Eesti koolinoorte 26. füüsika lahtine võistlus
|
|
- Αιγιδιος Βαμβακάς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Eesti koolinoorte 26. füüsika lahtine võistlus 28. november a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud F r = m kl g, mis on suunatud alla; niidi pinge F, mis on suunatud üles; klaasi põhjale mõjuv õhu rõhumisjõud F õhk = p 0 S; vee rõhumisjõud F vesi = (p 0 ρgh)s, mis on suunatud üles. Saame seose F + (p 0 ρgh)s = m kl g + p 0 S. Niidi pinge on seega Kuna ρhs = m v, siis F = m kl g + ρghs. F = (m kl + m v )g. 2 ) 2 ja vee 2. (KETTA PÖÖRLEMINE) Läheme üle pöörlevasse taustsüsteemi, kus ketta kese on paigal. Kuna libisemist ei toimu ja ketas on paigal, siis selles taustsüsteemis peab ketas pöörlema nii palju, et katta terve silindri serv: 2πrn 2 = 2πR, kust n 2 = R. Selleks hetkeks, kui ketas r on teinud suurele silindrile tiiru peale, on pöörlev taustsüsteem teinud samuti ühe pöörde. Arvestame sellega, et kui läheme üle pöörlevasse taustsüsteemi, mis pöörleb esialgse suhtes näiteks päripäeva, siis selleks hetkeks, kui taustsüsteem on teinud ühe pöörde päripäeva, on selles taustsüsteemis näha nagu kõik kehad oleksid teinud ühe pöörde vastupäeva. Veel tuleb arvestada sellega, et kui esialgses taustsüsteemis ketta kese liigub näiteks päripäeva ümber silindri keskme, siis ümber oma telje pöörleb ketas vastupäeva. Seega päripidi pöörlevas taustsüsteemis näeme, et ketas pöörleb kiiremini ümber oma telje võrreldes esialgse taustsüsteemiga.
2 Saamaks pöörete arvu esialgses taustsüsteemis tuleb ketta pöörete arvust pöörlevas taustsüsteemis lahutada taustsüsteemi pöörete arv ehk lõppvastus on n = R r (KUJUTIS PEEGLITES) B 2l*sin(60) O D l C A Kuna peeglitevaheline nurk on täpselt 120, siis tekivad kärbse kujutised punktidesse B ja C. Tekkinud kolmnurk ABC on võrdkülgne. Nurk DOA = 60, seega külg DA = l sin 60 ning kujutiste B ja C vaheline kaugus on 2l sin 60 = 3l. 4. (KOHVIKANN) a) Sektsiooni A hakkab vett voolama siis, kui vesi on kuumenenud 100 C-ni ning hakkab keema. Selleks kulub soojushulk Q 1 = cm(100 C T 0 ), mille pliit võimsusega N annab veele aja t 1 = Q/N jooksul t 1 = cm(100 C T 0 ) N = 37,8 s. b) Vee keemine lõppeb siis, kui kogu vesi on aurustunud. Vee aurustamiseks vajalik soojushulk on Q 2 = λm. Pliit annab selle soojushulga veele aja t k jooksul t k = λm = 230 s. N Seega lõpeb vee voolamine sektsiooni A t 2 = t 1 + t k = 267,8 s pärast. Päris mokakannus surub keeva vee aururõhk vee alumisest sektsioonist ülemisse. Meie vee sellise surumisega ei arvestanud, kuna siis kogu vesi ei aurustu ja aurustunud vee kogust on raske täpselt arvutada.
3 5. (ELEKTRISKEEM) Juku mõõteriistade näidud. Süsteemi kogutakistus on R k = R R = 5 3 R. Rööpühenduse osa takistus (kus asuvad mõõteriistad) on R r = 2 3 R. Voolutugevus vooluringi hargnemata osas on I k = U R k = 3U 5R. Pinge rööpühenduse korral on sama, seega on voltmeetri näit Jukul ning ampermeetri näit on Jukul U J = I k R r = 3U 5R 2 3 R = 2 5 U = 3,6 V I J = U J R = 2U 5R = 1,2 A. Manni mõõteriistade näidud. Mann vahetas voltmeetri ning ampermeetri asukohad ära. Voltmeetri enda takistus on lõpmatu ning ampermeetri takistus 0, seega Manni skeemil läbib vool ainult vasakpoolset takistit, teistest takistitest vool läbi ei lähe. Süsteemi kogutakistus on seega R. Voltmeeter on ühendatud paralleelselt ampermeetriga, mille takistus on 0 A, seega näitab voltmeeter Mannil U M = 0 V. Ampermeeter näitab voolutugevust I M = U R = 3 A.
