() () 5.2 Osnovni zakoni dinamike fluida. - Sile dodira između čestica unutar V () t su unutarnje sile. - Zakon očuvanja mase
|
|
- Ἀνδρομάχη Βασιλόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 8. preaanje z Mehanke fla Osnon zakon namke fla Mehanka Ssta materjalnh točaka Mehanka fla Materjaln olmen z x y - Sle ora zmeđ čestca ntar V () t s ntarnje sle. M - Zakon očanja mase N k m k 0 D Dt VM () t ρ V 0 - Zakon očanja kolčne gbanja N N m k k F k t k k D ρv ρ f V + σ S Dt V M t V M t S M t () () () - Zakon očanja momenta kolčne gbanja N N ( r mkk) ( rk Fk) t k k D Dt r ρ V r ρ V + r σ S () () () VM t VM t SM t
2 8. preaanje z Mehanke fla 74 - Zakon mehančke energje N N N k mk Fk k + F k k t k k k F D V f V S F Dt ρ () ρ + σ V () () M t V M t S M t snaga ntarnjh sla Materjaln olmen mehanc fla ogoara ssta materjalnh točaka mehanc, s razlkom a s mase materjalnh točaka materjalnom olmen nfntezmalne m ρ V, ok materjalne točke mehanc mog mat konačn mas m. S zakon mehanke koj rjee za ssta materjalnh točaka, rjet će za materjaln olmen, pr čem sma zakonma za ssta materjalnh točaka prelaz ntegral po materjalnom olmen, kaa se ra o mehanc fla. Na materjaln olmen jelj masene poršnske sle. Masene sle s posljeca položaja mase polj masene sle jasno je a s to za materjaln olmen anjske sle. oršnske sle s sle ora zmeđ čestca fla. Oe sle će bt za materjaln olmen anjske, ako se ra o slama ora čestca fla s materjalne poršne (koje s or s čestcama zan materjalnog olmena), a one će bt ntarnje ako se ra o slama ora međ čestcama z materjalnog olmena. Dakle, anjske poršnske sle s raspojeljene po materjalnoj poršn, a ntarnje poršnske sle jelj međ čestcama fla ntar materjalnog olmena. Snaga F ntarnjh sla se onos na snag ntarnjh sla koje možemo pojelt na sle tlaka skozne sle. S obzrom a skozne sle označj sle trenja međ čestcama fla, jasno je a će skozne sle jek pretarat mehančk energj ( mehanc krth tjela s knetčka potencjalna energja) ntarnj energj. Znamo a je oa pretorba jenosmjerna (nkaa se ptem sla trenja neće z ntarnje energje obt mehančka energja). S rge strane, znamo z termonamke a se zentropskom kompresjom ealnog plna mehančk ra pretara ntarnj energj plna, a pr zentropskoj ekspanzj ntarnja energja plna raća kroz oben ra. Jasno je a s ekspanzja kompresja poezan s promjenom olmena termonamčkog sstaa, onosno sa stlačošć fla. Ako mamo posla s nestlačm strjanjem, kojem je gstoća (pa ona olmen) čestca fla konstantna, jasno je a sle tlaka neće sjeloat pretorb mehančke energje ntarnj ( obrnto), pa ostaje samo mehanzam pretorbe ptem skoznh sla, koj je jenosmjeran. Jenom pretorena mehančka energja ntarnj se ne može poratt, pa goormo o gbcma mehančke energje (ako smo sjesn a enegja nje zgbljena nego se pretorla ntarnj energj). S obzrom a se nestlačom strjanj (kao mehanc krth tjela) z ntarnje energje ne može obt mehančka energja, ntarnj energj nećemo nt zmat obzr (pr čem ćemo pretorb mehančke energje ntarnj smatrat "gbcma"). Dakle, nestlačo strjanje fla će bt opsano stm zakonma kao gbanje krth tjela. Nasprot tome, stlačom strjanj (tj. strjanj plnoa) z ntarnje energje će se moć obat mehančka energja (ekspanzja), pa će ntarnj energj (akle zmjen toplne) trebat zet obzr. U tom slčaj se zakon mehančke energje (z mehanke krth tjela) zamjenjje zakonom očanja energje z termonamke. U tom slčaj se za ocjen fzkalnost strjanja korst II zakon termonamke, pa s osnon zakon namke fla an sljeećom tablcom:
