Lõppvoor. 7. märts a. Gümnaasiumi ülesannete lahendused
|
|
- Κασσάνδρα Μαρκόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Eesti kooinoorte 56 füüsikaoümpiaad Lõppvoor 7 märts 009 a Gümnaasiumi üesannete ahendused (NÜRINENUD KÄÄRID) α N F h α Hõõrdejõud peab tasakaaustama toereaktsiooni kääride teje sihiise komponendi (joonis) Lihtsast geomeetriast saame, et µ tan α (KAST KAUBIKUS) Kiirendus a v 0 /t,5 m/s Newtoni II seaduse põhja N + T + Fh + m g m a Nööri pinge on minimaane, kui hõõrdejud F h saavutab maksimaase väärtuse νn Projektsioon x-tejee: T sin α + νn ma; y-tejee: Lahendades süsteemi ära eiame, et N + T cos α mg 0 a µg T m 4 N sin α µ cos α
2 3 (KONDENSAATORID) Kogunegu keskmisee kondensaatorie (mahtuvusega 3C) aeng a ning nurgas paiknevatee kondensaatoritee (mahtuvusega 3C) aeng b Vaateme üemist vasakpooset kondensaatorit: see negatiivse paadi on nüüd aeng q+a+b ning positiivse paadi q + b Saame võrrandi: ( q + a + b) q + b, q a b q + b, b a/ Lisaks saame pingete võrdsusest: miest a q a 3C q + b C + b, a 3q + 4b, a + a 3q, 3C 4 (RONG TUNNELIS) Õhu temperatuur tunneis kasvab, kuna mootor soojendab tunnei äbimise sees oevat õhku Vaateme rongi iikumist ajavahemiku t jooksu See ajaga äbib rong vahemaa s v t ja rongist mööduva õhu ruumaa on V πd s/4 Õhu mass on m V ρ ja mooide arv on N m M V ρ M πd v tρ 4M Ideaase gaasi oekuvõrrandist pv m M RT saame avadada ρ m V pm RT Rongi mootoris eradub sama aja soojushuk Q P t Üheaatomiise gaasi erisoojus jääva ruumaa on C 3/R Seega on kaheaatomiise gaasi erisoojus C 5/3 3/R 5/R Gaasi erisoojus jääva rõhu on seega C 5/R + R 7/R Õhu soojendamiseks T võrra kuub soojushuk Q NC T Võrdsustame soojushugad Q ja Q NC T P t Asendades eitud avadised N ja C jaoks saame pärast teisendusi T 8P T 7πd,8 K vp
3 5 (GPS) Ajahetke t 75 s tervisesportane vee jooksis, sest eemise perioodi keskmine kiirus ponud vee aanenud (v 0 km/h); et ajahetkeks t 90 s oi keskmine kiirus angenud kiiruseni v 8 km/h, siis oi ta seisnud juba ajavahemiku τ, kus v T v 0 (T τ ) ning T 5 s Seega, τ ( v v 0 )T Anaoogset, peae ajahetke t seisis sportane vee ajavahemiku τ, kus v T v 3 (T τ ) ning v 3 km/h ja v 3 4km/h Seega, τ ( v v 3 )T ning kogu peatusaeg τ τ + τ T ( v v 0 v v 3 ) 6 s 6 (ÕHUAKEN) Soojusvahetuskiirus äbi seinte jms P s α(t t 0 ) P t t 0 t t 0 Peae see toimub soojusvahetus sissetueva õhu abi P ν 7 R(t t 0), kus ajaühikus sisenevate mooide arv ν v/v ja mooi ruumaa V RT/p 0,4 /mo Seega soojusiku tasakaau tingimuse saab kirja kuju miest 7 (KONFOKAALNE MIKROSKOOP) P P t t 0 t t 0 + c p v V (t t 0), P t t 0 + 3, C P v t t 0 + c p V Lahenduse optiine skeem on toodud joonise Konstrueerimise tueb äätsede vaheised kiired joonestada paraeesed ja äätsede keskpunkte äbivad Seise juhu annavad need kiired eseme ja ava tasandi vastavat eseme ja kujutise asukohad objektiivi fokaatasand objektiiv L ava L 3
4 Värvitud komnurgad on NNN tunnuse järgi sarnased Seetõttu kehtib võrdus d f r ese f obj, miest r ese d f obj f 8 (KAATER) Veega seotud taustsüsteemis iiguvad ained paadi trajektoori suhtes sümmeetriiset Seega, veega seotud taustsüsteemis on paadi trajektoor ainetest moodustatud nurga pooitaja Paadi kiirusest u, jõe vooukiirusest v ja paadi kiirusest maa suhtes moodustub kiruste komnurk, vt joonis Jooniset mõõdame see komnurga teravama nurga siinuse, sin α v/u 0,6, miest v,8 m/s Kui paat tekitas teatud punktis häirituse, siis evis see ajaga t kaugusee wt (nähtavaks paadiaineks on seiste ringide mähisjoon), paat aga iikus kaugusee ut Seega eiame jooniset pikkuste suhte abi w/u OP/OQ 0,64, miest w 4,5 m/s Järeikut vee sügavus h v /g m 9 (KOSMOSEPRÜGI) Lahendus Masskeskme taustsüsteemis on kerade kaugus minimaane hetke, kui süsteem on paiga d saame energia jäävuse seadusest, mis kehtib, kuna nöör puutehetke mutrie (sirgena) jõudu ei avada ega muuda nii põrget pastseks Süsteemi masskeskme iikumiskiirus sateiidi süsteemis v c mv m + M, 4