4 6. (KÜTUSEKULU) Käik väljas sõites kulub aeglustamiseks 8 s. Kütusekulu käik väljas sõites on 0,9 l/h, seega pidurdamiseks kulunud kütusekogus V 1 on V 1 = 0,9 l/h 8 s 3600 s/h = 0,002 l. Auto keskmine kiirus pidurdamise ajal on 80 km/h+70 km/h v k = = 75 km/h 20,83 m/s. Teepikkus s 2 1, mille auto pidurdamisega läbib on s 1 = v k t = 20,83 m/s 8 s 166,67 m. Käik sees sõites pidurdab auto 5 sekundit, mille jooksul kütust ei kulu. Teepikkus s 2, mille auto selle aja jooksul läbib on s 2 = v k t = 20,83 m/s 5 s 104,17 m. Seega, et läbida sama teepikkus, mille auto pidurdas käik väljas sõites, peab auto mootoriga sõitma s 3 = s 1 s 2 = 166,67 m 104,17 m = 62,5 m. Selle vahemaa läbimiseks kulunud kütusekogus V 2 on V 2 = 5,2 l/100km 62,5 m 1000 m/km = 0, l. Seega kulutab auto käik sees pidurdades kütust rohkem 0, l 0,002 l = 0, l, mis maksab 0, l 1,1 EUR/l 100 senti/eur 0,14 senti. 7. (VÕIDUSÕIT JÕEL) Juku ja Manni kiirused maa suhtes vastuvoolu sõites on v 1Juku = s t = 500 m 240 s = 2,08 m/s ja v 1Mann = s t = 400 m 240 s = 1,67 m/s. Kuna jõe voolukiirus on u = 1 m/s, siis on tagasi sõites Juku ja Manni kiirused maapinna suhtes 2 m/s kiiremad:
5 v 2Juku = 4,08 m/s ja v 2Mann = 3,67 m/s. Mann läbib kogu distantsi ajaga t Mann = 1000 m 1,67 m/s m 3,67 m/s = 870 s. Jukul on mütsi kättesaamiseks kaks võimalust. Ta keerab 700 m märgis ringi, et mütsile järgi sõita ning seejärel jätkab sõitu 1 km märgini ja tagasi. Teine võimalus on see, et Juku ei keera 700 m märgis ringi ning loodab mütsi kätte saada enne finišijoont. Allpool on esitatud lahendus viimase võimaluse jaoks. Jukul kulub 500 m märgist 1 km märgini ning tagasi algusesse sõitmiseks aega t Juku500m = 500 m 2,08 m/s m 485 s. 4,08 m/s Müts liigub 500 m märgist algusesse jõe voolukiirusega u = 1 m/s, mistõttu läbib müts ajaga, mis kulub Jukul tagasi algusesse jõudmiseks s müts = 1 m/s 485 s = 485 m. Seega Juku jõuab mütsile järgi enne finišit ning kuna ta liigub kiiremini kui Mann, siis saab ta võita võistluse oma märg müts peas. 8. (LÄÄTS) Paneme esmalt tähele, et läätse keskpunkti läbivad kiired AA ja BB ei murdu. Seega paikneb läätse keskpunkt O lõikude AA ja BB lõikepunktis. Teisalt märkame, et valguskiir AB murdub valguskiireks A B. Niisiis, pikendades lõike AB ja A B, leiame nende lõikepunkti X. Sellega oleme konstrueerinud läätse tasandi OX. Läätse optilise peatelje leiame, kui tõmbame läätse tasandiga ristuva sirge s läbi läätse keskpunkti O. Fookuse F leidmiseks konstrueerime näiteks peateljega paralleelse kiire AC, mis murdub läbi fookuse.
