΝΙΚΟΛΑΟΣ ΤΑΥΤΟΤΗΤΕΣ
ΤΑΥΤΟΤΗΤΕΣ Ορισμός Ταυτότητα σε ένα σύνολο,καλείται μια μαθηματική πρόταση που χαρακτηρίζεται αληθής για οποιαδήποτε τιμή και αν πάρουν από το σύνολο αυτό, οι παράμετροι που αυτή περιέχει Έτσι ταυτότητες
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ
Εξισώσεις χωρίς κλάσματα ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ.Να λυθούν οι εξισώσεις: i) +6 = ii) 8 = iii) - = iv) + = v) - = 0 vi) 9- =.Να λυθούν οι εξισώσεις: i) = ii) = 8 iii) = -98 iv) -6 = -6 v) - = -9 vi) 0 =
1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους Κατανόηση εννοιών - Θεωρία. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ο κεφάλαιο: Πραγματικοί αριθμοί ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 014 Περιεχόµενα
1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
ΜΕΡΟΣ Α.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ 67.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΟΡΙΣΜΟΣ Οομάζουμε ταυτότητα κάθε ισότητα που περιέχει μεταβλητές και επαληθεύεται για όλες τις τιμές τω μεταβλητώ αυτώ. Τετράγωο αθροίσματος
ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΨΗ Γ ΓΥΜΝΑΣΙΟΥ. Να αποδείξετε ότι: 4 4. Αν x, να υπολογίσετε την τιμή της παράστασης: x x. Να απλοποιήσετε τις παρακάτω παραστάσεις: 8 8 8, 7 48 4. 4. Να υπολογίσετε τα αναπτύγματα: i. x ii. α β
ΑΛΓΕΒΡΑ= = = = = = Α =ΛΥΚΕΙΟΥ
ΑΓΕΒΡΑ Α ΥΚΕΙΟΥ ΤΟΙΧΕΙΑ ΘΕΩΡΙΑ - ΑΚΗΕΙ ΘΕΩΡΙΑ. Οι πράξεις και οι ιδιότητες τους Αν α, β, γ, δ πραγματικοί αριθμοί τότε ισχύουν οι ιδιότητες : α = β Û α + γ = β + γ Αν γ ¹ 0, α = β Û αγ = βγ αβ = 0 Û α
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 8. Πότε το γινόμενο δύο ή περισσοτέρων αριθμών παραγόντων είναι ίσο με το μηδέν ;
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ( ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ) ΠΑΡΑΤΗΡΗΣΗ : Το κεφάλαιο αυτό περιέχει πολλά θέματα που είναι επανάληψη εννοιών που διδάχθηκαν στο Γυμνάσιο γι αυτό σ αυτές δεν θα επεκταθώ αναλυτικά
8. Να λυθεί η εξίσωση : 10 3 x= Αν ν είναι φυσικός αριθμός, τότε να υπολογίσετε την παράσταση: Α=(-1) ν +3(-1) ν+1-3(-1) 3ν+1.
Α. ΔΥΝΑΜΕΙΣ. Να γράψετε σε απλούστερη μορφή τις παραστάσεις: α.α.α = 5 : = (-).(-) - = (-0,) 5.(-0,5) 5 = α -.(α ) -.α. Υπολογίστε τις παραστάσεις (i) (ii) (-).(-0,5) - (iii) (0,) : (-0). Να γίνουν οι
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
0 ΘΕΩΡΙΑ ΜΕΘΟΔΟΙ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ Βαγγέλης Α Νικολακάκης Μαθηματικός . ΠΡΑΞΕΙΣ ΠΡΑΓΜΑΤΙΚΩΝ ΒΑΣΙΚΗ ΘΕΩΡΙΑ. ΠΡΟΣΘΕΣΗ ΟΜΟΣΗΜΩΝ- ΕΤΕΡΟΣΗΜΩΝ Σε ομόσημους κάνω πρόσθεση και βάζω το κοινό
ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ
ΜΑΝΟΣ ΔΟΥΚΑΣ ΓΙΩΡΓΟΣ ΚΟΥΡΕΜΠΑΝΑΣ Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.. Να συμπληρώσετε τα κενά : i) (α μ ) ν = ii) (κ.λ) ν = iii) α μ.α ν = iv) α μ : α ν =. v) (α : β) ν =.. vi) α -ν = a vii)... viii) a...