5 mutri agkiirus masskeskme süsteemis ( ) m M w v v c v v m + M m + M, tehiskaasase oma W v c mv m + M Energia jäävus masskeskme taustsüsteemis on kust d kq mw mw + MW + kq + mmv kq (m+m) + MW mv ( + kq M m+m kq d, kq ) ( + Mv m m+m ) + kq Lahendus Hetke, kui keradevaheine kaugus on minimaane, on sateiidi osad üksteise suhtes paiga Seega iigub süsteem se hetke nagu jäik keha Võtame inertsiaase taustsüsteemi, kus tehiskaasane oi enne kokkupõrget paiga, ja tähistame süsteemi kiiruse minimaase kauguse saavutamise hetke kui v Impusi jäävusest Kehtib ka energia jäävus mv mv mv (m + M)v v mv m + M + kq + kq (m + M)v + kq d, m v (m + M) + kq d, d kq mv + kq m v (m+m) + mmv kq (m+m) Vastus: d + mmv kq (m+m) 5
6 0 (KUNSTINÄITUS) Kie üemiset ja aumiset pinnat peegedunud kiirte optiiste teepikkuste erinevus on maksimaane, kui kiir angeb pinnaga risti ning võrdne max n d, kus, d on kie paksus Minimaane on see siis, kui kiir angeb peaaegu paraeeset kiega (st horisontaase); seise juhu on optiiste teepikkuste vahe min n d/ cos α d tan α, kus α on kies eviva kiire nurk vertikaai suhtes, sin α /n Seega min d/ cos α(n sin α) n d( n )/ n n d n Kui muuta vaatesuunda vertikaasest horisontaaseks, siis muutub optiiste teepikkuste vahe N λ võrra (sest see protsessi käigus on võimaik registreerida N interferentsimaksimumi, mi optiiste teepikkuste vahe on ainepikkuse täisarvkordne) Seega n d( n ) Nλ, miest d Nλ/n ( n ) 3µm E (KOORMISE MASS) Paneme kotsi nööri otsa rippuma nii, et nöör teeb poo ringi ümber piiatsi ja hoiame nööri vaba otsa paiga dünamomeetri abi; ogu ugem F Nüüd kordame katset see erinevusega, et nöör teeb täisringi ümber piiatsi; ogu ugem F Et mg/f F /F, siis m F /F g E (TUNDMATU VEDELIK) Ühendame kokku süsta ja pudei Asetame süsta otsa vedeikku pressinud eenevat pudeist väja mõni cm 3 õhku Süstat ües aa iigutades eiame koha, kus vedeiku tase süsta sees ühtib vedeiku tasemega anumas Seise juhu on õhurõhk pudeis võrdne väise õhurõhuga Kehtib pv m M RT, kus V on süsta ja pudei ruumaade summa Kui nüüd sukedame süsta sügavamae vedeikku, siis vedeiku samba rõhk suurendab õhurõhku pudeis Kehtib (V V )(p + p) m M RT, seda juhu, kui T const Vedeiku samba rõhk p ρ v g h, kus h on vedeiku tasemete erinevus süstas ja anumas, mie saame mõõtasüsta skaaat joonauaga V on süsteemi pude ja süsta ruumaa muut, mies saame ugeda süsta mahuskaaat Kombineerides eenevat kome vaemit saame, pv (V V )(p + p) 6
7 Vedeiku tiheduseks saame: pv (V V )(p + ρ v g h) p V (V V )ρ v g h V V V, väikese V korra ρ v p V V g h Katseseade on väga tundik temperatuuri kõikumiste suhtes See vätimiseks kinnitada pude kambrivahee, sest kambri temperatuur on sama, mis toas oeva õhu temperatuur Käega pudeist hoidmise korra soojeneb pudeis oev õhk Näiteks kui temperatuuri muut on T K, siis püsiva rõhu on ruumaa muut (temperatuuri 90 K) V + V V T + T T V,85 cm 3 7
Elastsusteooria tasandülesanne
Peatükk 5 Eastsusteooria tasandüesanne 143 5.1. Tasandüesande mõiste 144 5.1 Tasandüesande mõiste Seeks, et iseoomustada pingust või deformatsiooni eastse keha punktis kasutatakse peapinge ja peadeformatsiooni
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED, ÜLESANDED LEA PALLAS VII OSA SISUKORD 57 Joone uutuja Näited 8 58 Ülesanded uutuja võrrandi koostamisest 57 Joone uutuja Näited Funktsiooni tuletisel on
8. KEEVISLIITED. Sele 8.1. Kattekeevisliide. Arvutada kahepoolne otsõmblus terasplaatide (S235J2G3) ühendamiseks. F = 40 kn; δ = 5 mm.