6 9. (KLOUNID ÕHUPALLIDEGA) a) Paneme kõigepealt kirja esimesele klounile mõjuvad jõud: üleslükkejõud õhupallidele, raskusjõud õhupallidele ja raskusjõud klounile. F ü = nv ρ õhk g = 500( 4 3 πr3 )ρ õhk g = 500 0,014 1,29 9,8 N F 1He = nm õ g+nρ He V g = ng(m õ +ρ He V ) = 500 9,8 (0,005+0,014 0,178) N F mgk1 = m K1 g = 70 9,8 N F 1K1 = F mgk1 + F 1He F ü = = ( (0, ,014 (0,178 1,29))) 9,8 = 634 N. Teine kloun: F ü = nv ρ õhk g = 500( 4 3 πr3 )ρ õhk g = 500 0,014 1,29 9,8 N F 1H2 = nm õ g+nρ H2 V g = ng(m õ +ρ H2 V ) = 500 9,8 (0,005+0,014 0,090) N F mgk2 = m K2 g = 50 9,8 N F 1K2 = F mgk2 + F 1H2 F ü = ( (0, ,014 (0,090 1,29))) 9,8 = 431 N.
7 Tähistame esimese klouni kauguse kangi toetuspunktist l 1 -ga. Saame, et l 1 = 634 l 1 = 431 (8 l 1 ) = 3,238 m 3 m 24 cm. ( ) b) Arvestame, et õhupallide ruumala väheneb järgmiselt: v uus = V 0,9 t tgaas, kus t gaas on ajaline konstant, mille möödudes väheneb õhupalli ruumala kümnendiku võrra. ja et heeliumi õhupallide arv väheneb järgmiselt: n uus = 500 t t 0, kus t 0 tähistab aega, mille tagant annab kloun ühe õhupalli ära. Paneme kõigepealt kirja esimesele klounile mõjuvad jõud: üleslükkejõud õhupallidele, raskusjõud õhupallidele ja raskusjõud klounile. F ühe = n uus V uushe ρ õhk g = 30 min = ( s ) (4 3 πr3 ) (0,9) 0,5 h 8 h ρõhk g = ( ) 0,014 (0, ) 1,29 9,8N F 2He = n uushe m õ g + n uushe ρ He V uushe g = n uus g(m õ + ρ He V uus ) = = ( ) 9,8 (0, ,014 0, ,178) N F mgk1 = m K1 g = 70 9,8 N F 2K1 = F mgk1 + F 2He F ühe = (70 + ( ) (0, ,014 (0, ) (0,178 1,29))) 9,8 = 653 N. Teine kloun: F üh2 = nv uush2 ρ õhk g = = 500 ( 4 30 min 3 πr3 ) (0,9 18 min )ρõhk g = 500 0,014 (0,9 5 3 ) 1,29 9,8 N
8 F 2H2 = nm õ g + nρ H2 V uush2 g = ng(m õ + ρ H2 V uush2 ) = = 500 9,8 (0, ,014 (0,9 5 3 ) 0,090) N F mgk2 = m K2 g = 50 9,8 N F 2K2 = F mgk2 + F 2H2 F üh2 = = ( (0, ,014(0,9 5 3 ) (0,090 1,29))) 9,8 = 445 N. Tähistame klouni 2 uue kauguse tasakaalupunktist l 2 -ga Saame 653 l 1 = 445 l 2 l 2 = 653 3,238 = 4,751 m. 445 Poole tunni jooksul on pidanud liikuma teine kloun (8 3,238) 4,751 = 0,011 m 1,1 cm. 10. (KLAASIST KERA) Kuulile mõjuvad raskusjõud F r = mg = ρ k V g, kus m on klaaskera mass ja g on vaba langemise kiirendus; üleslükkejõud F ü = ρ v V g ja takistusjõud F t. Kuna kuul liigub jääva kiirusega, siis on kõikide kuulile mõjuvate jõudude summa null, järelikult F r + F ü + F t = 0. Projektsioonis vertikaalteljele saame F r = F ü + F t, kust F t = F r F ü = ρ k V g ρ v V g = V g(ρ k ρ v ). Takistusjõudude ületamiseks kuluv töö muutub soojuseks, seega Q = A = F t H = V g(ρ k ρ v )H,
9 Q = , ,0165 J. Kuuli soojendamiseks kuluv soojushulk on Q k = 0,75Q = c k ρ k V (t 2 t 1 ) t 2 t 1 = 0,75Q c k ρ k V = 0,75 0, ,031 C. Alternatiivselt võime hõõrdumisel tekkinud soojusenergia leida energia jäävuse seadusest. Kõrguse H võrra langedes väheneb kuuli potentsiaalne energia E 1 = ρ k V gh võrra. Ent nüüd on vesi ja kuulid kohad vahetanud, seega on kuuli ruumalale vastav kogus vett kerkinud kõrguse H võrra, mistõttu vee potentsiaalne energia kasvab E 2 = ρ v V gh võrra. Et kuuli ja vee kiirus on jäävad, siis nende kineetiline energia ei muutu. Süsteemi summaarse potentsiaalse energia muut läheb seega täielikult soojuseks Q = E 1 E 2 = V g(ρ k ρ v )H.