Διάταξη Πραγματικών Αριθμών. Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: Να είναι άνισοι, δηλαδή:
Διάταξη Πραγματικών Αριθμών Έστω α, β πραγματικοί αριθμοί. Τι σχέση μπορεί να έχουν αυτοί οι αριθμοί; Μπορεί, να είναι ίσοι: α=β ή Να είναι άνισοι, δηλαδή: Πρόσθεση πραγματικών αριθμών Αν α, β ομόσημοι
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.
ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
Μαθηματικά Γ Γυμνασίου
Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται
Φίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό απευθύνεται στους μαθητές της Α Λυκείου που θέλουν ένα μεθοδικό και πλήρες βοήθημα στην Άλγεβρα. Το μάθημα αυτό αποτελεί τη γέφυρα ανάμεσα στο γυμνάσιο και το
Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις.
Μαθηματικά Γ Γυμνασίου Κεφάλαιο 1 ο. Αλγεβρικές παραστάσεις. Μέρος Α Θεωρία. 1. Πως προσθέτουμε δύο πραγματικούς αριθμούς; 2. Πως πολλαπλασιάζουμε δύο πραγματικούς αριθμούς; 3. Ποιες είναι οι ιδιότητες
Ρητοί αριθμοί είναι αυτοί που έχουν (ή μπορεί να πάρουν) κλασματική μορφή,
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ.1 ΠΡΑΞΕΙΣ ΚΑΙ ΙΔΙΟΤΗΤΕΣ Οι αριθμοί 0,1,,,4, είναι οι Φυσικοί αριθμοί. Οι Φυσικοί αριθμοί μαζί με τους αντίθετούς τους αποτελούν τους Ακέραιους αριθμούς. Δηλαδή ακέραιοι είναι οι αριθμοί,-,-,-1,0,1,,,
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών.
Τις ασκήσεις επιμελήθηκαν οι καθηγητές της Γ Γυμνασίου των σχολείων μας και ο συντονιστής Μαθηματικών. Ερωτήσεις «Σωστού - Λάθους» 1) Για όλους τους πραγματικούς α, β ισχύει: ( ) ( ) 3 3 ) Για όλους τους
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Πεδίο ορισμού. Να βρείτε τα πεδία ορισμού των παρακάτω συναρτήσεων: i) f ( ) 5 6 ii) f ( ) 7 iii) iv) f( ) 4 f( ) 8 v) f ( ) 6 vi) f ( ) 0 5. Να βρείτε τα πεδία ορισμού των παρακάτω
αριθμούς Βασικές ασκήσεις Βασική θεωρία iii) φυσικοί; ii) ακέραιοι; iii) ρητοί;
Πράξεις με πραγματικούς αριθμούς Βασικές ασκήσεις Βασική θεωρία Ρητοί και άρρητοι αριθμοί. α) Ποιοι αριθμοί ονομάζονται: iii) φυσικοί; ii) ακέραιοι; iii) ρητοί; iv) άρρητοι; v) πραγματικοί; β) Να βρείτε
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από
R={α/ αρητός ή άρρητος αριθμός }
o ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ Οι ρητοί και οι άρρητοι αριθμοί λέγονται πραγματικοί αριθμοί. Το σύνολο που περιέχει όλους τους πραγματικούς αριθμούς λέγεται σύνολο των πραγματικών αριθμών και συμβολίζεται με R.
Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ
Α λ γ ε β ρ α Μ α θ η μ α τ ι κ α Γ Γ υ μ ν α σ ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α Γ Γ υ μ ν α σ ι ο υ Με πολυ μερακι Για τους μικρους φιλους μου Τακης Τσακαλακος Κερκυρα
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.
ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία
Ασκήσεις. ι) α α ιι) α α ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ
ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ Ασκήσεις ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μικρότερη ή ίση του. ) Να βρείτε τους ακεραίους, οι οποίοι έχουν απόλυτη τιμή μεγαλύτερη του. ) Η απόσταση δύο
ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ
ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ
Μ Α Θ Η Μ Α Τ Ι Κ Α Γ ΓΥΜΝΑΣΙΟΥ ΖΕΡΒΟΣ ΜΑΝΟΛΗΣ 1 ΜΕΡΟΣ Α ΚEΦΑΛΑΙΟ 1 Ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. ΕΡΩΤΗΣΗ Τι ονομάζουμε
ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Α - Β ΛΥΚΕΙΟΥ 1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ
1. ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ 1. Φυσικοί αριθμοί : Ν = {0,1,,3,4,...}. Ακέραιοι αριθμοί : Ζ = {...-4,-3,-,-1,0,1,,3,4,...} 3. Ρητοί αριθμοί : Q = { ì í, μ Ζ, ν Ζ* } Σημ. Το σύνολο Q των ρητών αριθμών ταυτίζεται με
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ. (α + β) 2 = α 2 + 2αβ + β 2. αx 2 + βx + γ = 0, α 0. x = Γ ΓΥΜΝΑΣΙΟΥ
ΣΤΡΑΤΗΣ ΑΝΤΩΝΕΑΣ (α + β) = α + αβ + β α + β + γ = 0, α 0 = β ± β 4αγ α Γ ΓΥΜΝΑΣΙΟΥ Πράξεις με Πραγματικούς αριθμούς. Μονώνυμα - Πράξεις με μονώνυμα Πολυώνυμα - Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ 1. Να λυθούν οι ανισώσεις: i) 2x 1 5
ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. Να λυθούν οι ανισώσεις: i) ii) iii) iv) 4 9 v) 7 4 vi). Να λυθούν οι ανισώσεις: i) ( ) 4 ii) ( ) ( ) iii) 4( ) ( ) ( ) iv) ( ) ( ) 7( ) v) 4 9 ( ). Να λυθούν οι παρακάτω
1.5 Αξιοσημείωτες Ταυτότητες
1.5 Αξιοσημείωτες Ταυτότητες Ορισμός: Κάθε ισότητα που περιέχει μεταβλητές και αληθεύει για όλες τις τιμές των μεταβλητών της λέγεται ταυτότητα. Ταυτότητες που πρέπει να γνωρίζουμε: Τετράγωνο αθροίσματος
ΛΟΓΙΚΗ - ΣΥΝΟΛΑ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ
ΛΟΓΙΚΗ - ΣΥΝΟΛ ΤΟ ΛΕΞΙΛΟΓΙΟ ΤΗΣ ΛΟΓΙΚΗΣ Η συνεπαγωγή ν P και Q είναι δύο ισχυρισμοί τέτοιοι ώστε όταν αληθεύει ο P να αληθεύει και ο Q τότε λέμε ότι το P συνεπάγεται το Q και γράφουμε P Q Π.χ, όταν α=β
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο
1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο ΘΕΜΑ 1 ο α) Αν χ 1, χ ρίζες της εξίσωσης αχ +βχ+γ=0, 0 να δείξετε ότι S 1 και P 1 Μον. 10 β) Έστω η συνάρτηση
Ορισμένες σελίδες του βιβλίου
Ορισμένες σελίδες του βιβλίου 7. Θεωρούμε το σύνολο αναφοράς 0,,. Να οριστούν τα σύνολα: Α. των τριψηφίων αριθμών που σχηματίζουν τα στοιχεία του Ω. Β. των τριψηφίων αριθμών με διαφορετικά ψηφία Γ. των
ΣΥΝΑΡΤΗΣΕΙΣ. 1.Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 1 x 4. x x x x x 5 iv) f ( x) v)f(x)=2x+ vi)f(x)= x 4x. x 2 2 1
) ( ) ΣΥΝΑΡΤΗΣΕΙΣ.Να βρείτε το πεδίο ορισμού των συναρτήσεων: 4 i) f ii)f iii)f()= 5 iv) f ( ) v)f()=+ vi)f()= 5 4 vii) f ( ) viii)f()=.να βρείτε το πεδίο ορισμού των συναρτήσεων: i) f ( ) 4 ii)f 9 iii)f()=
1.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ
.5 ΑΞΙΟΣΗΜΕΙΩΤΕΣ ΤΑΥΤΟΤΗΤΕΣ ΘΕΩΡΙΑ. Ταυτότητα : Λέγεται κάθε ισότητα που περιέχει µεταβλητές και αληθεύει για οποιεσδήποτε τιµές των µεταβλητών της.. Αξιοσηµείωτες ταυτότητες : Είναι ταυτότητες που χρησιµοποιούµε
