1. Osnovne lastnosti papirja
|
|
- Νικόμαχος Φραγκούδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1. Osnovne lastnosti papirja Papir ploščat, porozen material, ki je pretežno sestavljen iz prepletenih rastlinskih vlaknin polnila funkcionalni dodatki Lastnosti papirja % higroskopičnost (vodovpojnost) % nehomogenost (vlaknine, polnila, zrak, ) % dvostranost (stran A - zgornja in stran B - spodnja / sitova) % anizotropija (različne lastnosti, vzdolžna smer - MC, prečna smer - CD teka vlaken) % viskoelastičnost (elastičen kot trdna snov in plastičen kot zelo viskozna tekočina) Vrste papirja % premazni % nepremazni % nepigmentni Preizkušanje % namen preizkušanja je določitev lastnosti in kakovosti materiala % kakovost je skladnost z zahtevami % standardni klimatski pogoji, za ponovljivost in primerljivost 1.1. Gramatura $ T = 23 1ºC $ R.V. =50 2% masa 1m 2 tiskovne podlage G = m A ; [ g m 2 ] G...gramatura [g/m 2 ] (2 decimalni mesti pri merjenju / 1 decimalno mesto rezultata) m...masa preizkušanca [g] (3 decimalna mesta) A...površina preizkušanca [m 2 ] (3 decimalna mesta) 1.2. Debelina razdalja med zgornjo (A) in spodnjo (B) stranjo d...debelina [mm μm] (3 decimalna mesta) 1.3. Gostota masa neke prostornine,= G [ g /m2 ] ; d [mm ] [ kg m ] 3
2 ρ...gostota [kg/m 3 ] (1 decimalno mesto pri merjenju / 0 v rezultatu) G...gramatura [g/m 2 ] (1 decimalno mesto) d...debelina [mm] (3 decimalna mesta) 1.4. Specifična prostornina razmerje med prostornino in maso kg ] += d [ mm] ; G [ g/ m 2 ] [ m3 ν...specifična prostornina [m 3 /kg] (5 decimalnih mest) d...debelina [mm] (3 decimalna mesta) G...gramatura [g/m 2 ] (1 decimalno mesto) 1.5. Vsebnost vlage vsebnost vode, določena z izgubo mase pri sušenju do konstantne mase (sušilnik, 105ºC) V = m 1"m 2 m 1!100 ; [ % ] V...vlaga [%] (2 decimalni mesti pri merjenju / 1 decimalno mesto rezultata) m 1...masa preizkušanca pred sušenjem m 2...masa preizkušanca po sušenju Odvisna je od relativne vlažnosti okolja eksikator vsebuje silika gel in ohranja vzorce suhe vlaga v vlaknih vpliva na % mehansko odpornost % upogljivost % sposobnost vlaken za formiranje papirja oz. kartona vlaga v papirju vpliva na % gramaturo % mehansko odpornost % obstojnost % dimenzionalno stabilnost % električne lastnosti % glajenje % premazovanje % impregniranje % tiskanje 1.6. Vsebnost polnila Polnilo izboljša optične ter površinske lastnosti, ter poslabša mehanske
3 2. Lastnosti površine Vse lastnosti merimo na strani A in strani B 2.1. Površinska absorbcija vode - COBB masa vode, ki jo absorbira 1m 2 površine v določenem času. Pri tem voda ne sme prodreti na drugo stran. Površinska absorbcija je merilo za stopnjo klejenosti. Klejimo zato, da zmanjšamo vpojnost vode v papir C t = m 2"m 1 A ; [ g m 2 ] C t...absorbcija vode po t sekund [g/m 2 ] (2 decimalni mesti pri merjenju / 1 v rezultatu) m 1...masa preizkušanca pred absorbcijo [g] (3 decimalna mesta) m 2...masa preizkušanca po absorbciji [g] (3 decimalna mesta ) A...površina preizkušanca [m 2 ] (3 decimalna mesta) pogoji merjenja % P vodnega stolpca = 1mbar % T = 23ºC % A = 100 cm 2 % 100 ml H 2 0 pogoj za hidrofilnost % kohezivne sile v tekočini so manjše kot adhezivne sile med fazama na stopnjo klejenosti vplivajo % klejna sredstva % pore ter kanali med vlakni % gostota papirja oz. kartona % površinske energije tiskovne podlage % površinske energije kapljevine % viskoznost kapljevine 2.2. Klejenost s peresom Pisalnost papirja s peresom je določena z odpornostjo papirja proti razlivanju in prodiranju črnila skozi papir ocena pisalnosti površine % gladkost črte % zatikanje peresa % razlivanje robov % prodor črnila na hrbtno stran 2.3. Določitev stopnje klejenosti: Plavalna metoda z ladjico (A in B) A: čas v katerem plavajoči kos papirja v obliki ladjice vpije prvo kapljo črnila