Eesti koolinoorte 26. füüsika lahtine võistlus
Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused
Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Eesti koolinoorte 22. füüsika lahtine võistlus
Eesti koolinoorte. füüsika lahtine võistlus 6. november 011. a. Noorema rühma lahendused 1. (POSTID) Posti pikkus on pärast soojushulga andmist: l = l algne(1 + a)q cm Sellest saab arvutad, kui pikaks
Eesti koolinoorte 65. füüsikaolumpiaad
Eesti oolinoorte 65. füüsiaolumpiaad 14. aprill 018. a. Vabariili voor. Gümnaasiumi ülesannete lahendused 1. (POOLITATUD LÄÄTS) (6 p.) Autor: Hans Daniel Kaimre Ülesande püstituses on öeldud, et esialgse
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Nelja kooli ühiskatsete näidisülesanded: füüsika
Nelja kooli ühiskatsete näidisülesanded: füüsika Füüsika testi lahendamiseks on soovituslik aeg 45 minutit ja seda hinnatakse maksimaalselt 00 punktiga. Töö mahust mitte üle / moodustavad faktiteadmisi
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine
M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine 1. Auto sõitis Tallinnast Tartusse. Esimese poole teest läbis ta kiirusega 80 km/h ja teise poole kiirusega 120 km/h. Tagasiteel liikus auto poole
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
3. IMPULSS, TÖÖ, ENERGIA
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Eesti koolinoorte 58. füüsikaolümpiaad
Eesti koolinoorte 58. füüsikaolümpiaad 29. jaanuar 2011. a. Piirkondlik voor. Gümnaasiumi ülesannete lahendused Eessõna Allpool on toodud iga ülesande üks õige lahenduskäik (mõnel juhul ka enam. Kõik alternatiivsed
Ülesannete lahendamise metoodika
Ülesannete lahendamise metoodika Füüsika ülesannete lahendamisel pole eesmärgiks vastuse leidmine, vaid lahendamise õppimine ja harjutamine. Ülesannete lahendamine ei ole "sobivate tähtedega" valemite
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
Lõppvoor. 7. märts a. Gümnaasiumi ülesannete lahendused
Eesti kooinoorte 56 füüsikaoümpiaad Lõppvoor 7 märts 009 a Gümnaasiumi üesannete ahendused (NÜRINENUD KÄÄRID) α N F h α Hõõrdejõud peab tasakaaustama toereaktsiooni kääride teje sihiise komponendi (joonis)
Kehade soojendamisel või jahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks.
KOOLIFÜÜSIKA: SOOJUS 3 (kaugõppele) 6. FAASISIIRDED Kehade sooendamisel või ahutamisel võib keha minna ühest agregaatolekust teise. Selliseid üleminekuid nimetatakse faasisiireteks. Sooendamisel vaaminev
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
Füüsika. Mehaanika alused. Absoluutselt elastne tsentraalpõrge
9.09.017 Füüsika Mehaanika alused Absoluutselt elastne tsentraalpõrge Põrkeks nimetatakse keha liikumisoleku järsku muutust kokkupuutel teise kehaga. Kui seejuures ei teki jääkdeformatsioone, nimetatakse
TARTU ÜLIKOOL Teaduskool. V. Väinaste. Kehade pöördliikumine
TARTU ÜLIKOOL Teaduskool V. Väinaste Kehade pöördliikumine TARTU 009 1 Kehade pöördliikumine Mehaanikas eristatakse kehade liikumise kahte põhiliiki: a) kulgliikumine b) pöördliikumine Kulgliikumise korral
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
ANTENNID JA RF ELEKTROONIKA
TALLINNA TEHNIKAÜLIKOOL Mikrolainetehnika õppetool Laboratoorne töö aines ANTENNID JA RF ELEKTROONIKA Antenni sisendtakistuse määramine Tallinn 2005 1 Eesmärk Käesoleva laboratoorse töö eesmärgiks on tutvuda
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