TTÜ EHHATROONIKAINSTITUUT HE00 - ASINATEHNIKA -, 5AP/ECTS 5 - -0-- E, S 8. KEEVISLIITED NÄIDE δ > 4δ δ b k See 8.. Kattekeevisiide Arvutada kahepoone otsõmbus teraspaatide (S5JG) ühendamiseks. 40 kn; δ
5. TUGEVUSARVUTUSED PAINDELE
TTÜ EHHTROONKNSTTUUT HE00 - SNTEHNK.5P/ETS 5 - -0-- E, S 5. TUGEVUSRVUTUSE PNELE Staatika üesandes (Toereaktsioonide eidmine) vaadatud näidete ause koostada taade sisejõuepüürid (põikjõud ja paindemoment)
Funktsiooni diferentsiaal
Diferentsiaal Funktsiooni diferentsiaal Argumendi muut Δx ja sellele vastav funktsiooni y = f (x) muut kohal x Eeldusel, et f D(x), saame Δy = f (x + Δx) f (x). f (x) = ehk piisavalt väikese Δx korral
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA
MATEMAATIKA TÄIENDUSÕPE MÕISTED, VALEMID, NÄITED LEA PALLAS XII OSA SISUKORD 8 MÄÄRAMATA INTEGRAAL 56 8 Algfunktsioon ja määramata integraal 56 8 Integraalide tabel 57 8 Määramata integraali omadusi 58
Eesti koolinoorte 51. täppisteaduste olümpiaad
Eesti koolinoorte 5 täppisteaduste olümpiaad Füüsika lõppvoor 7 märts 2004 a Põhikooli ülesannete lahendused ülesanne (KLAASTORU) Plaat eraldub torust siis, kui petrooleumisamba rõhk saab võrdseks veesamba
1. Õppida tundma kalorimeetriliste mõõtmiste põhimõtteid ja kalorimeetri ehitust.
Kaorimeetriised mõõtmised LABORATOORNE TÖÖ NR. 3 KALORIMEETRILISED MÕÕTMISED TÖÖ EESMÄRGID 1. Õppida tundma aorimeetriiste mõõtmiste põhimõtteid ja aorimeetri ehitust. 2. Määrata jää suamissoojus aorimeetriise
Ruumilise jõusüsteemi taandamine lihtsaimale kujule
Kodutöö nr.1 uumilise jõusüsteemi taandamine lihtsaimale kujule Ülesanne Taandada antud jõusüsteem lihtsaimale kujule. isttahuka (joonis 1.) mõõdud ning jõudude moodulid ja suunad on antud tabelis 1. D
Eesti koolinoorte 26. füüsika lahtine võistlus
Eesti koolinoorte 26. füüsika lahtine võistlus 28. november 2015. a. Noorema rühma ülesannete lahendused 1. (KLAAS VEEGA) Võtame klaasi põhja pindalaks S = π ( d tiheduseks ρ. Klaasile mõjuvad jõud: raskusjõud
Sissejuhatus mehhatroonikasse MHK0120
Sissejuhatus mehhatroonikasse MHK0120 2. nädala loeng Raavo Josepson raavo.josepson@ttu.ee Loenguslaidid Materjalid D. Halliday,R. Resnick, J. Walker. Füüsika põhikursus : õpik kõrgkoolile I köide. Eesti
Planeedi Maa kaardistamine G O R. Planeedi Maa kõige lihtsamaks mudeliks on kera. Joon 1
laneedi Maa kaadistamine laneedi Maa kõige lihtsamaks mudeliks on kea. G Joon 1 Maapinna kaadistamine põhineb kea ümbeingjoontel, millest pikimat nimetatakse suuingjooneks. Need suuingjooned, mis läbivad
Vektoralgebra seisukohalt võib ka selle võrduse kirja panna skalaarkorrutise
Jõu töö Konstanse jõu tööks lõigul (nihkel) A A nimetatakse jõu mooduli korrutist teepikkusega s = A A ning jõu siirde vahelise nurga koosinusega Fscos ektoralgebra seisukohalt võib ka selle võrduse kirja
ÜLESANDEID MEHAANIKAST
ÜLESANDEID EHAANIKAST JAAN KALDA SISSEJUHATUS Antud ihik on jätkuks kineaatika üesannete kogue. Nii nagu kineaatikagi puhu on püütud tuua äja põhiised ahendusideed, ie abi peaks oea õiaik ahendada enaik
HAPE-ALUS TASAKAAL. Teema nr 2
PE-LUS TSL Teema nr Tugevad happed Tugevad happed on lahuses täielikult dissotiseerunud + sisaldus lahuses on võrdne happe analüütilise kontsentratsiooniga Nt NO Cl SO 4 (esimeses astmes) p a väärtused
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [4. loeng] 1 Loengu kava Dünaamika Inerts Newtoni I seadus Inertsiaalne taustsüsteem Keha mass, aine
Eesti koolinoorte 22. füüsika lahtine võistlus
Eesti koolinoorte. füüsika lahtine võistlus 6. november 011. a. Noorema rühma lahendused 1. (POSTID) Posti pikkus on pärast soojushulga andmist: l = l algne(1 + a)q cm Sellest saab arvutad, kui pikaks
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi
Eesti koolinoorte XLVIII täppisteaduste olümpiaadi lõppvoor MATEMAATIKAS Tartus, 9. märtsil 001. a. Lahendused ja vastused IX klass 1. Vastus: x = 171. Teisendame võrrandi kujule 111(4 + x) = 14 45 ning
Eesti koolinoorte 58. füüsikaolümpiaad
Eesti koolinoorte 58. füüsikaolümpiaad 29. jaanuar 2011. a. Piirkondlik voor. Gümnaasiumi ülesannete lahendused Eessõna Allpool on toodud iga ülesande üks õige lahenduskäik (mõnel juhul ka enam. Kõik alternatiivsed
9. AM ja FM detektorid
1 9. AM ja FM detektorid IRO0070 Kõrgsageduslik signaalitöötlus Demodulaator Eraldab moduleeritud signaalist informatiivse osa. Konkreetne lahendus sõltub modulatsiooniviisist. Eristatakse Amplituuddetektoreid
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused klass
2017/2018. õa keemiaolümpiaadi piirkonnavooru lahendused 11. 12. klass 18 g 1. a) N = 342 g/mol 6,022 1023 molekuli/mol = 3,2 10 22 molekuli b) 12 H 22 O 11 + 12O 2 = 12O 2 + 11H 2 O c) V = nrt p d) ΔH
Lokaalsed ekstreemumid
Lokaalsed ekstreemumid Öeldakse, et funktsioonil f (x) on punktis x lokaalne maksimum, kui leidub selline positiivne arv δ, et 0 < Δx < δ Δy 0. Öeldakse, et funktsioonil f (x) on punktis x lokaalne miinimum,
Virumaa Kolledž. Gennadi Arjassov. L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaamika. Ehitusmehaanika RAR2030.