3 8. preaanje z Mehanke fla 75 Nestlačo strjanje ρ konst. Stlačo strjanje ρ konst.. Zakon očanja mase. Zakon očanja kolčne gbanja 3. Zakon očanja momenta kolčne gbanja 4. Zakon mehančke energje 4. Zakon očanja energje (I.zakon termonamke) 5. II zakon termonamke U oom kolegj ćemo se bat nestlačm strjanjem fla, pa ćemo korstt samo nabrojane zakone efnrane mehanc krth tjela (sstaa materjalnh točaka). To što smo se ogrančl na nestlačo strjanje ne znač a nećemo moć analzrat strjanje plnoa. Name, ako pln strj malom brznom, promjene tlaka temperatre strjanj s male, pa će prema jenažb stanja plna promjena gstoće bt mala, onosno strjanje ćemo moć promatrat kao nestlačo. U praks se zma a će strjanje plna bt prblžno nestlačo za brzne strjanja koje s o 30 % o brzne šrenja zka pln. Npr.,brzna zka zrak pr normalnm jetma je oko 330 m/s, pa će strjanje zraka bt nestlačo se o brzne o prblžno 00 m/s (360 km/h). rema tome, gbanje atomobla, lakoa, pa čak sportskh zrakoploa zrak će se moć opsat jenažbama nestlačog strjanja. Narano, strjanje plnoa z ntenzn zmjen toplne, gje se ntarnja energja pretara mehančk će se opsat moelom stlačog strjanja. 5.3 Zakon knetčke (mehančke) energje za kontroln olmen D V Dt ρ VM () t ρ V + ρ ns t ρ f V + σ S F VKV SKV VKV SKV ( S + S) brzna promjene knetčke brzna protjecanja knetčke energje ntar KV energje kroz kontroln poršn (brzna akmlacje) snaga masenh sla snaga anjskh sla poršnskh sla snaga ntarnjh - Do protjecanja knetčke energje olaz samo kroz jeloe kontrolne poršne kroz koje protječe fl (lazna zlazna poršna), pa se za porčje ntegracje rgom ntegral gornje jenažbe može zet S + S. - oršnske sle se mog prkazat zbrojem sla tlaka skoznh sla σ pn + σ, pa se f snaga anjskh poršnskh sla može napsat oblk σ S pn S+ σ S ( + ) SKV SKV S S SKV f - Snaga anjskh skoznh sla je mala onos na snag tlačnh sla. Na laznom zlaznom presjek je ektor σ f prblžno okomt na ektor brzne, a na fzčkoj stjenc gje je σ f najeć, brzna je jenaka nl. 0
4 8. preaanje z Mehanke fla 76 - Glan oprnos skoznh sla, očtje se kroz član koj označje snag ntarnjh sla. U nestlačom strjanj skozne sle s jen mehanzam pretorbe mehančke energje ntarnj jek označj smanjenje knetčke energje, pa je član zet s negatnm preznakom ( F ), gje F označje poztn elčn. Zakon knetčke energje b se mogao zapsat oblk: rotok K.E. kroz S akmlrana K.E. snaga sla tlaka ρ ns ρ ns ρ V pn S+ ρ f S t S S VKV S + S VKV rotok K.E. kroz zlazn poršn snaga masenh sla F snaga ntarnjh (skoznh) sla 5.3. rmjena zakona knetčke energje na strjanje cjeooma za slčaj ρ konst. f gk. n n s e s s V A s es (brzna okomta na presjek) s se s - Jenažba kontnteta A konst. V A s s brzna promjene K.E. ntar KV. t ρ ρ ρ t s A VKV A S ρ n S ρ S α ρ A 3 α A sr s s 3 3 α S 3 sr A A koefcjent spraka knetčke energje
5 8. preaanje z Mehanke fla 77 a) Iealn fl b) Lamnarno strjanje c) Trblentno strjanje α R r α D α,03-, max r max R Re sr D ν ρ n S α ρ A ± p n S ps ps p p A+ A A A Napomena: promjena tlaka po presjek je zanemara onos na promjen tlaka smjer strjanja. romjena tlaka staconarnom strjanj ealnog fla se može zračnat ntegracjom jenažbe kolčne gbanja okomto na strjnce g r ne n strjncatrajektorja R a t e s Rrajs zakrljenost strjnce
6 8. preaanje z Mehanke fla 78 ρa ρ gk gra p r nen ρa nn ρ gk r p z R ρ g( z z) p+ p p p ρg( z z) + ρ n R ) Rane strjnce: R p p ρ g z z raspojela tlaka okomto na strjnce sta je kao fl mroanj ) z konst. p p+ ρ n tlak raste o srešta zakrljenost R gk z s ρ f V ρ gak ses ρ g z z V e KV s A s z Grpranjem pojenh članoa obje se Bernolljea jenažba: s α ρ p ρ gz + + α ρ + p + ρ gz ρ F s t ra sle tlaka potencjalna knetčka energja s po jenc energja po po jenc olmena olmena jenc snaga fla na laz KV akmlrana snaga olmena snaga fla na zlaz z KV "zgbljena" snaga - U tehnčkoj praks cjeoo može bt građena pmpa l trbna.