I. Keemiline termodünaamika. II. Keemiline kineetika ja tasakaal
I. Keemiline termdünaamika I. Keemiline termdünaamika 1. Arvutage etüüni tekke-entalpia ΔH f lähtudes ainete põlemisentalpiatest: ΔH c [C(gr)] = -394 kj/ml; ΔH c [H 2 (g)] = -286 kj/ml; ΔH c [C 2 H 2 (g)]
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
LOFY Füüsika looduslikus ja tehiskeskkonnas I (3 EAP)
LOFY.01.087 Füüsika looduslikus ja tehiskeskkonnas I (3 EAP) Sissejuhatus... 1 1. Füüsika kui loodusteadus... 2 1.1. Loodus... 2 1.2. Füüsika... 3 1.3. Teaduse meetod... 4 2. Universumiõpetus... 7 3. Liikumine
MATEMAATIKA AJALUGU MTMM MTMM
Õppejõud: vanemteadur Mart Abel Õppejõud: vanemteadur Mart Abel Loenguid: 14 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Õppejõud: vanemteadur Mart Abel Loenguid: 14 Seminare: 2 Hindamine:
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus
Ülesanne 4.1. Õhukese raudbetoonist gravitatsioontugiseina arvutus Antud: Õhuke raudbetoonist gravitatsioontugisein maapinna kõrguste vahega h = 4,5 m ja taldmiku sügavusega d = 1,5 m. Maapinnal tugiseina
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu arvutada keha liikumise.
KOOLIÜÜSIKA: MEHAANIKA (kaugõppele). DÜNAAMIKA. Newtoni seadused. Newtoni seadused on klassikalise mehaanika põhialuseks. Neist lähtuvalt saab kehale mõjuvate jõudude kaudu avutada keha liikumise. Newtoni
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS
KEEMIAÜLESANNETE LAHENDAMISE LAHTINE VÕISTLUS Nooem aste (9. ja 10. klass) Tallinn, Tatu, Kuessaae, Nava, Pänu, Kohtla-Jäve 11. novembe 2006 Ülesannete lahendused 1. a) M (E) = 40,08 / 0,876 = 10,2 letades,
ITI 0041 Loogika arvutiteaduses Sügis 2005 / Tarmo Uustalu Loeng 4 PREDIKAATLOOGIKA
PREDIKAATLOOGIKA Predikaatloogika on lauseloogika tugev laiendus. Predikaatloogikas saab nimetada asju ning rääkida nende omadustest. Väljendusvõimsuselt on predikaatloogika seega oluliselt peenekoelisem
TARTU ÜLIKOOL. Teaduskool. Magnetism. Koostanud Urmo Visk
TARTU ÜLIKOOL Teaduskool Magnetism Koostanud Urmo Visk Tartu 2007 Sisukord Voolude vastastikune mõju...2 Magnetinduktsioon...3 Ampere'i seadus...6 Lorentzi valem...9 Tsirkulatsiooniteoreem...13 Elektromagnetiline
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
Deformeeruva keskkonna dünaamika
Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla
Compress 6000 LW Bosch Compress LW C 35 C A ++ A + A B C D E F G. db kw kw /2013
55 C 35 C A A B C D E F G 50 11 12 11 11 10 11 db kw kw db 2015 811/2013 A A B C D E F G 2015 811/2013 Toote energiatarbe kirjeldus Järgmised toote andmed vastavad nõuetele, mis on esitatud direktiivi
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [10.loeng] 1 Arvestustöö Arvestustöö sooritamiseks on vaja 50p (kes on kohal käinud piisab 40p) (maksimaalselt
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool. Andrus Salupere STAATIKA ÜLESANDED
Tallinna Tehnikaülikool Mehaanikainstituut Deformeeruva keha mehaanika õppetool Andrus Salupere STAATIKA ÜLESANDED Tallinn 2004/2005 1 Eessõna Käesolev ülesannete kogu on mõeldud kasutamiseks eeskätt Tallinna
; y ) vektori lõpppunkt, siis
III kusus VEKTOR TASANDIL. JOONE VÕRRAND *laia matemaatika teemad. Vektoi mõiste, -koodinaadid ja pikkus: http://www.allaveelmaa.com/ematejalid/vekto-koodinaadid-pikkus.pdf Vektoite lahutamine: http://allaveelmaa.com/ematejalid/lahutaminenull.pdf
DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud.
