4 HLAJENJE VENTILOV. prevodnih izgub zapornih in blokirnih preklopnih krmilnih.
|
|
- Σαπφειρη Μιαούλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 4 HLAJENJE VENILOV Med obratovajem astaejo a polprevodiških vetilih izgube v obliki toplote. Ker se ta toplota sprošča v silicijevi tabletki, ki ima zelo majhe volume i debelio le ekaj desetik milimetra, se temperatura tabletke lahko zelo hitre dvige a edopusto velike vredosti, če e uspemo učikovito odvajati te toplote prek hladilih teles a okolico. Celote izgube a vetilih so sestavljee iz: prevodih izgub zaporih i blokirih preklopih krmilih. emperatura zaporih plasti v polprevodiških vetilih e sme med obratovajem trajo prekoračiti ekaj zgorjih mej, ker se sicer ajprej poslabšajo blokira apetost, kritiča strmia (du /dt) krit i sprostitvei čas t q. Poavadi zaša ta zgorja dovoljea obratovala temperatura pri tiristorjih 125 o C, pri silicijevih diodah 2 o C i pri močostih trazistorjih 2 o C. Seveda teh maksimalo dovoljeih temperatur e moremo v ormalem obratovaju povsem izkoristiti, ker moramo račuati z eko rezervo, če bi prišlo med obratovajem do občasih preobremeitev. Med obratovajem lahko toki zaradi motej kratkotrajo porastejo čez azivo vredost i lahko temperaturo zaporih plasti prehodo ekoliko povečajo čez prej avedee vredosti, e da bi se zato karakteristike vetilov bistveo poslabšale. Pri večjih kratkotrajih temperaturih porastih (pr. pri tiristorjih med 2 i 4 o C) pa že astopijo traje okvare oz. uičeja. Za polprevodiške vetile podajajo proizvajalci tudi ajižje dovoljee obratovale temperature. Na primer pri tiristorjih je to med o C i 65 o C, ker astopijo tedaj potrebe po zelo velikem krmilem toku. Projektat mora problemu hlajeja vetilov posvetiti veliko pozorost, ker je to pogoj za dobro izkoriščeost vetilov i za zaesljivo obratovaje. 65
2 4.1 Električe izgube Izgubo električo moč p a vetilu podaja produkt treute apetosti u A i treutega toka i A v vetilu: p(t) = u A. i A Pri periodičem obratovaju je sredja izguba moč P: 1 P = 1 p( t) dt = u i dt A A pri čemer je čas ee periode. Z itegracijo po času lahko ato izračuamo izgubo eergijo W, ki se sprošča kot toplota v vetilu. Izgube prevajaja p astopajo, ko vetil prevaja električi tok. Če upoštevamo u/ikarakteristiko silicijeve diode i tiristorja, je apetost (oz. apetosti padec) a prevajajočem vetilu: u = U (O) + r. i Sledi povpreča izguba moč zaradi prevajaja P : P = ( U( ) r i ) i dt U( ) i dt r + = + i dt = U 2 ( ) I AV + r I 2 Aef Vidimo, da so izgube prevajaja odvise tako od aritmetiče sredje vredosti vetilskega toka I AV, kakor tudi od jegove efektive vredosti I Aef. o pa pomei, da moramo pri račuaju dovoljeih mejih vetilskih tokov vedo upoštevati obliko periodičega vetilskega toka! Pri vetilih, ki obratujejo z izkimi frekveacmi do 5/6 Hz, prispevajo k celotim vetilskim izgubam v glavem le izgube prevajaja p. Izgube zapiraja p R astopijo a vetilu, ko le-ta e prevaja (ko je iverzo polarizira) i ko teče le zelo majhe iverzi tok i R. Izguba moč: p R = u R. i R je zelo majha i je v skupi bilaci poavadi zaemarljiva. Podobo so izgube blokiraja p D, ki astopijo a tiristorju, ko le-ta blokira apetost u D i teče pri tem le zelo majhe blokiri tok i D (glej sl. 3.2). udi ta izguba moč: 66
3 p D = u D. i D je zelo majha i v skupi bilaci zaemarljiva. Ko prehajajo vetili iz zaporega (oz. blokirega pri tiristorju) v prevodo staje i arobe, astopajo a jih t.i. diamiče ali preklope izgube. V prehodih pojavih so lahko izgube moči p zelo velike, saj zašajo pr. pri prehodu tiristorja iz blokirega v prevodo staje v tokokrogih s stadardimi komutacijskimi iduktivostmi ekaj kw. Ker pa so prehodi (preklopi) hitri i trajajo le ekaj µs, je sproščea izguba električa oz. toplota eergija praviloma zelo majha i jo lahko zato v skupi bilaci zaemarimo. Vedar le tako dolgo, dokler obratujejo vetili periodičo s preklopimi frekvecami do 5/6 Hz. Pri višjih preklopih frekvecah ekaj 1 Hz ali celo ekaj khz pa se preklope izgube seštevajo i v skupi eergetski izgubi bilaci celo prevladujejo! ako lahko pri silicijevih diodah i tiristorjih, ki obratujejo s preklopimi frekvecami ad 1 khz, i pri močostih trazistorjih, ki obratujejo s preklopimi frekvecami več 1 khz do 1 khz, vse ostale izgube v primerjavi s preklopimi zaemarimo. Razumljivo je, da smemo zato vetile, ki obratujejo z velikimi delovimi frekvecami, tokovo precej maj obremeiti. Pri krmiljeih vetilih astopajo dodato še krmile izgube p G. Pri tiristorjih povzroči krmili tok i G treuto krmilo izgubo moč: p G = u G. i G Sredjo krmilo moč P G lahko izračuamo iz krmile karakteristike tiristorja i iz oblike krmilega tokovega impulza. Pri pravilo izvedeih prožejih je ta izguba moč zaemarljivo majha, raze kadar obratujemo z zelo visokimi frekvecami. 4.2 ermičo adomesto vezje Zaradi električih izgub prihaja do segrevaja vetilov. Da temperatura silicijeve tabletke e prekorači dopuste vredosti, moramo poskrbeti za dobro odvajaje izgube toplote iz tabletke a okolico, t.j. za jeo hlajeje. Zato ameščamo vetile a ustreza hladila telesa, ki aj omogočijo čim boljše odvajaje toplote a okolico (ajvečkrat je to kar okoliški zrak). Čim boljše je odvajaje oz. hlajeje, tem bolj lahko vetil tokovo obremeimo, e da bi presegli dopusto temperaturo tabletke. Natače toploti izraču i može. Za poeostavljeo račuaje pa si lahko pomagamo s termičim adomestim vezjem, ki ga kaže pr. sl Posamezim delom dodelimo temperature ϑ S, ϑ, ϑ H i ϑ O. Izguba moč P prehaja iz tabletke a okolico prek termičih uporosti med posamezimi deli: R S, R H i R HO. S tem poeostavljeim adomestim vezjem lahko račuamo podobo kot z električim vezjem, le da astopajo amesto električih 67
4 apetosti sedaj temperature razlike, amesto električega toka izguba moč P i amesto električih uporosti termiče uporosti. S sl. 4.2 lahko ob upoštevaju trajega (stacioarega) obratovaja s kostato izgubo močjo P v tabletki, ki se pretaka a okolico, apišemo eačbo ustrezo ohmovemu zakou: ϑ S = P. (R S + R H + R HO ). ϑ O ϑ S je sredja temperatura tabletke; temperatura razlika ϑ S -ϑ O (ustreza električi apetosti!) povzroča pretok moči P čez termiče uporosti. V eačbi so pozae: izguba moč P, temperatura ϑ O okoliškega hladilega medija (pr. zraka), toplota uporost R S (podajajo jo proizvajalci vetila) ter toplota uporost R H +R HO, ki upošteva toploto prehodost med telesom vetila, hladilim telesom i okoliškim hladilim medijem. Izračuaa temperatura tabletke ϑ S mora biti ižja od dopuste vredosti. Da dosežemo čim majše vredosti za R H, moramo apraviti čim boljši termiči stik med telesom vetila i med hladilim telesom: stiči ploskvi morata biti veliki, ravi i tesi, pomagamo pa si lahko še s posebimi toploto prevodimi pastami (masami) itd. Vredost R HO je odvisa od velikosti i izvedbe hladilega telesa ter od ačia hlajeja (aravo-pospešeo, zračo-tekočisko). Iz adomeste sheme a sl. 4.2 lahko izračuamo tudi vmesi temperaturi ϑ H i ϑ. Če izguba moč P v tabletki i kostata, (pr. pri spremeljivih tokih) so tudi vse temperature, raze ϑ O, podvržee spremembam. P ϑ S R S ϑ R H ϑ H R HO ϑ O Slika 4.1: Polprevodiški vetil s hladilim telesom za zračo hlajeje ter termiča adomesta shema za stacioare razmere: ϑ S -temperatura silicijeve tabletke, ϑ -temperatura telesa vetila, ϑ H -temperatura hladilega telesa, ϑ O temperatura okoliškega zraka, R S -termiča uporost med tabletko i telesom vetila, R H -termiča uporost med telesom vetila i hladilim telesom, R HO -termiča uporost med hladilim telesom i okolico 68
5 Notraja toplota uporost Zuaja toplota uporost Izguba moč P R S R H R HO ϑ S ϑ ϑ H ϑ O Slika 4.2: Poeostavljeo adomesto termičo vezje tiristorja s hladilim telesom za stacioaro obratovaje P R S R H R HO ϑ S ϑ ϑ H ϑ O Slika 4.3: ermičo adomesto vezje ekega tiristorja s hladilim telesom za impulzo obratovaje Nadomesto termičo vezje a sl.4.2 e upošteva toplotih kapacitet posamezih delov. Zato to vezje i primero za izraču, če obratuje vetil estacioaro ali pulzo (prekijevalo). V tem primeru lahko uporabimo adomesto vezje a sl V jem so dodato upoštevae toplote kapacitete posamezih delov (s toplotimi kapacitivostmi). Vsak astali RC-čle ima svojo termičo časovo kostato: τ = R C Iz te verige RC-čleov izhaja t.i. trasieta toplota uporost Z tr : Z tr = m = = 1 R 1 e t τ a uporost je lahko podaa grafičo v odvisosti od časa (sl.4.4). Z jeo pomočjo lahko izračuamo temperaturo tabletke ϑ S pri različih časovih potekih izgube moči p(t). Sl. 4.5 kaže takše potek za dva različa poteka impulzov p(t). 69
6 S hladilim telesom Z tr 1-3 Samo za prehod S Slika 4.4: rasieta toplota uporost Z tr ekega tiristorja s hladilim telesom t p p P P ϑ S η S ϑ S ϑ S 1 2 t t Slika 4.5: emperatura tabletke ϑ S pri: (a) posamičih pulzih izgube moči, (b) pri zaporedih pulzih izgube moči 4.3 Hladila telesa i amestitev vetilov Večia proizvajalcev vetilov dobavlja tudi ustreza hladila telesa. oplota uporost R H + R HO hladilega telesa je odvisa od materiala, od kostrukcije i od velikosti hladilega telesa ter od hitrosti oplakovaja s hladilim medijem (zraka, tekočie). Hladila telesa so pretežo iz alumiijevih zliti, bogato arebričea, da imajo čim večjo površio, i so ajvečkrat čro eloksiraa, da je koeficiet sevaja velik. Posebo pozorost je treba posvetiti toplotemu uporu med telesom vetila i med hladilim telesom. Majhe vetile poavadi kar vtisemo v hladilo telo (ploščo). Nekatera telesa vetilov so opremljea tudi z vijakom, da lahko apravimo vijačo povezavo. Pozor: izvrtia v hladilem telesu mora biti apravljea točo pravokoto a površio, sicer vetil e alega s svojo celoto kotakto ploskvijo i je prehod toplote slab! Diode i tiristorji za sredje velike toke, ki so opremljei z vijačim astavkom, uvijemo v hladilo telo, ki ima avoj. elo vetila se ahaja a potecialu aode ali katode. Zato moramo večkrat hladilo telo električo izolirati od telesa vetila. Namestimo ga prek vmese izolacijske 7
7 ploščice (podložke). a ploščica mora biti taka i toploto dobro vodljiva, hkrati pa mora dobro električo izolirati. Odliče ploščice so iz arave sljude, v ovejšem času pa tudi iz umetih sovi (berilijev oksid BeO). Obstajajo tudi ploščice iz posebih epoksidih mas (z debelio,15 mm i s prebojo trdostjo preko 1 kv). Včasih ameščamo iz ekoomskih razlogov več vetilov a skupo hladilo telo. Če so telesa teh vetilov a različih električih potecialih (pr. vetili v eofazem mostu, moramo apraviti opisao izoliraje med vetili i hladilim telesom. elesa diod i tiristorjev za večje toke ali za velike obratovale frekvece, pri katerih je izguba moč velika, so izdelaa s ploščatim dom, ki ima relativo veliko kotakto površio. Na hladilo telo je tak vetil privijače preko posebega obroča. Vetile za ekstremo velike toke pa je treba hladiti dvostrasko. Izdelai so v obliki ploščka (kot hokejski!), ki ga potem z vijaki vpemo med dve hladili telesi. 71
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
PROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
p 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Modeliranje električnih strojev
Uiverza v Ljubljai Fakulteta za elektrotehiko Dailo Makuc Modeliraje električih strojev Zbirka rešeih alog Dailo Makuc, FE UNI LJ, jauar Predgovor Zbirka vsebuje rešee aloge, ki pridejo v poštev za pisi
PROCESIRANJE SIGNALOV
Daum: 5.. 999. Izračuaje kompoee ampliudega spekra podaega periodičega sigala! Kolikša je osova frekveca ega sigala? Tabeliraje prvih šes ampliud! -,,,,3,4,5 - [ms]. Izračuaje Fourierjev rasform podaega
odvodi u okoliš? Rješenje 1. zadatka Zadano: q m =0,5 kg/s p 1 =1 bar =10 5 Pa zrak w 1 = 15 m/s z = z 2 -z 1 =100 m p 2 =7 bar = Pa
.vježba iz Terodiaike rješeja zadataka 1. Zadatak Kopresor usisava 0,5 kg/s zraka tlaka 1 bar i 0 o C, tlači ga i istiskuje u eizolirai tlači cjevovod. Na ulazo presjeku usise cijevi brzia je 15 /s. Izlazi
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA
VAJA 3. Merjeje lomega količika iz Brewster-jevega kota VAJA 3. - MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA 3.1. Odboj svetlobe a površii stekla Povezavo med koti vpadega, odbitega i lomljeega
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled
Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Transformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
Generatorji in transformatorji
Uiverza v Ljubljai Faulteta za eletrotehio Dailo Mauc Geeratorji i trasformatorji Zbira alog z rešitvami Dailo Mauc, FE UN LJ, februar 013 Predgovor Zbira vsebuje rešee aloge pri predmetu Geeratorji i
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
Sedežni ventili (PN 6) VL 2 prehodni ventil, prirobnični VL 3 tripotni ventil, prirobnični
Tehiči list Sedeži vetili (PN 6) V 2 prehodi vetil, prirobiči V 3 tripoti vetil, prirobiči Opis V 2 V 3 Vetili V 2 i V 3 zagotavljajo kakovosto i ceovo ugodo rešitev za večio ačiov uporabe a področju dovoda
PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI
PODATKI, FREKVENČNE PORAZDELITVE IN NJIHOV OPIS: MERE SREDNJE VREDNOSTI IN RAZPRŠENOSTI. KAKO NAREDIMO FREKVENČNO PORAZDELITEV Recimo, da so am a razpolago podatki (pr. število prijateljev, s katerimi
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Dvanaesti praktikum iz Analize 1
Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Sedežni ventili (PN 16) VF 2 prehodni ventil, prirobnični VF 3 tripotni ventil, prirobnični
Tehiči opis Sedeži vetili (PN 16) VF 2 prehodi vetil, prirobiči VF 3 tripoti vetil, prirobiči Opis Začilosti: Za mehurčke tesa oblika Zaskoči mehaski priključek z AMV(E) 335, AMV(E) 435 Namesko telo vetila
Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik
Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Izhodna moč in frekvenčna pasovna širina svetlobnega vira
. Svetlobi viri.. Lastosti svetlobih virov Ključi elemet za komuikacijo po optičem vlaku je svetlobi vir. Zaj imamo štiri zahteve:. izhoda moč vira,. frekveča pasova širia, 3. preča kohereca, 4. možost
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Ljubljana, 2015 OSNOVE OPTIČNIH KOMUNIKACIJ. Fakulteta za elektrotehniko. Laboratorij za sevanje in optiko
Ljubljaa, 5 OSNOVE OPTIČNIH KOMUNIKACIJ Fakulteta za elektrotehiko Laboratorij za sevaje i optiko Boštja Batagelj bostja.batagelj@fe.ui-lj.si Osove optičih komuikacij. Uvod v vrviče komuikacije.. Primerjava
ATOM NOTRANJA ENERGIJA ATOMA ENERGIJA ELEKTRONA VALOVNA NARAVA TVARNIH DELCEV BOHROV MODEL ATOMA 19.5.
ATOM 19.1. NOTRANJA ENERGIJA ATOMA 19.2. ENERGIJA ELEKTRONA 19.3. VALOVNA NARAVA TVARNIH DELCEV 19.4. BOHROV MODEL ATOMA 19.5. FOTOEFEKT 19.6. RENTGENSKA CEV 19.1. NOTRANJA ENERGIJA ATOMA Mirujoč prosti
3.2.1 Homogena linearna diferencialna enačba II. reda
3 Homogea lieara difereciala eačba II reda V slošem se homogee lieare difereciale eačbe drugega reda e da rešiti v aljučei oblii vedar a se da v rimeru o oamo eo artiularo rešitev itegracijo dobiti drugo
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Aritmetički i geometrijski niz
Zadac sa prethodh prjemh spta z matematke a Beogradskom uverztetu Artmetčk geometrjsk z. Artmetčk z. 00. FF Zbr prvh dvadeset člaova artmetčkog za čj je prv čla, a razlka A) 0 B) C) D) 880 E) 878. 000.
7 TUJE VODENI PRETVORNIKI
7 TUJE VODENI PRETVORNII Pod tem naslovom bomo obravnavali pretvornike, ki kot stikalne elemente uporabljajo tiristorje, za takt delovanja in komutacijo pa skrbi bodisi omrežje omrežno vodeni pretvorniki
1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
MATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Vaja 1: Računanje z napakami
Vaja : Račuaje z apakami Matej Bažec 9. oktober 25 Povzetek Spozali bomo osove račuaja z apakami. Obovili bomo zaje o absolutih i relativih apakah, smiselosti zapisa decimalih mest i pravila račuaja z
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads.
Για να εμφανιστούν σωστά οι χαρακτήρες της Γραμμικής Β, πρέπει να κάνετε download και install τα fonts της Linear B που υπάρχουν στο τμήμα Downloads. Η μυκηναϊκή Γραμμική Β γραφή ονομάστηκε έτσι από τον
Riješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
0,00275 cm3 = = 0,35 cm = 3,5 mm.
1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Решенија на задачите за основно училиште. REGIONALEN NATPREVAR PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO REPUBLIKA MAKEDONIJA 25 april 2009
EGIONALEN NATPEVA PO FIZIKA ZA U^ENICITE OD OSNOVNITE U^ILI[TA VO EPUBLIKA MAKEDONIJA 5 april 9 Zada~a Na slikata e prika`an grafikot na proena na brzinata na dvi`eweto na eden avtoobil so tekot na vreeto
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Eliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
IZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
Iskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
diferencialne enačbe - nadaljevanje
12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
APROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Poglavje 5. Poglavje 5. Poglavje 5. c = 1! SPOMNIMO SE!!! Regulacijski sistemi. Regulacijski sistemi
Reglacjsk ssem lka 5. : Vekorja saorskega n roorskega oka v prosor Faklea za elekroehnko Reglacjsk ssem POMNIMO E!!! lka. 5: Kompleksn vekor saorskega oka γ jγ ( e ) j0 j ( ) c ( ) e ( ) e ( ) c! Faklea
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
KUPA I ZARUBLJENA KUPA
KUPA I ZAUBLJENA KUPA KUPA Povšin bze B Povšin omotč M P BM to jet P B to jet S O o kupe Oni peek Obim onog peek O op Povšin onog peek P op Pimen pitgoine teoeme vnotn jednkotn kup je on kod koje je, p