7 8. preaanje z Mehanke fla 79 mpa je ređaj pogonjen motorom, koj preaje energj fl. E M M E M snaga koj pmpa preaje fl snaga koj motor preaje pmp elektrčna snaga preana motor η stpanj korsnost pmpe < η M M stpanj korsnost motora < E -Trbna je ređaj koj pretara energj fla mehančk energj, kojom najčešće pogon generator koj aje elektrčn energj. T T T G E snaga koj fl preaje trbn snaga koj trbna preaje generator elektrčna snaga koj aje generator E G G G ηt stpanj korsnost trbne < T E ηg stpanj korsnost generatora < G Mofcrana Bernolljea jenažba kaa cjeoo postoje pmpa trbna s α ρ + p+ ρgz α ρ p ρgz ρ s F T t s akmlacja snaga A snaga snaga snaga gbtaka pmpe trbne - Specfčn oblc mofcrane Bernolljee jenažbe ) po jenc olmenskog protoka totaln tlak ΔpF Δp ΔpT s F T α ρ + p + ρ g z α ρ + p+ ρgz ρ s + statčk tlak hrostatsk t s namčk tlak tlak
8 8. preaanje z Mehanke fla 80 snaga Sak član jenažbe ma menzj olmensk protok F Δ pf pa tlaka slje trenja Δ p T Δ pt skok tlaka slje pmpe pa tlaka kroz trbn energja tlak olmen ) po jenc masenog protoka m ρ e kpna specfčna energje ef e et s p p F T α + + gz α + + gz s + ρ ρ t ρ ρ ρ geometrjska s sna sna sna knetčke tlaka energje Sak član ma menzj snaga masen protok energja specfčna energja masa e e e F T F ρ ρ T ρ gbtak specfčne energje slje trenja porast specfčne energje slje pmpe pa specfčne energje slje trbne 3) po jenc težnskog protoka G ρ g h sna kpne energje hf h ht s p p F T α + + z α + + z s + g ρg g ρg g t ρg ρg ρg geometrjska s sna sna sna knetčke tlaka energje Dmenzja sakog člana snaga energja sna težnsk protok težna
9 8. preaanje z Mehanke fla 8 h h h F T F ρg ρg T ρg sna gbtaka energje sna obae pmpe pa sne energje trbn rmjer prmjene zakona knetčke energje na račast cje (staconarno strjanje brzna promjene knetčke energje 0) 3 3, pmpa , 4 J.K M.B.J F 5 F 5 F5 6 F6 3 F6 4 α ρ + p + ρ gz ;,,3,4 - jenažbe po osječcma Integraln oblc Specfčn oblc 5 : ρ g h h h 5 F 5 5 F 5 : ρ g h h h 5 F 5 5 F : ρ g 6 5 F5 6 h h h 6 5 F F F F F6 4 ( + ) + 3 ρ g 6 3 : ρ g h h h : ρ g h h h 5
10 8. preaanje z Mehanke fla 8 p α h + + z ;,,3, 4,5,6 g ρ g Zbroj () + (3) + (5) B.J. (-5) + (5-6) + (6-4) -4 h h h h h + h 4 F 5 F5 6 F6 4 p Zbroj () + (3) + (4) M.B.J. -3 h h h h h + h 3 F 5 F5 6 F6 3 Bernolljea jenažba rje ne samo za fzčk cje nego za strjn cje (onosno strjnc). Npr. staconarnom stanj ( A 0) ealnog fla ( F 0 ; α ) rje: p p + + z z g ρg + + g ρg l p + + z konst. zž strjnce g ρ g
Protok., tada je relativna brzina gibanja čestica fluida u odnosu na površinu w i., a protok Q je definiran izrazom Q= wnds = v u nds
EHNIK FLUI I Što valja zapamtt 0 Protok olumensk protok l jenostao protok Q jest volumen čestca flua koje u jenčnom vremenu prođu kroz promatranu površnu orjentranu jenčnm vektorom normale n ko se čestce
MEHANIKA FLUIDA. Prosti cevovodi
MEHANIKA FLUIDA Prosti ceooi zaatak Naći brzin oe kroz naglaak izlaznog prečnika =5 mm, postaljenog na kraj gmenog crea prečnika D=0 mm i žine L=5 m na čijem je prenjem el građen entil koeficijenta otpora
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. Pojmovi: C. Složeno gibanje. A. Translacijsko gibanje krutog tijela. 14.