4 B: izračunani faktor remisije po 10-sekundnem vpijanju črnila - odsevnost se meri na nasprotni strani od preizkušane (meri se na tisti, ki ni bila v stiku s črnilom) t...čas v katerem vzorec vpije prvo kapljico črnila [s] (0 decimalnih mest) FR=&1" R 1 R # '!100 ; [ % ] FR...faktor remisije [%] (2 decimalni mesti pri merjenju / 1 decimalno mesto rezultata) R 1...odsevnost s črnilom prepojenega vzorca [nm] (2 decimalni mesti) R...odsevnost s črnilom neprepojenega vzorca [nm] (2 decimalni mesti ) pogoji merjenja s spektofotometrom % zaslonka 15mm % UV delež svetlobe 0% % filter 6 % merska geometrija 2º % R y odčitek 2.4. Določitev hrapavosti Bendtsen količina zračnega toka, ki prehaja med merilnim obročem glave aparata in površino preizkušanca hrapavost [ml/min] (0 decimalnih mest) manostat je utež, ki uravnava tlak v centralnem aparatu gladkost oziroma hrapavost določamo z metodami % mikroskopski pregled % optične metode določitve hrapavosti % metode določevanja količine pretoka zraka Na hrapavost oziroma gladkost vplivajo % izbira surovin (vlakna, polnila) % priprava papirovine (mletje) % tehnološki parametri na papirnem stroju % glajenje % površinsko oplemenitenje 2.5. Določitev poroznosti Bendtsen prehod zraka, ki preide skozi preizkušanec s preizkušane na nasprotno stran poroznost [ml/min] (0 decimalnih mest) 3. Mehanske lastnosti Meritve izvajamo v smereh B in C, razen pri razpočni odpornosti
5 faktorji ki vplivajo na mehanske lastnosti % dolžina vlaken % medvlakenska povezava % gostota lista % površinsko oplemenitenje % vsebnost vlage % prisotnost polnila % prisotnost hemiceluloz in škroba % smer vlaken 3.1. Pregibna odpornost maksimalno število pregibov, potrebnih, da se pretrga obremenjeni preizkušanec metodi preizkušanja % MIT (135º) % Schopper (2 * 90º) 3.2. Raztržna odpornost srednja vrednost sile, ki je potrebna za nadaljevanje trganja zarezanega preizkušanca a=s!p ; [N ] a...raztržna odpornost [N] (0 decimalnih mest) s...odčitek [p] (0 decimalnih mest) P...faktor nihala za višje vrednosti raztržne odpornosti vzamemo težje uteži in višji faktor nihala za preizkušanje raztržne odpornosti vzamemo 4 lističe hkrati Raztržni indeks količnik med raztržno odpornostjo in gramaturo m2 [ mn g ] X &raztržni ' = a [ mn ] G [ g / m 2 ] ; X...raztržni indeks [mn m 2 /g] (2 decimalni mesti) a...raztržna odpornost [mn] G...gramatura [g/m 2 ] (1 decimalno mesto) 3.3. Razpočna odpornost največji hidrostatični tlak, ki enakomerno razporejen v vseh smereh povzroči prebijanje preizkušanca tlak ustvarja membrana, končno vrednost podajamo kot povprečje strani A in B P = s!g ; [ kpa ] P...razpočna odpornost [kpa] (0 decimalnih mest) s...odčitek z aparata [kg/cm 2 ] (2 decimalni mesti) g...težnostni pospešek [m/s 2 ] (0 decimalnih mest)
6 Razpočni indeks razpočna odpornost izražena na gramaturo m2 ; [ kpa g ] X &razpočni' = P [kpa ] G [ g/ m 2 ] X...razpočni indeks [kpa m 2 /g] (2 decimalni mesti) P...razpočna odpornost [kpa] (0 decimalnih mest) G...gramatura [g/m 2 ] (1 decimalno mesto) 3.4. Sila utrga / Utržna jakost sila potrebna, da se pretrga pretrga preizkušanec širine 15mm F max = F 15 [ N ] 15 [ mm ] ; [ kn m ] F max. maksimalna utržna jakost [kn/m] (0 decimalnih mest) F 15...izmerjena sile utržne jakosti [N] (1 decimalno mesto) dolžina preizkušanca je 180 mm preizkušanec naj se pretrga po 20s 5s Raztezek razmerje med povečanjem prvotne dolžine preizkušanca ob pretrgu in prvotno dolžino -= ( l [mm ]!100 ; [%] l 0 [mm ] ε...raztezek [%] (1 decimalno mesto) Δl...povečanje prvotne dolžine preizkušanca [mm] (1 decimalno mesto) l 0...prvotna dolžina preizkušanca [mm] (1 decimalno mesto) Utržna dolžina dolžina preizkušanca določene velikosti, ki prosto visi in se zaradi lastne teže pretrga v točki pritrditve L= F 15 [N ]! 