Kolmnurk 1 KOLMNURK DEF. Kolmnurgaks nim hulknurka, millel on 3 tippu. / Kolmnurgaks nim tasandi osa, mida piiravad kolme erinevat punkti ühendavad lõigud. Kolmnurga tippe tähistatakse nagu punkte ikka
Elastsusteooria tasandülesanne
Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni
Eesti koolinoorte XLI täppisteaduste olümpiaad
Eesti koolinoorte XLI täppisteaduste olümpiaad MATEMAATIKA III VOOR 6. märts 994. a. Lahendused ja vastused IX klass.. Vastus: a) neljapäev; b) teisipäev, kolmapäev, reede või laupäev. a) Et poiste luiskamise
ALGEBRA I. Kevad Lektor: Valdis Laan
ALGEBRA I Kevad 2013 Lektor: Valdis Laan Sisukord 1 Maatriksid 5 1.1 Sissejuhatus....................................... 5 1.2 Maatriksi mõiste.................................... 6 1.3 Reaalarvudest ja
Ülesanded aines Füüsikaline maailmapilt
Ülesanded aines Füüsikaline maailmapilt 1. Maa diameetri ja ümbermõõdu määras teadaolevalt esimesena Eratosthenes ca 235.a. e.m.a. Ta mõõtis suvise pööripäeva keskpäeval Aleksandrias vertikaalse vaia ning
KEEMIA ÜLESANNETE LAHENDAMINE II
KEEMIA ÜLESANNETE LAHENDAMINE II ÜLESANDED JA LAHENDUSED Ülesanne 1 Ülesanne Ülesanne Vana münt diameetria, cm ja paksusea,0 mm on tehtud puhtast kullast (ρ = 1900 k m ). Kulla hind on 410$ ühe untsi eest
5. OPTIMEERIMISÜLESANDED MAJANDUSES
5. OPTIMEERIMISÜLESNDED MJNDUSES nts asma Sissejuhatus Majanduses, aga ka mitmete igapäevaste probleemide lahendamisel on piiratud võimalusi arvestades vaja leida võimalikult kasulik toimimisviis. Ettevõtete,
Eesti koolinoorte 28. füüsika lahtine võistlus
Eesti koolinoorte 28. füüsika lahtine võistlus 2. detsember 2017. a. Vanema rühma ülesannete lahendused 1. (KIIRABIAUTO) (6 p.) Autor: Sandra Schumann. Olgu kiirabiauto kiirus v ja auto poolt tekitatava
NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse
TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov
Eesti koolinoorte 53. füüsikaolümpiaad
Eesti koolinoorte 53. füüsikaolümpiaad 21. jaanuar 2006. a. Piirkondlik voor Põhikooli ülesannete lahendused Eessõna Käesoleval lahendustelehel on toodud iga ülesande üks õige lahenduskäik (mõnel juhul
Keemia lahtise võistluse ülesannete lahendused Noorem rühm (9. ja 10. klass) 16. november a.
Keemia lahtise võistluse ülesannete lahendused oorem rühm (9. ja 0. klass) 6. november 2002. a.. ) 2a + 2 = a 2 2 2) 2a + a 2 2 = 2a 2 ) 2a + I 2 = 2aI 4) 2aI + Cl 2 = 2aCl + I 2 5) 2aCl = 2a + Cl 2 (sulatatud
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
2. Optilised instrumendid
Sisukord 2. Optilised instrumendid... 2 2.0 Tutvumine mikroskoobiga... 2 2.0.1 Sissejuhatus ja teoreetiline ülevaade... 2 2.1 Pikksilma suurendus, vaateväli ja lahutusvõime... 7 2.1.1 Tööülesanne... 7
4. KEHADE VASTASTIKMÕJUD. JÕUD
4. KEHADE VASTASTIKMÕJUD. JÕUD Arvatavasti oled sa oma elus kogenud, et kõik mõjud on vastastikused. Teiste sõnadega: igale mõjule on olemas vastumõju. Ega füüsikaski teisiti ole. Füüsikas on kehade vastastikuse
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD
KOMBINATSIOONID, PERMUTATSIOOND JA BINOOMKORDAJAD Teema 3.1 (Õpiku peatükid 1 ja 3) Jaan Penjam, email: jaan@cs.ioc.ee Diskreetne Matemaatika II: Kombinatoorika 1 / 31 Loengu kava 1 Tähistusi 2 Kombinatoorsed
2.1. Jõud ja pinged 2-2
1 Peatükk 2 Pinge 2.1. Jõud ja pinged 2-2 2.1 Jõud ja pinged Kehale mõjuvad välisjõud saab jagada kahte rühma. 1. Pindjõud ehk kontaktjõud on põhjustatud keha kontaktist teiste kehade või keskkondadega.
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Fotomeetria. Laineoptika
Fotomeetria 1. Päikese ja Maa vaheline kaugus on 1,5 10 8 km. Kui kaua tuleb valgus Päikeselt Maale? (Vastus: 500 s) 2. Fizeau ajaloolises katses valguse kiiruse määramiseks oli 720 hambaga hammasratta
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.
Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool. Andrus Salupere. Loengukonspekt EMR5170, EMR0020, 4,0 AP
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool Andrus Salupere DÜNAAMIKA Loengukonspekt EMR5170, EMR0020, 4,0 AP Tallinn 2003/2004/2005 Eessõna Käesolev loengukonspekt on mõeldud
Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.
Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika
FÜÜSIKA IV ELEKTROMAGNET- VÕNKUMISED 2. ELEKTROMAGNET- VÕNKUMISED 2.1. MEHHAANILISED VÕNKUMISED VÕNKUMISED MEHHAANIKAS. Teema: elektromagnetvõnkumised
FÜÜSIKA IV ELEKTROMAGNET- VÕNKUMISED Teema: elektromagnetvõnkumised 2. ELEKTROMAGNET- VÕNKUMISED 2.1. MEHHAANILISED VÕNKUMISED F Ü Ü S I K A I V E L E K T R O M A G N E T V Õ N K U M I S E D VÕNKUMISED
Kineetiline ja potentsiaalne energia
Kineetiline ja potentsiaalne energia Koostanud: Janno Puks Kui keha on võimeline tegema tööd, siis ta omab energiat. Seetõttu energiaks nimetatakse keha võimet teha tööd. Keha poolt tehtud töö ongi energia
Virumaa Kolledž Reaal ja tehnikateaduste keskus
Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln Ül.
Ülesannete numbrid on võetud ülesannete kogust L.Lepmann jt. Ülesandeid gümnaasiumi matemaatika lõpueksamiks valmistumisel Tln.6 I kursus NÄIDISTÖÖ nr.: Astmed.. Arvutada avaldise täpne väärtus. 8 * (,8)
Vektori u skalaarkorrutist iseendaga nimetatakse selle vektori skalaarruuduks ja tähistatakse (u ) 2 või u 2 u. u v cos α = u 2 + v 2 PQ 2
Vektorite sklrkorrutis Vtleme füüsikkursusest tuntud olukord, kus kehle mõjub jõud F r j keh teeb selle jõu mõjul nihke s Konkreetsuse huvides olgu kehks rööbsteel liikuv vgun Jõud F r mõjugu vgunile rööbstee
TARTU ÜLIKOOL Teaduskool. Võnkumised ja lained. Koostanud Henn Voolaid
TARTU ÜLIKOOL Teaduskool Võnkumised ja lained Koostanud Henn Voolaid Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes
2 Hüdraulika teoreetilised alused 2.1 Füüsikalised suurused
2 2.1 Füüsikalised suurused Mass m Inertsi ja gravitatsiooni iseloomustaja ning mõõt. Keha mass on SI-süsteemi põhiühik. Massi mõõtühikuks SIsüsteemis on kilogramm. Jõud F Kehade vastastikuse mehaanilise
Kontekstivabad keeled
Kontekstivabad keeled Teema 2.1 Jaan Penjam, email: jaan@cs.ioc.ee Rekursiooni- ja keerukusteooria: KV keeled 1 / 27 Loengu kava 1 Kontekstivabad grammatikad 2 Süntaksipuud 3 Chomsky normaalkuju Jaan Penjam,
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
VFR navigatsioon I (Mõisted ja elemendid I)
VFR navigatsioon I (Mõisted ja elemendid I) 1. Suunad ja nende tähistamine. 2. Maakera ja sellega seonduv. 3. Maa magnetism. 4. Kursid (suunanurkade tüübid). 5. Navigatsiooniline kiiruste kolmnurk Min