Pojmo:. Vektor se F (transacja). oment se (rotacja) Dnamka krutog tjea. do. oment tromost masa. Rad krutog tjea A 5. Knetka energja k 6. oment kona gbanja 7. u momenta kone gbanja momenta se f ( ) Gbanje
Moguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
TEHNIČKI FAKULTET SVEUČILIŠTA U RIJECI Zavod za elektroenergetiku. Prijelazne pojave. Osnove elektrotehnike II: Prijelazne pojave
THNIČKI FAKUTT SVUČIIŠTA U IJI Zavod za elekroenergek Sdj: Preddplomsk srčn sdj elekroehnke Kolegj: Osnove elekroehnke II Noselj kolegja: v. pred. mr.sc. Branka Dobraš, dpl. ng. el. Prjelazne pojave Osnove
DINAMIKA FLUIDA Osnovni zakoni dinamike fluida
MEHANIKA FLUIDA K DINAMIKA FLUIDA Osnon zakon dnamke fluda Dnamka plnoa se temel na osnonm zakonma klasčne fzke u koe spadau. Zakon očuana mase,. Zakon očuana kolčne gbana, 3. Zakon očuana momenta kolčne
MEHANIKA FLUIDA I Što valja zapamtiti DINAMIKA FLUIDA
MEHANIKA FLUIDA I Što ala zapamtt 7 5. DINAMIKA FLUIDA Materaln olumen (fludno telo) e ekalentno sustau materalnh točaka u mehanc, te zatorenom termodnamčkom sustau u termodnamc, pa će s zakon mehanke
Dinamika rotacije (nastavak)
Dnaka rotacje (nastaak) Naučl so: Moent sle: M r F II Njutno zakon za rotacju krutog tela oko nepokretne ose: Analogno sa: F a I je skalarna elčna analogna as predstalja nertnost tela prea rotacj. Zas
Dinamika krutog tijela ( ) Gibanje krutog tijela. Gibanje krutog tijela. C. Složeno gibanje. Pojmovi: A. Translacijsko gibanje krutog tijela. 12.
Pojmo:. Vekor sle F (ranslacja). omen sle (roacja) Dnamka kruog jela. do. omen romos masa. Rad kruog jela A 5. Kneka energja k 6. omen kolna gbanja L 7. u momena kolne gbanja momena sle L f ( ) Gbanje
Reverzibilni procesi
Reverzbln proces Reverzbln proces: proces pr koja sste nkada nje vše od beskonačno ale vrednost udaljen od ravnoteže, beskonačno ala proena spoljašnjh uslova ože vratt sste u blo koju tačku, proena ože
2. PRORAČUN RASHLADNOG UČINKA ZA HLADIONICU
2. PRORAČUN RASHLADNOG UČINKA ZA HLADIONICU Toplnsko opterećenje hladnjače račna se kao sma 8 Q & = & [kw] o Q = 1 1. Toplnsko opterećenje sljed doođenja toplne kroz stjenke 2. Toplnsko opterećenje sljed
Polarizacija. Procesi nastajanja polarizirane svjetlosti: a) refleksija b) raspršenje c) dvolom d) dikroizam
Polarzacja Proces asajaja polarzrae svjelos: a refleksja b raspršeje c dvolom d dkrozam Freselove jedadžbe Svjelos prelaz z opčkog sredsva deksa loma 1 u sredsvo deksa loma, dolaz do: refleksje (prema
KONVEKSNI SKUPOVI. Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5. Back FullScr
KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 KONVEKSNI SKUPOVI Definicije: potprostor, afin skup, konveksan skup, konveksan konus. 1/5 1. Neka su x, y R n,
d D p 1 , v 1 L h ρ z ρ a Rješenje:
9. VJEŽBA - RIJEŠENI ZAACI IZ MEANIKE FLUIA 1. Oreite brinu v 1 i tlak p 1 raka (ρ =1,3 kg/m 3 ) u simetrali cijevi promjera =50 mm, pomoću mjernog sustava s Prantl-Pitotovom cijevi prema slici. Pretpostavite
F (t) F (t) F (t) OGLEDNI PRIMJER SVEUČILIŠTE J.J.STROSSMAYERA U OSIJEKU ZADATAK
OGLEDNI PRIMJER ZADAAK Odredte dnamčke karakterstke odzv armranobetonskog okvra C-C prkazanog na slc s prpadajućom tlorsnom površnom, na zadanu uzbudu tjekom prve tr sekunde, ako je konstrukcja prje djelovanja
Dinamika krutog tijela. 14. dio
Dnaka kutog tjela 14. do 1 Pojov: 1. Vekto sle F (tanslacja). Moent sle (otacja) 3. Moent toost asa 4. Rad kutog tjela A 5. Knetka enegja E k 6. Moent kolna gbanja 7. u oenta kolne gbanja oenta sle M (
Elektrotehnički fakultet univerziteta u Beogradu 16.maj Odsek za Softversko inžinjerstvo
Elektrotehnčk fakultet unverzteta u Beogradu 6.maj 8. Odsek za Softversko nžnjerstvo Performanse računarskh sstema Drug kolokvjum Predmetn nastavnk: dr Jelca Protć (35) a) () Posmatra se segment od N uzastonh
Izbor prenosnih odnosa teretnog vozila - primer
FTN No Sad Katedra za motore ozla Teorja kretanja drumskh ozla Izbor prenosnh odnosa Izbor prenosnh odnosa teretnog ozla - prmer ata je karakterstka dzel motora MG OM 906 LA (Izor: http://www.dmg-dusburg.de/html/d_c_om906la.html)
σ (otvorena cijev). (34)
DBLOSTJN POSUD CIJVI - UNUTARNJI ILI VANJSKI TLAK 8 "Dobo je htjeti, ali teba i znati." Z. VNUČC, 9. NAPRZANJA I POMACI DBLOSTJN POSUD ILI CIJVI NASTAVAK. Debelostjena osa oteećena ntanjim tlaom Debelostjena
A 2 A 1 Q=? p a. Rješenje:
8. VJEŽBA - RIJEŠENI ZADACI IZ MEANIKE FLUIDA. Oreite minimalni protok Q u nestlačiom strujanju fluia ko koje će ejektor početi usisaati flui kroz ertikalnu cječicu. Zaano je A = cm, A =,5 cm, h=,9 m.
Elementi energetske elektronike
ELEKTRIČNE MAŠINE Elemen energeske elekronke Uvod Čme se bav energeska elekronka? Energeska elekronka se bav konverzjom (prevaranjem) razlčh oblka elekrčne energje. Uvod Gde se kors? Elemen energeske elekronke
PRESECI SA PRSLINOM - VELIKI EKSCENTRICITET
TEORJA ETONSKH KONSTRUKCJA 1 PRESEC SA PRSLNO - VELK EKSCENTRCTET ČSTO SAVJANJE - SLOODNO DENZONSANJE Poznato: Nepoznato: - statčk tcaj za pojedna opterećenja ( ) - sračnato - kvaltet materjala (, σ v
2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
IZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
OM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N
I N F O T E K N I K V o l u m e 1 5 N o. 1 J u l i 2 0 1 4 ( 61-70) A N A L I S I S K U A L I T A S A I R D I K A L I M A N T A N S E L A T A N S E B A G A I B A H A N C A M P U R A N B E T O N N o v i
PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
1 Momenti inercije u odnosu na Dekartove koordinatne ose
M. Tadć, Predavanja z Fzke 1, ETF, grupa P3, X predavanje, 2017. 1 Moment nercje u odnosu na Dekartove koordnatne ose Pretpostavmo da telo prkazano na slc 1 ma sva tr prostorne dmenzje razlčte od nule.
Mate Vijuga: Rijeseni zadaci iz matematike za srednju skolu
7. KOMPLEKSNI BROJEVI 7. Opc pojmov Kompleksn brojev su sastavljen dva djela: Realnog djela (Re) magnarnog djela (Im) Promatrajmo broj a+ b = + 3 Realn do jednak je Re : Imagnarna jednca: = - l = (U elektrotehnc
Pismeni ispit iz OTPORNOSTI MATERIJALA I - grupa A
Psmen spt z OTPORNOSTI MATERIJALA I - grupa A 1. Kruta poluga ABC se oslanja pomoću dvje špke BD CE kao na slc desno. Špka BD, dužne 0.5 m, zrađena je od čelka (E AB 10 GPa) ma poprečn presjek od 500 mm.
Ubrzanje. Parametri ubrzanja: vreme zaleta put zaleta Koliko sekundi / metara je potrebno da bi se dostigla određena brzina?
Paamet ubzanja: veme zaleta put zaleta Kolko sekund / metaa je potebno da b se dostgla odeđena bzna? Važnost: gadska vožnja petcanje bezbednost Utcaj: dnamčke kaaktestke pogonskog motoa vozla boj penosnh
18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Cauchyjev teorem. Postoji više dokaza ovog teorema, a najjednostvniji je uz pomoć Greenove formule: dxdy. int C i Cauchy Riemannovih uvjeta.
auchyjev teorem Neka je f-ja f (z) analitička u jednostruko (prosto) povezanoj oblasti G, i neka je zatvorena kontura koja čitava leži u toj oblasti. Tada je f (z)dz = 0. Postoji više dokaza ovog teorema,
POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
DIMENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE
TEORIJA ETONSKIH KONSTRUKCIJA T- DIENZIONISANJE PRAVOUGAONIH POPREČNIH PRESEKA NAPREGNUTIH NA PRAVO SLOŽENO SAVIJANJE 3.5 f "2" η y 2 D G N z d y A "" 0 Z a a G - tačka presek koja određje položaj sistemne
U L U L U N U N. metoda
Zadatak (Boško, gmnazja) Kad se jakost struje, kroz zavojncu koja ma zavoja, jednolko poveća od 3 A do 9 A tok magnetskog polja kroz nju se promjen od mwb do mwb tjekom 3 sekunde. Kolka je nduktvnost zavojnce
IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Predavanje 2 *MEHANIKA MATERIJALNE ČESTICE*
6 Nejra Hodžć - sknuto sa wwwetfba Inženjerska fzka Predavanje *MEHANIKA MATERIJALNE ČESTICE* Mehanka je do fzke koja roučava zakone kretanja tjela, tj vremensku romjenu oložaja tjela u rostoru Mehanka
Ispitivanje toka i skiciranje grafika funkcija
Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3
numeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА
ТЕМПЕРАТУРА СВЕЖЕГ БЕТОНА empertur sežeg beton menj se tokom remen i zisi od ećeg broj utijnih prmetr: Početne temperture mešine (n izsku iz mešie), emperture sredine, opote hidrtije ement, Rzmene topote
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Alterazioni del sistema cardiovascolare nel volo spaziale
POLITECNICO DI TORINO Corso di Laurea in Ingegneria Aerospaziale Alterazioni del sistema cardiovascolare nel volo spaziale Relatore Ing. Stefania Scarsoglio Studente Marco Enea Anno accademico 2015 2016
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s
P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t
Obrada signala
Obrada signala 1 18.1.17. Greška kvantizacije Pretpostavka je da greška kvantizacije ima uniformnu raspodelu 7 6 5 4 -X m p x 1,, za x druge vrednosti x 3 x X m 1 X m = 3 x Greška kvantizacije x x x p
Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Metoda najmanjih kvadrata
Metoda ajmajh kvadrata Moday, May 30, 011 Metoda ajmajh kvadrata (MNK) MNK smo već uvel u proučavaju leare korelacje; gdje smo tražl da suma kvadrata odstupaja ekspermetalh točaka od pravca koj h a ajbolj
a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.
3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M
41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
( , 2. kolokvij)
A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
A) da B) ne C) ovisi o predznaku naboja. E) ovisi o količini naboja. Rezultat: B.