180 [mm ] m 1 [ g ]! 10 [ m/ s 2 ] ; [ km] L...utržna dolžina [km] (2 decimalni mesti) F 15...izmerjena sila utržne jakosti [N] (1 decimalno mesto) m 1...masa enega preizkušanca 4. Optične lastnosti Vse lastnosti merimo na straneh A in B, zrcalni sijaj pa še dodatno v smereh M in C 4.1. Zrcalni sijaj lastnost površine, da difuzno odseva svetlobo pri določenem vpadnem in odbojnem kotu (75º za mat in polmat ter 45º za sijajne površine) ZS...zrcalni sijaj [%] (1 decimalno mesto)
7 4.2. ISO belina refleksijski faktor v modrem spektralnem območju, merjen pri λ = 457 nm odsevnost je relativna, glede na beli barijev sulfat BaSO 4, absolutno bel je magnezijev oksid MgO ISO belina [%] (2 decimalni mesti) pogoji merjenja s spektofotometrom % zaslonka 15mm % UV delež svetlobe 0% % merska geometrija d/0º % osvetlitev D Opaciteta kolikšen del svetlobe papir ne prepusti Op= R 0 R #!100 ; [ % ] Op...opaciteta [%] (2 decimalni mesti) R 0... odsevnost enega lista preizkušanca na absolutno črnem telesu [nm] (2 decimalni mesti) R...odsevnost neprosojnega sloja [nm] (2 decimalni mesti) pogoji merjenja s spektofotometrom % zaslonka 15mm % UV delež svetlobe 0% % merska geometrija C/2º % Sijaj SCE % zeleni filter, ki prepušča svetlobni žarek iz celotnega spektra vidne svetlobe z valovno dolžino 560 nm 5. Strukturne lastnosti Merimo v smereh M in C 5.1. Kapilarna vpojnost Klemm višina vode, ki se zaradi kapilarnih sil vpije v papir l...kapilarna vpojnost [mm] (0 decimalnih mest pri merjenju / 1 decimalno mesto rezultata) 5.2. Hitrost širjenja zvočnega impulza hitrost širjenja zvočnega valovanja frekvence 10 khz vzdolž papirja ( l [cm ]!10"5 C = ( t [* s ]!10 "6 ; [ km s ] C...hitrost širjenja zvočnega impulza [km/s] (3 decimalna mesta) Δl...razdalja med oddajnikoma merilnika [cm] Δt...čas potovanja zvočnega signala [μs] metodo uporabljamo za določitev anizotropnih lastnosti
8 6. Reološke lastnosti kapljevin Viskoznost notranji upor gibanju razmerje strižne napetosti in strižne hitrosti, pada s temperaturo Tekočine % newtonske (konstanta viskoznost) % psevdoplastične (viskoznost se zaradi vpliva strižnih sil zmanjšuje) % diletantne (viskoznost narašča zaradi delovanja sil) 7. Tiskarske lastnosti Tiskovnost sposobnost tiskovnega materiala, da omogoča ponovljivost odtisa standardne kakovosti vplivajo: absorbcija barve, gladkost, sijaj, opaciteta, barva Prehodnost prehod tiskovnega materiala skozi tiskarski stroj s čim manj ali nič težavami vplivajo: ravnoležnost, dimenzionalna stabilnost, površinske odpornosti, mehanske odpornosti, togost, absorbcija barve, ph vrednost Tiskovna kakovost stopnja kakovosti, ki jo mora tiskovni material doseči za izbrano kakovost odtisa vplivajo: gladkost, optične lastnosti, absorbcijske sposobnosti, sposobnosti prepustnosti, formacija, debelina 8. Določitev vlaken v papirju 8.1. Optično mikroskopiranje Leče preslikajo predmet v povečano sliko Mehanski deli % mikroskopska mizica % regulirni vijaki Optični deli % leče % objektiv % okular % kondenzator Ločljivost mikroskopa najmanjša razdalja med točkama, ki ju še ločimo