Viruaa Koedž Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 5/ Eessõna Loengukonspekt Varraskonstruktsioonide staatika
2.2.1 Geomeetriline interpretatsioon
2.2. MAATRIKSI P X OMADUSED 19 2.2.1 Geomeetriline interpretatsioon Maatriksi X (dimensioonidega n k) veergude poolt moodustatav vektorruum (inglise k. column space) C(X) on defineeritud järgmiselt: Defineerides
Virumaa Kolledž Reaal ja tehnikateaduste keskus
Viruaa Koedž Reaa ja tehnikateaduste keskus Gennadi rjassov L O E N G U K O N S P E K T Varraskonstruktsioonide staatika ja dünaaika Ehitusehaanika RR Õppevahend Kohta-Järve 7/8 Eessõna Loengukonspekt
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [6.loeng] 1 Tehiskaaslaste liikumine (1) Kui Maa pinna lähedal, kõrgusel kus atmosfäär on piisavalt hõre,
Leaving Certificate Applied Maths Higher Level Answers
0 Leavin Certificate Applied Maths Hiher Level Answers ) (a) (b) (i) r (ii) d (iii) m ) (a) 0 m s - 9 N of E ) (b) (i) km h - 0 S of E (ii) (iii) 90 km ) (a) (i) 0 6 (ii) h 0h s s ) (a) (i) 8 m N (ii)
Mitmest lülist koosneva mehhanismi punktide kiiruste ja kiirenduste leidmine
TALLINNA TEHNIKAÜLIKOOL MEHAANIKAINSTITUUT Dünaamika kodutöö nr. 1 Mitmest lülist koosnea mehhanismi punktide kiiruste ja kiirenduste leidmine ariant ZZ Lahendusnäide Üliõpilane: Xxx Yyy Üliõpilase kood:
PLASTSED DEFORMATSIOONID
PLAED DEFORMAIOONID Misese vlavustingimus (pinegte ruumis) () Dimensineerimisega saab kõrvaldada ainsa materjali parameetri. Purunemise (tugevuse) kriteeriumid:. Maksimaalse pinge kirteerium Laminaat puruneb
Vektorid II. Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale
Vektorid II Analüütiline geomeetria 3D Modelleerimise ja visualiseerimise erialale Vektorid Vektorid on arvude järjestatud hulgad (s.t. iga komponendi väärtus ja positsioon hulgas on tähenduslikud) Vektori
Tuletis ja diferentsiaal
Peatükk 3 Tuletis ja diferentsiaal 3.1 Tuletise ja diferentseeruva funktsiooni mõisted. Olgu antud funktsioon f ja kuulugu punkt a selle funktsiooni määramispiirkonda. Tuletis ja diferentseeruv funktsioon.
Eesti koolinoorte 26. füüsika lahtine võistlus
Eesti koolinoorte 6. füüsika lahtine võistlus 8. november 05. a. Vanema rühma ülesannete lahendused. (RONGIVILE) Tähistagu L veduri kaugust jaamaülemast hetkel, mil vedurijuht alustab vile laskmisega.
Kui ühtlase liikumise kiirus on teada, saab aja t jooksul läbitud teepikkuse arvutada valemist
KOOLIFÜÜSIKA: MEHAANIKA (kaugõppele). KINEMAATIKA. Ühtlane liikumine Punktmass Punktmassiks me nimetame keha, mille mõõtmeid me antud liikumise juures ei pruugi arestada. Sel juhul loemegi keha tema asukoha
Eesti koolinoorte 50. täppisteaduste olümpiaad Füüsika lõppvoor. 30. märts a. Keskkooli ülesannete lahendused
Eesti koolinoorte 50. täppisteaduste olümpiaad 1. ülesanne Füüsika lõppvoor. 30. märts 2003. a. Keskkooli ülesannete lahendused Läheme kiirusega v/2 liikuvasse süsteemi. Seal on olukord sümmeetriline,
Ehitusmehaanika harjutus
Ehitusmehaanika harjutus Sõrestik 2. Mõjujooned /25 2 6 8 0 2 6 C 000 3 5 7 9 3 5 "" 00 x C 2 C 3 z Andres Lahe Mehaanikainstituut Tallinna Tehnikaülikool Tallinn 2007 See töö on litsentsi all Creative
Geomeetrilised vektorid
Vektorid Geomeetrilised vektorid Skalaarideks nimetatakse suurusi, mida saab esitada ühe arvuga suuruse arvulise väärtusega. Skalaari iseloomuga suurusi nimetatakse skalaarseteks suurusteks. Skalaarse
Fotomeetria. Laineoptika
Fotomeetria 1. Päikese ja Maa vaheline kaugus on 1,5 10 8 km. Kui kaua tuleb valgus Päikeselt Maale? (Vastus: 500 s) 2. Fizeau ajaloolises katses valguse kiiruse määramiseks oli 720 hambaga hammasratta
Teaduskool. Alalisvooluringid. Koostanud Kaljo Schults
TARTU ÜLIKOOL Teaduskool Alalisvooluringid Koostanud Kaljo Schults Tartu 2008 Eessõna Käesoleva õppevahendi kasutajana on mõeldud eelkõige täppisteaduste vastu huvi tundvaid gümnaasiumi õpilasi, kes on
Füüsika. Mehaanika alused. Absoluutselt elastne tsentraalpõrge
9.09.017 Füüsika Mehaanika alused Absoluutselt elastne tsentraalpõrge Põrkeks nimetatakse keha liikumisoleku järsku muutust kokkupuutel teise kehaga. Kui seejuures ei teki jääkdeformatsioone, nimetatakse
sin 2 α + cos 2 sin cos cos 2α = cos² - sin² tan 2α =
KORDAMINE RIIGIEKSAMIKS III TRIGONOMEETRIA ) põhiseosed sin α + cos sin cos α =, tanα =, cotα =, cos sin + tan =, tanα cotα = cos ) trigonomeetriliste funktsioonide täpsed väärtused α 5 6 9 sin α cos α
Õige vastus annab 1 punkti, kokku 2 punkti (punktikast 1). Kui õpilane märgib rohkem kui ühe vastuse, loetakse kogu vastus valeks.
PÕHIKOOLI FÜÜSIKA LÕPUEKSAMI HINDAMISUHEND 13. UUNI 016 Hinne 5 90 100% 68 75 punki Hinne 4 75 89% 57 67 punki Hinne 3 50 74% 38 56 punki Hinne 0 49% 15 37 punki Hinne 1 0 19% 0 14 punki Arvuuüleannee
Eesti LIV matemaatikaolümpiaad
Eesti LIV matemaatikaolümpiaad 31. märts 007 Lõppvoor 9. klass Lahendused 1. Vastus: 43. Ilmselt ei saa see arv sisaldada numbrit 0. Iga vähemalt kahekohaline nõutud omadusega arv sisaldab paarisnumbrit
Answers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Energiabilanss netoenergiavajadus
Energiabilanss netoenergiajadus 1/26 Eelmisel loengul soojuskadude arvutus (võimsus) φ + + + tot = φ φ φ juht v inf φ sv Energia = tunnivõimsuste summa kwh Netoenergiajadus (ruumis), energiakasutus (tehnosüsteemis)
28. Sirgvoolu, solenoidi ja toroidi magnetinduktsiooni arvutamine koguvooluseaduse abil.
8. Sigvoolu, solenoidi j tooidi mgnetinduktsiooni vutmine koguvooluseduse il. See on vem vdtud, kuid mitte juhtme sees. Koguvooluseduse il on sed lihtne teh. Olgu lõpmt pikk juhe ingikujulise istlõikeg,
NÄIDE KODUTÖÖ TALLINNA TEHNIKAÜLIKOOL. Elektriajamite ja jõuelektroonika instituut. AAR0030 Sissejuhatus robotitehnikasse
TALLINNA TEHNIKAÜLIKOOL Elektriajamite ja jõuelektroonika instituut AAR000 Sissejuhatus robotitehnikasse KODUTÖÖ Teemal: Tööstusroboti Mitsubishi RV-6SD kinemaatika ja juhtimine Tudeng: Aleksei Tepljakov
6.6 Ühtlaselt koormatud plaatide lihtsamad
6.6. Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 263 6.6 Ühtlaselt koormatud plaatide lihtsamad paindeülesanded 6.6.1 Silindriline paine Kui ristkülikuline plaat on pika ristküliku kujuline
➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I
tr 3 P s tr r t t 0,5A s r t r r t s r r r r t st 220 V 3r 3 t r 3r r t r r t r r s e = I t = 0,5A 86400 s e = 43200As t r r r A = U e A = 220V 43200 As A = 9504000J r 1 kwh = 3,6MJ s 3,6MJ t 3r A = (9504000
Joonis 1. Teist järku aperioodilise lüli ülekandefunktsiooni saab teisendada võnkelüli ülekandefunktsiooni kujul, kui
Ülesnded j lhendused utomtjuhtimisest Ülesnne. Süsteem oosneb hest jdmisi ühendtud erioodilisest lülist, mille jonstndid on 0,08 j 0,5 ning õimendustegurid stlt 0 j 50. Leid süsteemi summrne ülendefuntsioon.
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded Leidke funktsiooni y = log( ) + + 5 määramispiirkond Leidke funktsiooni y = + arcsin 5 määramispiirkond Leidke funktsiooni y = sin + 6 määramispiirkond 4 Leidke
Eesti koolinoorte 28. füüsika lahtine võistlus
Eesti koolinoorte 28. füüsika lahtine võistlus 2. detsember 2017. a. Vanema rühma ülesannete lahendused 1. (KIIRABIAUTO) (6 p.) Autor: Sandra Schumann. Olgu kiirabiauto kiirus v ja auto poolt tekitatava
Koduseid ülesandeid IMO 2017 Eesti võistkonna kandidaatidele vol 4 lahendused
Koduseid ülesandeid IMO 017 Eesti võistkonna kandidaatidele vol 4 lahendused 17. juuni 017 1. Olgu a,, c positiivsed reaalarvud, nii et ac = 1. Tõesta, et a 1 + 1 ) 1 + 1 ) c 1 + 1 ) 1. c a Lahendus. Kuna
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool. Andrus Salupere. Loengukonspekt EMR5170, EMR0020, 4,0 AP
Tallinna Tehnikaülikool Mehaanikainstituut Rakendusmehaanika õppetool Andrus Salupere DÜNAAMIKA Loengukonspekt EMR5170, EMR0020, 4,0 AP Tallinn 2003/2004/2005 Eessõna Käesolev loengukonspekt on mõeldud
Matemaatiline analüüs I iseseisvad ülesanded
Matemaatiline analüüs I iseseisvad ülesanded. Leidke funktsiooni y = log( ) + + 5 määramispiirkond.. Leidke funktsiooni y = + arcsin 5 määramispiirkond.. Leidke funktsiooni y = sin + 6 määramispiirkond.
KORDAMINE RIIGIEKSAMIKS VII teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS VII teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
Sissejuhatus. Kinemaatika
Sissejuhatus Enamuse füüsika ülesannete lahendamine taandub tegelikult suhteliselt äikese hulga ideede rakendamisele (öeldu kehtib ka teiste aldkondade, näiteks matemaatika kohta). Seega on aja õppida
20. SIRGE VÕRRANDID. Joonis 20.1
κ ËÁÊ Â Ì Ë Æ Á 20. SIRGE VÕRRANDID Sirget me võime vaadelda kas tasandil E 2 või ruumis E 3. Sirget vaadelda sirgel E 1 ei oma mõtet, sest tegemist on ühe ja sama sirgega. Esialgu on meie käsitlus nii
PÕHIKOOLI LÕPUEKSAM FÜÜSIKA 16. JUUNI Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: MEELESPEA
Punkte Eksamihinne Aastahinne FÜÜSIKA 16. JUUNI 2004 Kool: Maakond/linn: Õpilase ees- ja perekonnanimi: Poiss Tüdruk Punktide arv ülesandeti 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 3p
O12. Optiliste instrumentide modelleerimine. (O14)
. Tööülesanne O2. Optiliste instrumentide modelleerimine. (O4) Peeter Paris, TÜ, 200 Mikroskoobi ning Kepleri või Galilei pikksilma mudeli koostamine ning nende suurenduse määramine. 2. Eelteadmised Lisaks
Deformeeruva keskkonna dünaamika
Peatükk 4 Deformeeruva keskkonna dünaamika 1 Dünaamika on mehaanika osa, mis uurib materiaalsete keskkondade liikumist välismõjude (välisjõudude) toimel. Uuritavaks materiaalseks keskkonnaks võib olla
KORDAMINE RIIGIEKSAMIKS V teema Vektor. Joone võrrandid.
KORDMINE RIIGIEKSMIKS V teema Vektor Joone võrrandid Vektoriaalseid suuruseid iseloomustavad a) siht b) suund c) pikkus Vektoriks nimetatakse suunatud sirglõiku Vektori alguspunktiks on ja lõpp-punktiks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks
4.2.5 Täiustatud meetod tuletõkestusvõime määramiseks 4.2.5.1 Ülevaade See täiustatud arvutusmeetod põhineb mahukate katsete tulemustel ja lõplike elementide meetodiga tehtud arvutustel [4.16], [4.17].
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1
d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =
,millest avaldub 21) 23)
II kursus TRIGONOMEETRIA * laia matemaatika teemad TRIGONOMEETRILISTE FUNKTSIOONIDE PÕHISEOSED: sin α s α sin α + s α,millest avaldu s α sin α sα tan α, * t α,millest järeldu * tα s α tα tan α + s α Ülesanne.
Graafiteooria üldmõisteid. Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid
Graafiteooria üldmõisteid Graaf G ( X, A ) Tippude hulk: X={ x 1, x 2,.., x n } Servade (kaarte) hulk: A={ a 1, a 2,.., a m } Orienteeritud graafid Orienteerimata graafid G(x i )={ x k < x i, x k > A}
Kompleksarvu algebraline kuju
Kompleksarvud p. 1/15 Kompleksarvud Kompleksarvu algebraline kuju Mati Väljas mati.valjas@ttu.ee Tallinna Tehnikaülikool Kompleksarvud p. 2/15 Hulk Hulk on kaasaegse matemaatika algmõiste, mida ei saa
Füüsika täiendusõpe YFR0080
Füüsika täiendusõpe YFR0080 Füüsikainstituut Marek Vilipuu marek.vilipuu@ttu.ee Füüsika täiendusõpe [10.loeng] 1 Arvestustöö Arvestustöö sooritamiseks on vaja 50p (kes on kohal käinud piisab 40p) (maksimaalselt
Eesti koolinoorte 65. füüsikaolumpiaad
Eesti oolinoorte 65. füüsiaolumpiaad 14. aprill 018. a. Vabariili voor. Gümnaasiumi ülesannete lahendused 1. (POOLITATUD LÄÄTS) (6 p.) Autor: Hans Daniel Kaimre Ülesande püstituses on öeldud, et esialgse
Ecophon Line LED. Süsteemi info. Mõõdud, mm 1200x x x600 T24 Paksus (t) M329, M330, M331. Paigaldusjoonis M397 M397
Ecophon Line LED Ecophon Line on täisintegreeritud süvistatud valgusti. Kokkusobiv erinevate Focus-laesüsteemidega. Valgusti, mida sobib kasutada erinevates ruumides: avatud planeeringuga kontorites; vahekäigus
3. IMPULSS, TÖÖ, ENERGIA
KOOLIFÜÜSIKA: MEHAANIKA3 (kaugõppele) 3. IMPULSS, TÖÖ, ENERGIA 3. Impulss Impulss, impulsi jääus Impulss on ektor, mis on õrdne keha massi ja tema kiiruse korrutisega p r r = m. Mehaanikas nimetatakse
Prisma. Lõik, mis ühendab kahte mitte kuuluvat tippu on prisma diagonaal d. Tasand, mis. prisma diagonaal d ja diagonaaltasand (roheline).