Zadatak 0 (Jopa, rednja škola) Struja koja teče kroz ravnu žcu prozvod magnetko polje. A) da B) ne C) amo ukolko e žca gblje D) amo u nekm lučajevma E) amo u unutrašnjot žce. Rješenje 0 Magnetko polje
v = = 4 = je vektor cu u n Npr. u = je vektor s komponentama u, u. v = su jednaki ako je u Vektori u Primjer 1 Vektori u
VEKTORSKI PROSTOR. peaaje..5. st.. VEKTORI U R atie koje imaj koje samo jea stpa (tipa ) zo se -ektoi ili kaće ektoi. Np. je ekto s kompoetama,., K, Vektoi i s jeaki ako je i i za se i,, K,. Pimje Vektoi
Matematika 1 - vježbe. 11. prosinca 2015.
Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
π π ELEKTROTEHNIČKI ODJEL i) f (x) = x 3 x 2 x + 1, a = 1, b = 1;
1. Provjerite da funkcija f definirana na segmentu [a, b] zadovoljava uvjete Rolleova poučka, pa odredite barem jedan c a, b takav da je f '(c) = 0 ako je: a) f () = 1, a = 1, b = 1; b) f () = 4, a =,
Elektrostatika. 1. zadatak. Uvodni pojmovi. Rješenje zadatka. Za pločasti kondenzator vrijedi:
tnic:iii- lektosttik lektično polje n gnici v ielektik. Pločsti konenzto. Cilinični konenzto. Kuglsti konenzto. tnic:iii-. ztk vije mete ploče s zkom ko izoltoom ile su spojene n izvo npon, ztim ospojene
Dijagrami: Greda i konzola. Prosta greda. II. Dijagrami unutarnjih sila. 2. Popre nih sila TZ 3. Momenata savijanja My. 1. Uzdužnih sila N. 11.
Dijagrami:. Udužnih sia N Greda i konoa. Popre nih sia TZ 3. Momenata savijanja My. dio Prosta greda. Optere ena koncentriranom siom F I. Reaktivne sie:. M A = 0 R B F a = 0. M B = 0 R A F b = 0 3. F =
Novi Sad god Broj 1 / 06 Veljko Milković Bulevar cara Lazara 56 Novi Sad. Izveštaj o merenju
Broj 1 / 06 Dana 2.06.2014. godine izmereno je vreme zaustavljanja elektromotora koji je radio u praznom hodu. Iz gradske mreže 230 V, 50 Hz napajan je monofazni asinhroni motor sa dva brusna kamena. Kada
Operacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)
ΑΤΟΜΙΚΑ ΤΡΟΧΙΑΚΑ Σχέση κβαντικών αριθµών µε στιβάδες υποστιβάδες - τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n,
FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA
: MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp
ELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
TEORIJA BETONSKIH KONSTRUKCIJA 79
TEORIJA BETOSKIH KOSTRUKCIJA 79 Primer 1. Odrediti potrebn površin armatre za stb poznatih dimenzija, pravogaonog poprečnog preseka, opterećen momentima savijanja sled stalnog ( g ) i povremenog ( w )
Linearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
transformacija j y i x x promatramo dva koordinatna sustava S i S sa zajedničkim ishodištem z z Homogene funkcije Ortogonalne transformacije
promatramo dva oordnatna sustava S S sa zaednčm shodštem z z y y x x blo o vetor možemo raspsat u baz, A = A x + Ay + Az = ( A ) + ( A ) + ( A ) (1) sto vred za ednčne vetore sustava S = ( ) + ( ) + (
1.4 Tangenta i normala
28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x
Magneti opis i namena Opis: Napon: Snaga: Cena:
Magneti opis i namena Opis: Napon: Snaga: Cena: Magnet fi 9x22x28x29,5 mm 12 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V DC 9 Magnet fi 9x22x28x29,5 mm 24 V AC 9 Magnet fi 9x22x28x29,5 mm 110 V DC 15 Magnet
Kaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
PRVI DEO ISPITA IZ OSNOVA ELEKTROTEHNIKE 28. jun 2003.
PVI DO ISPIT I OSNOV KTOTHNIK 8 jun 003 Napomene Ispit traje 0 minuta Nije ozvoqeno napu{tawe sale 90 minuta o po~etka ispita Dozvoqena je upotreba iskqu~ivo pisaqke i ovog lista papira Kona~ne ogovore
PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Općenito, iznos normalne deformacije u smjeru normale n dan je izrazom:
Otporost mterijl. Zdtk ZDTK: U točki čeliče kostrukije postvlje su tri osjetil z mjereje deformij prem slii. ri opterećeju kostrukije izmjeree su reltive ormle (dužiske deformije: b ( - b 3 - -6 - ( b
Elementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
gdje je E k, max kinetička energija izbijenog elektrona, a W izlazni rad. Formula se može i ovako napisati: c
Zadata (Maro, gnazja) Cezjev ploč obajao eletroagnet zračenje valne dljne 450 n. Kola je razla potenjala potrebna za zatavljanje eje eletrona z ploče? Izlazn rad za ezj zno ev. (Planova ontanta h 6.66
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
ITU-R P (2009/10)
ITU-R.38-6 (009/0 $% #! " #( ' * & ' /0,-. # GHz 00 MHz 900 ITU-R.38-6 ii.. (IR (ITU-T/ITU-R/ISO/IEC.ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ( ( BO BR BS BT F M
NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Trigonometrijski oblik kompleksnog broja
Trgnmetrjsk blk kmpleksng brja Da se pdsetm: Kmpleksn brj je blka je realn de, je magnarn de kmpleksng brja, - je magnarna jednca, ( Dva kmpleksna brja su jednaka ak je Za brj _ je knjugvan kmpleksan brj.
jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó
L09 cloj=klk=tsvjmosopa jqa=mêççìåíë=^âíáéåöéëéääëåü~ñí= =p~~êäêωåâéå= =déêã~åó 4 16 27 38 49 60 71 82 93 P Éå Ñê ÇÉ áí dbq=ql=hklt=vlro=^mmif^k`b mo pbkq^qflk=ab=slqob=^mm^obfi ibokbk=pfb=feo=dboûq=hbkkbk
SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
Matematička analiza 1 dodatni zadaci
Matematička analiza 1 dodatni zadaci 1. Ispitajte je li funkcija f() := 4 4 5 injekcija na intervalu I, te ako jest odredite joj sliku i inverz, ako je (a) I = [, 3), (b) I = [1, ], (c) I = ( 1, 0].. Neka
Ложементы для крепления баллонов Сдвоенная серия Баллоны высокого давления Усиленная серия... 12
www.mvif.ru www.alsaceflow.fr КРЕПЕЖНЫЕ СИСТЕМЫ ДЛЯ ТРУБ И БАЛЛОНОВ БЕСШОВНЫЕ ТРУБЫ Легкая серия... 2 Другие серии... 17 Суперлегкая серия... 8 Ложементы для крепления баллонов... 28 Сдвоенная серия....
Otpornost R u kolu naizmjenične struje
Otpornost R u kolu naizmjenične struje Pretpostavimo da je otpornik R priključen na prostoperiodični napon: Po Omovom zakonu pad napona na otporniku je: ( ) = ( ω ) u t sin m t R ( ) = ( ) u t R i t Struja
rs r r â t át r st tíst Ó P ã t r r r â
rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA
RAČUNANJE SA PRIBLIŽNIM VREDNOSTIMA BROJEVA PRIBLIŽNI BROJ I GREŠKA tača vredost ekog broja X prblža vredost ekog broja X apsoluta greška Δ = X X graca apsolute greške (gorja graca) relatva greška X X
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Matematičke metode u marketingumultidimenzionalno skaliranje. Lavoslav ČaklovićPMF-MO
Matematičke metode u marketingu Multidimenzionalno skaliranje Lavoslav Čaklović PMF-MO 2016 MDS Čemu služi: za redukciju dimenzije Bazirano na: udaljenosti (sličnosti) među objektima Problem: Traži se
Proračun AB stuba. Oblik izvijanja stuba kao i uslovi oslanjanja su jednaki u oba ortogonalna pravca pa se usvaja stub dimenzija b/h=60/60 cm.
Proračun AB stuba Potrebno je zvršt proračun stuba jednodrodne armrano-betonske hale dmenzja x49 metara. Poprečn ramov su formran na razmaku od 7 metara. Hala je u poslednja dva polja vsnsk pregrađena
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
VILJUŠKARI. 1. Viljuškar se koristi za utovar standardnih euro-pool paleta na drumsko vozilo u sistemu prikazanom na slici.
VILJUŠKARI 1. Viljuškar e korii za uoar andardnih euro-pool palea na druko ozilo u ieu prikazano na lici. PALETOMAT a) Koliko reba iljuškara da bi ree uoara kaiona u koji aje palea bilo anje od 6 in, ako