9 d =0,61! ) [* m ] ; N A [* m ] d...ločljivost [μm] λ...valovna dolžina [μm] (običajno 550nm = zelena svetloba) NA...numerična apertura leče oz. objektiva [/] Osvetlitev Köhlerjeva osvetlitev enakomerno osvetljuje celoten objekt 8.2. Rastrska elektronska mikroskopija majhen curek elektronov usmerjenih na površino preizkušanca se na reliefni strukturi površine odbije in poda informacijo o njej dobra globinska ostrina, dobra ločljivost ni barv, riše točko za točko 8.3. Fourier Transform Infrared Spectoscopy meri absorbcijo različnih infrardečih valovnih dolžin svetlobe na preizkušancu s tem lahko določimo njegovo molekularno sestavo 8.4. Sestava papirja Listavci evkaliptus, breza, bukev 30-40% Iglavci smreka, bor 60-70% Enoletne rastline bombaž, lan, konoplja 2-5% Mineralna vlakna steklena vlakna 1-4% Sintetična vlakna PP, PE, PVC, PES, PET 1-4% Papirna vlakna % traheje (listavci) širše, krajše $ tip 1 - široki in kratki členi $ tip 2 - ozki in daljši členi % traheide (iglavci) ožje, daljše $ tip 1 - rahlo odebeljene stene, širok lumen (notrajni prostor), veliko por $ tip 2 - odebeljene stene, ozek lumen, malo por
Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
Gimnazija Krˇsko. vektorji - naloge
Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor
1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
POROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Delovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Tretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Osnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
TRDNOST (VSŠ) - 1. KOLOKVIJ ( )
TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem
5 UPORABA REFLEKSIJSKEGA DENZITOMETRA V PRAKSI PREDSTAVITEV UPORABE NA RAZLIČNIH TISKARSKIH MATERIALIH...11
1 UVOD...3 2 ZGODOVINA DENZITOMETROV...4 3 KAJ JE DENZITOMETER?...4 3.1 OSNOVE DENZITOMETRIJE...6 3.1.1 Optična gostota...6 3.1.2 Denzitometrija...6 3.1.3 Refleksijska denzitometrija...6 4 DELOVANJE REFLEKSIJSKEGA
Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
The Thermal Comfort Properties of Reusable and Disposable Surgical Gown Fabrics Original Scientific Paper
24 The Thermal Comfort Properties of Surgical Gown Fabrics 1 1 2 1 2 Termofiziološke lastnosti udobnosti kirurških oblačil za enkratno in večkratno uporabo december 2008 marec 2009 Izvleček Kirurška oblačila
+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
CO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Termodinamika vlažnega zraka. stanja in spremembe
Termodinamika vlažnega zraka stanja in spremembe Termodinamika vlažnega zraka Najpogostejši medij v sušilnih procesih konvektivnega sušenja je VLAŽEN ZRAK Obravnavamo ga kot dvokomponentno zmes Suhi zrak
Kotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)
Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja
- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Gimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek
Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa
ARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
= 3. Fizika 8. primer: s= 23,56 m, zaokroženo na eno decimalno vejico s=23,6 m. Povprečna vrednost meritve izračuna povprečno vrednost meritve
Fizika 8 Merjenje Pojasniti namen in pomen meritev pri fiziki našteje nekaj fizikalnih količin in navede enote zanje, ter priprave s katerimi jih merimo Merska Merska enota Merska priprava količina Dolžina
OSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine
OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne
Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Tokovi v naravoslovju za 6. razred
Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike
Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov
28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda
IZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Zemlja in njeno ozračje
Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,
Booleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Zemlja in njeno ozračje
Zemlja in njeno ozračje Pojavi v ozračju se dogajajo na zelo različnih časovnih in prostorskih skalah Prostorska skala Pojav 1 cm Turbulenca, sunki vetra 1 m 1 km 10 km 100 km 1000 in več km Tornadi Poplave,