Prism Prisms nimese ulu, mille s u on vsvl rlleelsee j võrdsee ülgedeg ulnurgd, ning ülejäänud ud on rööüliud, millel on ummgi ulnurgg üine ülg. Prlleelseid ulnuri nimese rism õjdes j nende ulnurde ülgi
2 Hüdraulika teoreetilised alused 2.1 Füüsikalised suurused
2 2.1 Füüsikalised suurused Mass m Inertsi ja gravitatsiooni iseloomustaja ning mõõt. Keha mass on SI-süsteemi põhiühik. Massi mõõtühikuks SIsüsteemis on kilogramm. Jõud F Kehade vastastikuse mehaanilise
REAALAINETE KESKUS JAAK SÄRAK
REAALAINETE KESKUS JAAK SÄRAK TALLINN 2006 1 DESCRIPTIVE GEOMETRY Study aid for daily and distance learning courses Compiler Jaak Särak Edited by Tallinn College of Engineering This publication is meant
FÜÜSIKALISED SUURUSED, NENDE MÕÕTMINE JA MÕÕTEMÄÄRAMATUS Lühikokkuvõte
0 Taia Tehikaüikoo Füüsikaistituut Marek Viiuu FÜÜSIKLISED SRSED, NENDE MÕÕTMINE J MÕÕTEMÄÄRMTS Lühikokkuvõte Mõõtiseks ietatakse atud füüsikaise suuruse x võrdeist teise saa iiki suurusega, is o võetud
M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine
M E H A A N I K A KINEMAATIKA Sirgjooneline liikumine 1. Auto sõitis Tallinnast Tartusse. Esimese poole teest läbis ta kiirusega 80 km/h ja teise poole kiirusega 120 km/h. Tagasiteel liikus auto poole
2. Optilised instrumendid
Sisukord 2. Optilised instrumendid... 2 2.0 Tutvumine mikroskoobiga... 2 2.0.1 Sissejuhatus ja teoreetiline ülevaade... 2 2.1 Pikksilma suurendus, vaateväli ja lahutusvõime... 7 2.1.1 Tööülesanne... 7
Ülesannete lahendamise metoodika
Ülesannete lahendamise metoodika Füüsika ülesannete lahendamisel pole eesmärgiks vastuse leidmine, vaid lahendamise õppimine ja harjutamine. Ülesannete lahendamine ei ole "sobivate tähtedega" valemite
Sirgete varraste vääne
1 Peatükk 8 Sirgete varraste vääne 8.1. Sissejuhatus ja lahendusmeetod 8-8.1 Sissejuhatus ja lahendusmeetod Käesoleva loengukonspekti alajaotuses.10. käsitleti väändepingete leidmist ümarvarrastes ja alajaotuses.10.3
1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil.
LABORATOORNE TÖÖ NR. 1 STEFAN-BOLTZMANNI SEADUS I TÖÖ EESMÄRGID 1. Soojuskiirguse uurimine infrapunakiirguse sensori abil. 2. Stefan-Boltzmanni seaduse katseline kontroll hõõglambi abil. TÖÖVAHENDID Infrapunase
6. ATMOSFÄÄRI JA MERE VERTIKAALNE TASAKAAL 6.1. Atmosfääri vertikaalne tasakaal
9-03-04, 2:6, \\Cumulus\NEDAA\Meri-atm_NEDAA\A-mf-6_Vert_tasak.doc 6. AMOSFÄÄRI JA MERE VERIKAALNE ASAKAAL 6.. Atmosfääri vertikaalne tasakaal Mingi objekt või süsteem võib olla kolmes erinevas tasakaaluolekus:
Ecophon Square 43 LED
Ecophon Square 43 LED Ecophon Square 43 on täisintegreeritud süvistatud valgusti, saadaval Dg, Ds, E ja Ez servaga toodetele. Loodud kokkusobima Akutex FT pinnakattega Ecophoni laeplaatidega. Valgusti,
Elastsusteooria põhivõrrandid,
Peatükk 4 Elastsusteooria põhivõrrandid, nende lahendusmeetodid ja lihtsamad ruumilised ülesanded 113 4.1. Elastsusteooria põhivõrrandid 114 4.1 Elastsusteooria põhivõrrandid 1. Tasakaalu (diferentsiaal)võrrandid
λ ). Seetõttu on tsoonide mõju paarikaupa vastastikku
LABORATOORNE TÖÖ NR. 3 VALGUSE DIFRAKTSIOON TEOREETILINE OSA Lainete, sealhulgas valguslainete difraktsioon tekib valguslaine ja tõkke äärte vastastikuse mõju tulemusena ning on seda tugevam, mida lähedasemad
Eesti koolinoorte 43. keemiaolümpiaad
Eesti koolinoorte 4. keeiaolüpiaad Koolivooru ülesannete lahendused 9. klass. Võrdsetes tingiustes on kõikide gaaside ühe ooli ruuala ühesugune. Loetletud gaaside ühe aarruuala ass on järgine: a 2 + 6
O15. Prisma aine dispersiooni määramine goniomeetri abil.
O. Prisma aine dispersiooni määramine goniomeetri abil. 1.VALGUSE DISPERSIOON 1.1. Teoreetilised alused Prisma abil saame lahutada uuritava valguse spektriks ning määrata murdumisnäitaja n sõltuvuse lainepikkusest.
INTERFERENTS. Saateks. 1. Teoreetilised alused
INTERFERENTS Saateks Eeline interferentsialaseid praktikuitöid sisaldav õppevahend Optika praktiku VI on pärit 989. aastast. Möödunud aja jooksul on uutunud oluliselt andetöötluse vahendid ning õningal
r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s
r t r r é té tr q tr t q t t q t r t t rrêté stér ût Prés té r ré ér ès r é r r st P t ré r t érô t 2r ré ré s r t r tr q t s s r t t s t r tr q tr t q t t q t r t t r t t r t t à ré ér t é r t st é é
Deformatsioon ja olekuvõrrandid
Peatükk 3 Deformatsioon ja olekuvõrrandid 3.. Siire ja deformatsioon 3-2 3. Siire ja deformatsioon 3.. Cauchy seosed Vaatleme deformeeruva keha meelevaldset punkti A. Algolekusontemakoor- dinaadid x, y,
7 Kolmefaasiline vool
7 Komeaasiine voo 7 Komeaasiise voou saamine Tänapäeva töötavad eektrijaamad toodavad komeaasiist voou Komeaasiise voou peamiseks eeiseks on ihtne pööreva magnetväja saamise võimaus Pöörev magnetväi ehk
Jätkusuutlikud isolatsioonilahendused. U-arvude koondtabel. VÄLISSEIN - COLUMBIA TÄISVALATUD ÕÕNESPLOKK 190 mm + SOOJUSTUS + KROHV
U-arvude koondtabel lk 1 lk 2 lk 3 lk 4 lk 5 lk 6 lk 7 lk 8 lk 9 lk 10 lk 11 lk 12 lk 13 lk 14 lk 15 lk 16 VÄLISSEIN - FIBO 3 CLASSIC 200 mm + SOOJUSTUS + KROHV VÄLISSEIN - AEROC CLASSIC 200 mm + SOOJUSTUS
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ
ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ ΑΔΑΜΗΣ Δ.Κ. / Τ.Κ. E.T. ΕΓΓ/ΝΟΙ ΨΗΦΙΣΑΝ ΕΓΚΥΡΑ ΓΙΟΒΑΣ ΙΩΑΝΝΗΣ ΛΕΥΚΑ ΠΑΝΑΓΙΩΤΗΣ ΜΑΝΤΑΣ ΠΑΝΑΓΙΩΤΗΣ ΔΑΛΙΑΝΗΣ ΓΕΩΡΓΙΟΣ ΑΣΤΡΟΣ 5 2.728 1.860 36 1.825 69 3,8% 152 8,3% 739 40,5%
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 2016
Temperatuur ja soojus. Temperatuuri mõõtmise meetodid. I. Bichele, 016 Soojuseks (korrektselt soojushulgaks) nimetame energia hulka, mis on keha poolt juurde saadud või ära antud soojusvahetuse käigus
Analüütiline mehaanika
Tartu Ülikool FÜÜSIKA INSTITUUT Loengukonspekt aines Analüütiline mehaanika LOFY.04.002 Hardi Veermäe, Teet Örd 19. oktoober 2011. a. Sisukord 0 Eessõna 3 1 Newtoni mehaanika 4 1.1 Liikumine eukleidilises
Analüütilise geomeetria praktikum II. L. Tuulmets
Analüütilise geomeetria praktikum II L. Tuulmets Tartu 1985 2 Peatükk 4 Sirge tasandil 1. Sirge tasandil Kui tasandil on antud afiinne reeper, siis iga sirge tasandil on selle reeperi suhtes määratud lineaarvõrrandiga
A 1 A 2 A 3 B 1 B 2 B 3
16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F
AERDÜNAAMIKA ÕHUTAKISTUS
AERDÜNAAMIKA ÕHUTAKISTUS Liikuv õhk, tuul, avaldab igale ettejuhtuvale kehale survet. Samasugune surve tekib ka siis, kui keha liigub ja õhk püsib paigal. Tekkinud survet nimetatakse selle keha õhutakistuseks.
Smith i diagramm. Peegeldustegur
Smith i diagramm Smith i diagrammiks nimetatakse graafilist abivahendit/meetodit põhiliselt sobitusküsimuste lahendamiseks. Selle võttis 1939. aastal kasutusele Philip H. Smith, kes töötas tol ajal ettevõttes
Arvuteooria. Diskreetse matemaatika elemendid. Sügis 2008
Sügis 2008 Jaguvus Olgu a ja b täisarvud. Kui leidub selline täisarv m, et b = am, siis ütleme, et arv a jagab arvu b ehk arv b jagub arvuga a. Tähistused: a b b. a Näiteks arv a jagab arvu b arv b jagub
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus
Lisa 2 ÜLEVAADE HALJALA VALLA METSADEST Koostanud veebruar 2008 Margarete Merenäkk ja Mati Valgepea, Metsakaitse- ja Metsauuenduskeskus 1. Haljala valla metsa pindala Haljala valla üldpindala oli Maa-Ameti
FÜÜSIKA I PÕHIVARA. Põhivara on mõeldud üliõpilastele kasutamiseks õppeprotsessis aines FÜÜSIKA I. Koostas õppejõud P.Otsnik
FÜÜSIKA I PÕHIVARA Põhivara on mõeldud üliõpilastele kasutamiseks õppeprotsessis aines FÜÜSIKA I. Koostas õppejõud P.Otsnik Tallinn 2003 2 1. SISSEJUHATUS. Mõõtühikud moodustavad ühikute süsteemi. Meie