ΜΕΘΟΔΟΙ ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗΣ
ΠΑΡΑΓΟΝΤΟΠΟΙΗΣΗ Ονομάζουμε την διαδικασία με την οποία μετατρέπουμε μια παράσταση σε γινόμενο παραγόντων Προσοχή: Οι όροι μιας παράστασης χωρίζονται μεταξύ τους με συν (+) ή πλην (-) ενώ οι παράγοντες
1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,
. ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ Τηλ 0676-7 /0600 Α. Οι πραγματικοί αριθμοί και οι πράξεις τους. Να συμπληρωθούν τα κενά ώστε στην κατακόρυφη στήλη να προκύψει το έτος γέννησης σας : +....= 9.. = ( -
ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ - ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ
Ποιους αριθµούς ονοµάζουµε οµόσηµους και ποιους ετερόσηµους; Ποιους αριθµούς ονοµάζουµε ακέραιους; Ποιους αριθµούς ονοµάζουµε ρητούς; Τι ονοµάζουµε απόλυτη τιµή ενός ρητού αριθµού; Τι παριστάνει η απόλυτη
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89. Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις Σ Λ 2. Για τα ενδεχόμενα Α και Β ισχύει η ισότητα: A ( ) ( ') ( ' )
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 89 Ον/μο:.. Α Λυκείου Ύλη: Πιθανότητες Το σύνολο R-Εξισώσεις 6-0- Θέμα ο : Α.. Να δώσετε τον ορισμό της εξίσωσης ου βαθμού (μον.) Α.. Αν, ρίζες της εξίσωσης 0, να αποδείξετε ότι
Τετραγωνική ρίζα πραγματικού αριθμού
Τετραγωνική ρίζα του θετικού αριθμού α, ονομάζεται ο θετικός αριθμός χ, όταν χ = α. Ορίζουμε επίσης ότι: 0 0. Δηλαδή αν α, x > 0 και x, τότε x. Συνέπειες του ορισμού Για κάθε πραγματικό αριθμό x ισχύει:
ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. η γραφική της παράσταση να διέρχεται από το σημείο M
ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ BOLZANO - Θ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ Να βρεθούν τα α και β R, ώστε η συνάρτηση 4 ημ α β 0 0 να είναι συνεχής και η γραφική της παράσταση να διέρχεται από το σημείο M, Να βρείτε τα α, β,γ
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ. 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΡΟΣΘΕΣΗ ΚΑΙ ΑΦΑΙΡΕΣΗ ΔΙΑΝΥΣΜΑΤΩΝ 1. Δίνεται τετράγωνο ΑΒΓΔ.Σε καθεμία από τις παρακάτω περιπτώσεις να βρείτε το άθροισμα 2. Να γράψετε ως ένα διάνυσμα τα παρακάτω αθροίσματα :
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ
.α) Να αποδείξετε ότι για οποιουσδήποτε πραγματικούς αριθμούς x,y ισχύει: x y x y x 6y 0 0 Β)Να βρείτε τους αριθμούς x,y ώστε x y x y 6 0 0.Δίνονται οι μη μηδενικοί πραγματικοί αριθμοί α,β με τους οποίους
3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :
ΕΞΙΣΩΣΕΙΣ - ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ ). Να λυθούν οι εξισώσεις: α). + ( 3 ) 6 = 0 β). 4 ( 3 ) + 3 = 0 γ). + ( ) = 0 δ). 5 + 5 = 0 ε). 4( 3) + 5 + 6 6 = 0 στ).( + 3 ) ( 3 + ) ( 3 ) = 0 η). + (3 ) + (4 3 ) = 0
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο η Σειρά Ασκήσεων - Λύσεις
ΗΥ118 Διακριτά Μαθηματικά Εαρινό Εξάμηνο 2018 3 η Σειρά Ασκήσεων - Λύσεις Άσκηση 3.1 [1 μονάδα] Έστω Α={1,2,3,{1,3},4,{5,6}}. Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος; i. {5,6} Α vi.
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 113 ΕΡΩΤΗΣΕΙΣ ΜΕ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 152 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΜΕ ΜΕΘΟΔΟΛΟΓΙΕΣ 217 ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ 113 ΕΡΩΤΗΣΕΙΣ ΜΕ ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 15 ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΜΕ ΜΕΘΟΔΟΛΟΓΙΕΣ 17 ΑΣΚΗΣΕΙΣ ΠΡΟΣ ΛΥΣΗ 7 ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ) Copyright 014 Αποστόλου Γιώργος Αποστόλου
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ
ΑΠΑΝΤΗΣΕΙΣ - ΥΠΟ ΕΙΞΕΙΣ ΣΤΙΣ ΕΡΩΤΗΣΕΙΣ 234 Κεφάλαιο 4ο: ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Απαντήσεις στις ερωτήσεις «Σωστό - Λάθος» 1. Λ 17. Σ 32. Σ 47. Σ 62. Σ 2. Σ 18. Σ 33. Λ 48. Λ 63. Σ 3. Λ 19. Λ 34. Σ 49. Σ 64. Λ 4.
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου
ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου Κεφάλαιο ο Αλγεβρικές Παραστάσεις ΛΕΜΟΝΙΑ ΜΠΟΥΤΣΚΟΥ Γυμνάσιο Αμυνταίου ΜΑΘΗΜΑ Α. Πράξεις με πραγματικούς αριθμούς ΑΣΚΗΣΕΙΣ ) ) Να συμπληρώσετε τα κενά ώστε στην κατακόρυφη στήλη
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ & ΠΡΟΑΠΑΙΤΟΥΜΕΝΕΣ ΓΝΩΣΕΙΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ A ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ www.pitetragono.gr Σελίδα. ΔΥΝΑΜΕΙΣ : Ισχύουν οι
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: 1.2-1.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων
ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. 1. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 3 4 3 7
ΒΑΣΙΚΕΣ ΕΦΑΡΜΟΓΕΣ ΑΣΚΗΣΕΙΣ ΣΤΑ ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. Να αποδείξετε ότι για οποιαδήποτε σημεία Α,Β,Γ,Δ ισχύει ότι : 4 4 7. Αν ισχύουν να αποδείξετε ότι. Αν ισχύει ότι 5 5 να αποδείξετε
με μ,ν ακέραιους και ν 0 και δημιουργήθηκε το σύνολο Q ( ρητοί). Το σύνολο Ζ επεκτάθηκε με την προσθήκη αριθμών της τύπου
ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΠΡΑΓΜΑΤΙΚΟΥΣ ΚΑΙ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΛΟΓΙΣΜΟ Η ΑΛΓΕΒΡΑ ασχολείται με τους αριθμούς και τις μεταξύ τους σχέσεις Οι φυσικοί αριθμοί (συμβολίζονται με το γράμμα Ν) Ν={ 1,,3 }επινοήθηκαν από τον
ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΑΝΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Αν έχω τριώνυμο της μορφής :,. Υπολογίζω την Διακρίνουσα 4 Αν Δ> τότε η εξίσωση έχει άνισες ρίζες έστω Ομόσημο του α Ετερόσημο του α, τότε: Ομόσημο του α Αν Δ= τότε η εξίσωση έχει διπλή
Α. ΕΚΠ ΑΚΕΡΑΙΩΝ ΑΛΓΕΒΡΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΜΑΘΗΜΑ 8 Κεφάλαιο 1o : Αλγεβρικές Παραστάσεις Υποενότητα 1.8: ΕΚΠ και ΜΚ ακεραίων αλγεβρικών παραστάσεων Θεµατικές Ενότητες: 1. ΕΚΠ ακεραίων αλγεβρικών παραστάσεων.. ΜΚ ακεραίων αλγεβρικών παραστάσεων.
Α. ΠΡΟΣΘΕΣΗ - ΑΦΑΙΡΕΣΗ ΡΗΤΩΝ ΠΑΡΑΣΤΑΣΕΩΝ ΜΕ ΚΟΙΝΟ ΠΑΡΟΝΟΜΑΣΤΗ
ΜΑΘΗΜΑ Κεφάλαιο o : Αλγεβρικές Παραστάσεις Υποενότητα.: Πράξεις Ρητών Παραστάσεων. Θεµατικές Ενότητες:. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων µε Κοινό Παρονοµαστή.. Πρόσθεση - Αφαίρεση Ρητών Παραστάσεων
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο
( ) ( ( 2 ) ( 2 ) y να υπολογιστεί η α) Για ποιες τιμές του χ δεν ορίζεται η διπλανή παράσταση. Β) Να απλοποιηθεί η διπλανή παράσταση.
Ασκήσεις 1. Να υπολογιστεί η παράσταση: 5 6 6. Να αποδειχθεί ότι: ( ) ( ) (90 ) (90 ) (180 ) 1 (180 ) (180 ) ( ) ( ) ( ) ( ). Να λυθούν τα συστήματα :. Να λυθούν οι εξισώσεις: 1 y 1 5y 7 0 y 1 0 5 6 y
( ) λ( ) ( ) ( ) 2. 3α β 27αβ 10. x x αx αy βx βy x y y x x x x. 4 x x x y x y x y y. B Να παραγοντοποιηθούν οι παραστάσεις: x y x y x x y a x a x
A Να παραγοντοποιηθούν οι παραστάσεις: 1. kx x kx x kx x kx x x 8 x 5x 10 x x x x x x. λ 5x 10x 5 x x 10 x x x κ x x κ ( x ) λ( x ). ( α 1 )( x ) α ( x ) ( α 1)( x ) α ( x ) ( α )( x ) α ( x ). 1x 1 kx
ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 6 η ΕΚΑ Α
1 ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 6 η ΕΚΑ Α 51. Να γίνει γινόµενο παραγόντων η παράσταση α β + αβ α β Αν α β + β α = α + β, να δείξετε ότι οι αριθµοί α και β είναι ίσοι ή αντίθετοι. α β + αβ α β = αβ(α + (α + β )
Ασκήσεις Άλγεβρας Α Λυκείου 2 oυ και 3 oυ Κεφαλαίου 1
Ασκήσεις Άλγεβρας Α Λυκείου oυ και 3 oυ Κεφαλαίου έµης Απόστολος, Ζάχος Ιωάννης, Κατσαργύρης Βασίλειος, Κόσυβας Γεώργιος, Λυγάτσικας Ζήνων Πειραµατικό Γενικό Λύκειο Βαρβακείου Σχολής Οκτώβριος 004 Νοεµβρίου
Aπάντηση Απόλυτη τιμή αριθμού είναι η απόσταση του αριθμού από το 0. Συμβολίζεται με 3 = 3-3 = 3 + και και είναι πάντα θετικός αριθμός. Π.
ΜΕΡΟΣ Α : Α Λ Γ Ε Β ΡΑ ΚΕΦΑΛΑΙΟ 1ο ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και πράξεις τους 1. Γράψε τα βασικότερα σύνολα τιμών: Aπάντηση Ν{0,1,,,4,5,6,..+
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ Ο ΕΠΑΝΑΛΗΨΗ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Το ακτίνιο ως μονάδα μέτρησης γωνιών: Το ακτίνιο (ή rad) είναι η γωνία που, όταν γίνει επίκεντρη κύκλου (Ο, ρ), βαίνει σε τόξο που έχει μήκος ίσο με την ακτίνα
2 Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΧΟΛΙΚΟ ΕΤΟΣ 016-017 ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΟΙ ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ Ι ΙΟΤΗΤΕΣ ΤΟΥΣ ΡΗΤΟΙ λέγονται οι αριθµοί : ΟΙ ΠΕΡΙΟ ΙΚΟΙ αριθµοί είναι :. ΑΡΡΗΤΟΙ
ΕΡΩΤΗΣΕΙΣ. ικανοποιούν την ανίσωση 2x 3 < 11; (E) µεταξύ των απαντήσεων Α D δεν υπάρχει
ΕΡΩΤΗΣΕΙΣ. Αν α =β, τότε η τιµή της παράστασης κ= α β +β α είναι: ( ) 4 ( Β )0, ( )4 δίνονται. Α, C, ( D ), (Ε) δεν µπορεί να προσδιοριστεί από τις πληροφορίες που. Πόσα στοιχεία του συνόλου { 5,,0,4,6,7}
1.3 Εσωτερικό Γινόμενο
1 Εσωτερικό Γινόμενο 1 Αν α = ( 1, ) i α β iii και β = ( 1, ), να υπολογίσετε τα εσωτερικά γινόμενα: ii ( α )( β ) α β α + β α iv Αν α =, β = 1 και ( αβ, ) = 15 ο, να υπολογίσετε το α β Με βάση το διπλανό
Πραγματικοί αριθμοί. Κεφάλαιο Οι πράξεις και οι ιδιότητές τους. = 2. Να υπολογίσετε
Κεφάλαιο Πραγματικοί αριθμοί. Οι πράξεις και οι ιδιότητές τους. Έστω α, β δύο πραγματικοί αριθμοί για τους οποίους ισχύει α + β = 0 και β + α την τιμή της παράστασης αβ + αβ. =. Να υπολογίσετε. Αν x y
ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΦΥΛΛΑΔΙΟ ΧΡΙΣΤΟΥΓΕΝΝΩΝ 2015 ΔΕΚΕΜΒΡΙΟΣ 2015 Δ.Ε. ΚΟΝΤΟΚΩΣΤΑΣ Οι ασκήσεις να λυθούν σε χαρτί Α4 1 η ΑΣΚΗΣΗ Να υπολογιστούν οι παραστάσεις: i. 2 3 +2 5 2 1 1 4 +3 2 ii. 5 2 3 2 3 ( 1 4 3 2 )
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ i) 50% ii) 30% ,
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Έστω ο δειγματικός χώρος Ω = {0,,,,, 00} Δίνονται και οι πιθανότητες κ =,,, 00 Να υπολογίσετε την πιθανότητα P(0) Έστω Ω ένας δειγματικός χώρος με πεπερασμένο πλήθος στοιχείων και
Ι δ ι ο τ η τ ε ς Π ρ ο σ θ ε σ η ς - Π ο λ λ α π λ α σ ι α σ μ ο υ ΙΔΙΟΤΗΤΑ ΠΡΟΣΘΕΣΗ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ
ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ 1 Π ρ α γ μ α τ ι κ ο ι Α ρ ι θ μ ο ι : Υ π ο σ υ ο λ α του Το συολο τω φυσικω 3. αριθμω: Να δειχτει οτι = α {0,1,,3, } + 110 0α. Ποτε ισχυει το ισο; Το συολο τω. A ακεραιω α, β θετικοι
Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος)
Μαθηματικά Γ Γυμνασίου Απαντήσεις θεωρίας Κεφάλαιο 1ο. (α μέρος) 1. Πως προσθέτουμε δυο πραγματικούς αριθμούς; Για να προσθέσουμε δύο ομόσημους αριθμούς, προσθέτουμε τις απόλυτες τιμές τους και στο άθροισμά
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ. Γραφική λύση συστημάτων. 2 2 και Α 3, y 2 3. x y. y 3x
ΑΣΚΗΣΕΙΣ ΣΤΑ ΣΥΣΤΗΜΑΤΑ Γραφική λύση συστημάτων 1. Δίνονται τα σημεία Α(-1, 0),Β(0, 1),Γ, 1 και Α, 1.Να βρείτε ποιο από αυτά y 1 επαληθεύει το σύστημα y 5. Να επιλύσετε γραφικά τα συστήματα: y 1 y 1 y y
Γενικό Ενιαίο Λύκειο Μαθ. Κατ. Τάξη B
151 Θέματα εξετάσεων περιόδου Μαΐου - Ιουνίου στα Μαθηματικά Κατεύθυνσης Τάξη - B Λυκείου 15 Α. Αν α, β, γ ακέραιοι ώστε α/β και α/γ, να δείξετε ότι α/(β + γ). Μονάδες 13 Β. α. Δώστε τον ορισμό της παραβολής.
ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ
ΕΞΙΣΩΣΕΙΣ ου ΒΑΘΜΟΥ Τι ονομάζουμε εξίσωση ου βαθμού; o Εξίσωση ου βαθμού με ένα άγνωστο ονομάζουμε κάθε εξίσωση που γράφεται ή μπορεί να γραφεί στη μορφή με α π.χ 5 6 Τι ονομάζουμε εξίσωση ου βαθμού ελλιπούς
ln 1. ( ) vii. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη C f, τον άξονα η οποία είναι συνεχής στο και για την οποία ισχύει
Μαθηματικά Γ Λυκείου Θέμα 4o Α Δίνεται η συνάρτηση h ( ), η οποία είναι συνεχής και γνησίως αύξουσα στο διάστημα [, ] β αβ Να δείξετε ότι h d hαβα Β Δίνεται η συνάρτηση f α ( ) ln i Να βρείτε το πεδίο
Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ρητοί και ποιοι άρρητοι;
Φυσικοί, Ακέραιοι, Ρητοί, Άρρητοι, Πραγματικοί, Απόλυτη Τιμή, Ομόσημοι, Ετερόσημοι, Αντίθετοι, Αντίστροφοι. Να γράψετε 5 φυσικούς αριθμούς ξεκινώντας από τον μικρότερο. Ποιοι αριθμοί λέγονται ακέραιοι;
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5
Ιγνάτιος Ιωαννίδης Χρήσιμες Γνώσεις 5 Α Σύνολα αριθμών Για τα σύνολα των αριθμών γνωρίζουμε ότι N Z Q R. ) Το N= { 0,,,,... } είναι το σύνολο των φυσικών αριθμών. ) Το Z = { 0, ±, ±, ±,... } είναι το σύνολο
Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά
Άλγεβρα Α ΛYKEIOY ΆΛΓΕΒΡΑ 09-00 Μίλτος Παπαγρηγοράκης Χανιά Ταξη: Α Γενικού Λυκείου Άλγεβρα Έκδοση 907 Η συλλογή αυτή διανέμεται δωρεάν σε ψηφιακή μορφή μέσω διαδικτύου προορίζεται για σχολική χρήση και
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Μαθηματικά Γ Γυμνασίου. Επαναληπτικές Ασκήσεις στο Κεφάλαιο 1: Μονώνυμα - Πολυώνυμα - Ταυτότητες
Μαθηματικά Γ Γυμνασίου Επαναληπτικές Ασκήσεις στο Κεφάλαιο :.2 -.5 Μονώνυμα - Πολυώνυμα - Ταυτότητες Αλγεβρικές παραστάσεις - Μονώνυμα Πράξεις με μονώνυμα Πολυώνυμα Πρόσθεση και Αφαίρεση πολυωνύμων Πολλαπλασιασμός
Αλγεβρικές παραστάσεις
Αλγεβρικές παραστάσεις Κώστας Γλυκός Γ ΓΥΜΝΑΣΙΟΥ κεφάλαιο 1 197 ασκήσεις και τεχνικές σε 19 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 8 / 9 / 0
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ
Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΛΑΙΟ 1 ο ΠΙΘΑΝΟΤΗΤΕΣ 1. Για οποιαδήποτε ενδεχόμενα Α, Β ενός δειγματικού χώρου Ω ισχύει η σχέση ( ) ( ) ( ).. Ισχύει ότι P( A B) P( A
ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ-ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ
Εκθετική συνάρτηση Αν α θετικός πραγματικός αριθμός, σε κάθε αντιστοιχεί η δύναμη. Έτσι ορίζεται η συνάρτηση : f : με f α, 0 α η οποία ονομάζεται εκθετική συνάρτηση με βάση α. Αν α, τότε έχουμε τη σταθερή
AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ
http://1lyk-ag-dimitr.att.sch.gr/ AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΙΑΤΑΞΗ: 1. Έστω ότι α < β και γ < δ. Να αποδείξετε ότι: αγ αδ βγ + βδ > 0 2. Αν α -1, δείξτε ότι α 3 + 1 α 2 + α 3. Αν x>1 δείξτε ότι: 2x 3
Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Αλγεβρικές Παραστάσεις
Αλγεβρικές Παραστάσεις 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) 1 1.1 Πράξεις με πραγματικούς αριθμούς (Επαναλήψεις-συμπληρώσεις) Α Οι πραγματικοί αριθμοί και οι πράξεις τους Πραγματικοί
2.1 ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ : ΟΙ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ. ΠΡΑΞΕΙΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Ρητός ονομάζεται κάθε αριθμός που έχει ή μπορεί να πάρει τη μορφή κλάσματος, όπου, είναι ακέραιοι με 0. Ρητοί αριθμοί : Q /, 0. Έτσι π.χ.