Program testirati pomoću podataka iz sledeće tabele:
Deo 2: Rešeni zadaci 135 Vrednost integrala je I = 2.40407 42. Napisati program za izračunavanje koeficijenta proste linearne korelacije (Pearsonovog koeficijenta) slučajnih veličina X = (x 1,..., x n
Svetlobni merilniki odbojnosti
13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev
Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Tekočinska kromatografija
Tekočinska kromatografija Kromatografske tehnike uporabljamo za ločevanje posameznih komponent v vzorcu. Ločitev temelji na različnem porazdeljevanju komponent med stacionarno fazo, ki se nahaja v kromatografski
Fizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
Effect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek
Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe 8 Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe barvanih poliestrskih filamentnih tkanin po drgnjenju July November
MIKROSKOP IN MIKROSKOPIRANJE
Gimnazija Murska Sobota POROČILO K LABORATORIJSKI VAJI MIKROSKOP IN MIKROSKOPIRANJE Sandra Gorčan, 4.c prof. Edita Vučak Murska Sobota,8.10.2003 UVOD: Mikroskop je naprava, ki služi za gledanje mikroskopsko
NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Numerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
PONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
l 5 Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija profila
referenčna linija profila l=l=l=l=l 1 2 3 4 5... referenčna dolžina l 1 l 2 l 3 l 4 l 5 l n dolžina vrednotenja Levo: Površinski profil referenčne dolžine in dolžina vrednotenja; Desno: srednja linija
MERJENJE Z MIKROSKOPOM
1. laboratorijska vaja MERJENJE Z MIKROSKOPOM Uvod Mikroskop Mikroskop (iz grških besed mikrós majhno in skopeîn gledati, videti) je posebna optična naprava, ki je sestavljena iz sistema leč, za opazovanje
Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,
13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.
VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Tabele termodinamskih lastnosti vode in vodne pare
Univerza v Ljubljani Fakulteta za strojništvo Laboratorij za termoenergetiko Tabele termodinamskih lastnosti vode in vodne pare po modelu IAPWS IF-97 izračunano z XSteam Excel v2.6 Magnus Holmgren, xsteam.sourceforge.net
ENERGETSKI STROJI. Energetski stroji. UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo
ENERGETSKI STROJI Uvod Pregled teoretičnih osnov Hidrostatika Dinamika tekočin Termodinamika Podobnostni zakoni Volumetrični stroji Turbinski stroji Energetske naprave Podobnostni zakoni Kriteriji podobnosti
Prenos toplote prenos energije katerega pogojuje razlika temperatur temperatura je krajevno od točke do točke različna
PRENOS OPOE Def. Prenos toplote prenos energije katerega pogojuje razlika temperatur temperatura je krajevno od točke do točke različna Načini prenosa toplote: PREVAJANJE (kondukcija, PRESOP (konvekcija
Zgodba vaše hiše
1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040
1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Energijska bilanca Zemlje. Osnove meteorologije november 2017
Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s
TOPLOTNA ČRPALKA ZRAK-VODA - BUDERUS LOGATHERM WPL 7/10/12/14/18/25/31
TOPLOTN ČRPLK ZRK-VOD - BUDERUS LOGTHERM WPL 7/0//4/8/5/ Tip Moč (kw) nar. št. EUR (brez DDV) WPL 7 7 8 7 700 95 5.6,00 WPL 0 0 7 78 600 89 8.9,00 WPL 7 78 600 90 9.78,00 WPL 4 4 7 78 600 9 0.88,00 WPL
POPIS DEL IN PREDIZMERE
POPIS DEL IN PREDIZMERE ZEMELJSKI USAD v P 31 - P 32 ( l=18 m ) I. PREDDELA 1.1 Zakoličba, postavitev in zavarovanje prečnih profilov m 18,0 Preddela skupaj EUR II. ZEMELJSKA DELA 2.1 Izkop zemlje II.
ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Molekularna spektrometrija
Molekularna spektrometrija Absorpcija Fluorescenca Pojavi v snovi (posledica interakcije EM valovanje- snov): Elektronski prehodi Vibracije Rotacije Spekter Izvor svetlobe prizma Spekter Material, ki deloma
Opšte KROVNI POKRIVAČI I
1 KROVNI POKRIVAČI I FASADNE OBLOGE 2 Opšte Podela prema zaštitnim svojstvima: Hladne obloge - zaštita hale od atmosferskih padavina, Tople obloge - zaštita hale od atmosferskih padavina i prodora hladnoće
Merjenje temperature
Merjenje temperature Primarne standardne temperature Mednarodna temperaturna skala iz leta 1948 predstavlja osnovo za eksperimentalno temperaturno skalo. Osnovo omejene skale predstavlja šest primarnih
Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija
Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)
F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),
Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,
Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Barve Vse vaje izvajamo v zatemnjenem prostoru. 1. Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe. Za izvedbo
I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Svetlobni mikroskop. Princip delovanja Pomembna kakovost leč
Mikroskopija Steklena krogla napolnjena z vodo - prva povečevalna naprava - Plinij prvo stoletje Antonij van Leeuwenhoek (1632 1723) izdelal leče v velikosti bucikine glave (eritrocite, bakterije) Zaharias
1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Osnovne stehiometrijske veličine
Osnovne stehiometrijske veličine Stehiometrija (grško: stoiheion snov, metron merilo) obravnava količinske odnose pri kemijskih reakcijah. Fizikalne veličine, s katerimi kemik najpogosteje izraža količino
Spektroskopija. S spektroskopijo preučujemo lastnosti snovi preko njihove interakcije z različnimi področji elektromagnetnega valovanja.
Spektroskopija S spektroskopijo preučujemo lastnosti snovi preko njihove interakcije z različnimi področji elektromagnetnega valovanja. Posamezna tehnika ima ime po območju uporabljenega elektromagnetnega
S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
INTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Vaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
CM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)
MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile
UNIVERZA V LJUBLJANI, FAKULTETA ZA STROJNIŠTVO Katedra za energetsko strojništvo VETRNICA. v 2. v 1 A 2 A 1. Energetski stroji
Katedra za energetsko strojništo VETRNICA A A A Katedra za energetsko strojništo Katedra za energetsko strojništo VETRNICA A A A Δ Δp p p Δ Katedra za energetsko strojništo Teoretična moč etrnice Določite
MEHANSKE LASTNOSTI 1
MEHANSKE LASTNOSTI 1 MEHANSKE LASTNOSTI Mehanske lastnosti so tiste lastnosti snovi, ki določajo, kako se snov odzove na mehansko obremenitev. 4 najpogostejši poskusi za določanje mehanskih lastnosti snovi
МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
L-400 TEHNIČNI KATALOG. Talni konvektorji
30 50 30-00 TEHIČI KATAOG 300 Talni konvektorji TAI KOVEKTORJI Talni konvektorji z naravno konvekcijo TK Talni konvektorji s prisilno konvekcijo TKV, H=105 mm, 10 mm Talni konvektorji s prisilno konvekcijo
Namen določanja vlažnost lesa
Namen določanja vlažnost lesa V svežem lesu določitev količine vode v lesu Pred izvajanjem sušenja izbira pravilnega programa sušenja Med izvajanjem sušilnega postopka primerjava dejanskega stanja s programiranim
VEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Kristalna struktura polikristaliničnih snovi
MIKROSTRUKTURA 1 Kristalna struktura polikristaliničnih snovi Snovi redko nastopajo v monokristalinični obliki - izjemi sta monokristal SiO 2 (kvarc) v kvarčnih urah in monokristal Si v sestavnih delih
MATERIALI IN TEHNOLOGIJE
UNIVERZA V LJUBLJANI FAKULTETA ZA ELEKTROTEHNIKO D. VONČINA MATERIALI IN TEHNOLOGIJE (ZAPISKI PREDAVANJ) Podiplomski študijski program 2. stopnje Elektrotehnika 1. letnik MEHATRONIKA Izbirni modul F Uvod
8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
EMV in optika, izbrane naloge
EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino