MERJENJE Z MIKROSKOPOM
|
|
- Πέρσις Καψής
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1. laboratorijska vaja MERJENJE Z MIKROSKOPOM Uvod Mikroskop Mikroskop (iz grških besed mikrós majhno in skopeîn gledati, videti) je posebna optična naprava, ki je sestavljena iz sistema leč, za opazovanje predmetov, ki so premajhni, da bi jih lahko videli s prostim očesom. Mikroskope v osnovi ločimo v tri skupine: svetlobni mikroskopi, elektronski mikroskopi in SPM (»scanning probe microscope«) Zgradba mikroskopa: Pot svetlobe skozi mikroskop Svetloba potuje skozi mikroskop v tem vrstnem redu: 1.) svetilo 2.) zaslonka
2 3.) mikroskopska mizica 4.) stekelce/mikroskopski preparat 5.) objektiv 6.) tubus 7.) okular Povečava mikroskopa Povečavo mikroskopa izračunamo tako, da pomnožimo povečavo okularja s povečavo objektiva. Pri vaji smo uporabljali mikroskop z okolarjem z 10 kratno povečavo in s štirimi objektivi (s 4, 10, 40 in 100 kratno povečavo), torej smo imeli 4 povečave: 1.) p mala 40x 2.) p srednja 100x 3.) p velika 400x 4.) p največja 1000x Mikroskopiranje Mikroskopiranje je ena najpogostejših tehnik v biološkem raziskovanju. Pri tej tehniki s pomočjo mikroskopa opazujemo večkrat povečano sliko. Mikroskopirati začnemo pod objektivom z najmanjšo povečavo. Preparat, ki mora biti pod objektivom, gledamo skozi okular. Nato premikamo makrometrski vijak, dokler slika preparata ne postane jasna in sliko izostrimo še z mikrometrskim. Zaslonko premikamo toliko časa, dokler ni preparat enakomerno osvetljen. Ko je slika izostrena na mali povečavi in je del preparata, ki ga hočemo opazovati, na sredini, nastavimo objektiv z večjo povečavo. Pod večjimi objektivi izostrimo sliko samo z mikrometrskim vijakom; s pravilno nastavitvijo mikrometrskega vijaka preprečimo, da bi z objektivom zadeli preparat. Namen in cilji Cilji vaje: seznanitev z deli mikroskopa naučiti se mikroskopiranja pod malimi in veliki povečavami ugotoviti, kako se ugotovi in izračuna premer vidnega polja naučiti se oceniti velikost opazovanih objektov Delovna hipoteza: večja kot je povečava, manjše je vidno polje. 2
3 Postopek Material: mikroskop papirnat trak z različno velikimi krogi objektno in krovno steklo preparat vinske mušice in krvnega razmaza voda Velikost vidnega polja pod malo povečavo Na papirnem traku so bili narisani krogci z različnim premerom. Opazovali smo kroge pod najmanjšo povečavo (p 40x) in določili,da se z vidnim poljem ujema krog s premerom 5mm (5000 μm) Velikost vidnega polja pod srednjo povečavo Velikost vidnega polja pri srednji povečavi (p 100x) smo izračunali po formuli: srednja povečava _ premer vidnega polja pri mali povečavi mala povečava ˉ premer vidnega polja pri srednji povečavi in smo dobili, da je premer vidnega polja pri srednji povečavi 2000 μm. Merjenje debeline lasu Izdelali smo mikroskopski preparat lasu, tako da smo dva lasa dveh različnih oseb položili na objektno stekelce, ju prekrižali in prekrili s krovnim stekelcem. Nato smo lase opazovali pri srednji povečavi (p 100x) in ocenili, da je debelina lasu 157 μm. Merjenje velikosti vinske mušice (Drosophila melanogaster) Opazovali smo preparat vinske mušice in pod srednjo povečavo (p 100x) ocenili, da je premer nejne glave približno 730 μm. Merjenje velikosti eritrocita Opazovali smo preparat krvnega razmaza in pri veliki povečavi (p 400x) smo ocenili, da je premer enega eritrocita okoli 7μm. Premer vidnega polja pri veliki povečavi smo izračunali po formuli velika povečava _ premer vidnega polja pri mali povečavi mala povečava ˉ premer vidnega polja pri veliki povečavi Izračunali smo, da je premer vidnega polja pri veliki povečavi (p 400x) 500μm. Merjenje velikosti migetalkarja 3
4 Na objektnem steklu smo kapljico vode pokrili s krovnim steklom in opazovali preparat. Našli smo več organizmov in pod 400 kratno povečavo ocenili, da je dolžina migetalkarja 71μm. Rezultati tabela 1: velikost vidnega polja povečava 40x 100x 400x tabela 2: velikost opazovanih objektov objekt Debelina lasu Premer glave vinske mušice Premer eritrocita Dolžina migetalkarja premer vidnega polja 5000 μm 2000 μm 500 μm ocenjena velikost 157 μm 730 μm 7 μm 71 μm 4
5 5
6 Razprava Pri mikroskopiranju moramo biti zelo natančni, saj se lahko hitro zgodi, da se zaradi napačnega dela poškoduje preparat, stekelce ali mikroskop sam, ali pa dobimo nepravilne rezultate. Mikroskop obrne sliko dvakrat, in sicer po vertikalni in horizontalni osi. To je zelo pomembno, sploh pri opazovanju živih bitij, saj se gibljejo v popolnoma drugačni smeri, kot vidimo mi. Opazovanje živih organizmov in ocenitev njihove velikosti se je izkazala za najtežjo od nalog, ravno zaradi tega, ker se stalno premikajo in jih moramo stalno iskati. Vidno polje je pri manjši povečavi večje kot pri večji povečavi, kar pomeni, da se z večanjem povečave zmanjšuje premer vidnega polja, vendar se povečuje razločnost opazovanega predmeta. Vsekakor pa se poveča samo slika predmeta in ne predmet sam. Taka»merjenja«niso natančna, saj smo napravili več napak pri merjenju. Prva napaka se je pojavljala že pri merjenju vidnega polja pri majhni povečavi s krogci, saj metoda ni zelo natančna, bi pa bila natančnejša s še več različno velikimi krogci. Druga napaka je bila, da smo velikosti objektov ocenjevali samo na podlagi velikosti premera vidnega polja oz. velikosti vidnega polja, pri ocenjevanju pa nismo uporabili nobenih dodatnih merilnih instrumentov. Kljub temu nam je večinoma uspelo dokaj pravilno oceniti velikost objektov (naše rezultate smo primerjali s podatki na internetu). Natančneje bi lahko ocenili velikosti, če bi imeli na stekelcih narisano mikrometrsko mrežo ali če bi videno fotografirali in potem iz fotografije ocenili velikost ob pomoči merilnih instrumentov. Zmnožek povečave ter premera vidnega polja je pri istem mikroskopu vedno konstanta. Iz tega dejstva smo izhajali pri računanju velikosti vidnega polja za ostale povečave. Zaključek Pri mikroskopiranju moramo biti natančni, da ne bi česa poškodovali ali dobili napačnih rezultatov. Mikroskop obrne sliko dvakrat, kar je zelo pomembno, sploh pri opazovanju živih bitij, ker se premikajo v nasprotni smeri, kot to mi zaznamo. Vidno polje je pri manjši povečavi večje kot pri večji povečavi. Poveča se slika predmeta in ne predmet sam. Taka»merjenja«niso natančna zaradi napak pri merjenju. Zmnožek povečave ter premera vidnega polja je pri istem mikroskopu vedno konstanta. Z vajo smo dosegli namene in cilje dela. 6
7 Literatura Kamenšek Gajšek, Majda, Mozetič, Tanja, in Slapnik, Andreja Biologija človeka : Delovni zvezek. Ljubljana: DZS. ISBN Metode in tehnike dela, ki jih biologi uporabljajo pri svojem delu [online]. Dostopno na: Mikroskop [online]. Dostopno na: 7
MIKROSKOP IN MIKROSKOPIRANJE
Gimnazija Murska Sobota POROČILO K LABORATORIJSKI VAJI MIKROSKOP IN MIKROSKOPIRANJE Sandra Gorčan, 4.c prof. Edita Vučak Murska Sobota,8.10.2003 UVOD: Mikroskop je naprava, ki služi za gledanje mikroskopsko
Διαβάστε περισσότεραJerneja Čučnik Mikroskopiranje in tipi celic Gimnazija Celje Center Mikroskopiranje in tipi celic
Ime in priimek: Jerneja Čučnik Razred: 4.b Šola: Gimnazija Celje Center Mentor: Saša ogrizek, prof. Datum izvedbe vaje: 24.9.2009 1 1. UVOD Mikroskop je instrument za preučevanje predmetov, ki so premajhni,
Διαβάστε περισσότεραGimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek
Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραMikroskop in mikroskopiranje
Škofijska klasična gimnazija Mikroskop in mikroskopiranje Projektna naloga pri informatiki in biologiji Avtor: Alja Hanuna, 1.c Mentor: Brigita Brajkovič, prof. Helena Medvešek, prof. Šolsko leto 2007/2008
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότεραSVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA
SVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA 1 Uvod Mikroskop je optični instrument sestavljen iz sistema leč, ki so v isti optični osi nameščene v primerni medsebojni razdalji in nam omogočajo, da opazujemo
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότερα1. vzporedni žarek (vzporeden je optični osi), ki ga zbiralna leča lomi tako, da gre na drugi strani skozi gorišče,
6 Mikroskop Pri tej vaji bomo spoznali uporabo leč, sestavili preprost mikroskop, določili njegovo povečavo in ločljivost ter se naučili, kako pravilno nastaviti osvetlitev. Mikroskop in druge optične
Διαβάστε περισσότεραVaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,
Διαβάστε περισσότεραMikroskop Osnove mikroskopiranja
Mikroskop Osnove mikroskopiranja Uvod v svetlobni mikroskop B.T. 2001 PRVI DEL Osnovna načela v svetlobni mikroskopiji Uvod v svetlobni mikroskop Kaj je mikroskop? Kako deluje? V knjižici bo bralec našel
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραROBERT HOOKE IN MIKROSKOP
ROBERT HOOKE IN MIKROSKOP UČENKA: Tjaša Šabeder,9.b Herzog UČITELJICA: Andreja DATUM: 30.10.2014 PREDMET: Biologija 1. ROBERT HOOK Robert Hooke se je 18. julija leta 1635 rodil na otoku Wight v Freshwaterju
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραIZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo
IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai
Διαβάστε περισσότεραPOROČILO 3.VAJA DOLOČANJE REZULTANTE SIL
POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραPoročilo laboratorijskih vaj pri predmetu Gradiva. Optični mikroskop
Optični mikroskop Mikroskop (Beseda izhaja iz dveh grških besed: mikro pomeni majhno, drobno in skop - ki pomeni gledati. Torej lahko mikroskop poimenujemo tudi drobnogled.) je priprava s katero lahko
Διαβάστε περισσότεραp 1 ENTROPIJSKI ZAKON
ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:
Διαβάστε περισσότεραMERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9
.cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραPoglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραSvetlobni mikroskop. Princip delovanja Pomembna kakovost leč
Mikroskopija Steklena krogla napolnjena z vodo - prva povečevalna naprava - Plinij prvo stoletje Antonij van Leeuwenhoek (1632 1723) izdelal leče v velikosti bucikine glave (eritrocite, bakterije) Zaharias
Διαβάστε περισσότεραTrigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto
Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije
Διαβάστε περισσότερα+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70
KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραSISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK
SISTEMI DIFERENCIJALNIH JEDNAČINA - ZADACI NORMALNI OBLIK. Rši sism jdnačina: d 7 d d d Ršnj: Ša j idja kod ovih zadaaka? Jdnu od jdnačina difrniramo, o js nađmo izvod l jdnačin i u zamnimo drugu jdnačinu.
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραMATEMATIČNI IZRAZI V MAFIRA WIKIJU
I FAKULTETA ZA MATEMATIKO IN FIZIKO Jadranska cesta 19 1000 Ljubljan Ljubljana, 25. marec 2011 MATEMATIČNI IZRAZI V MAFIRA WIKIJU KOMUNICIRANJE V MATEMATIKI Darja Celcer II KAZALO: 1 VSTAVLJANJE MATEMATIČNIH
Διαβάστε περισσότεραCM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραVEKTORJI. Operacije z vektorji
VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )
Διαβάστε περισσότεραIZZIVI DRUŽINSKE MEDICINE. U no gradivo zbornik seminarjev
IZZIVI DRUŽINSKE MEDICINE Uno gradivo zbornik seminarjev študentov Medicinske fakultete Univerze v Mariboru 4. letnik 2008/2009 Uredniki: Alenka Bizjak, Viktorija Janar, Maša Krajnc, Jasmina Rehar, Mateja
Διαβάστε περισσότεραKotni funkciji sinus in kosinus
Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje
Διαβάστε περισσότεραPodobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik
Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva
Διαβάστε περισσότεραOvo nam govori da funkcija nije ni parna ni neparna, odnosno da nije simetrična ni u odnosu na y osu ni u odnosu na
. Ispitati tok i skicirati grafik funkcij = Oblast dfinisanosti (domn) Ova funkcija j svuda dfinisana, jr nma razlomka a funkcija j dfinisana za svako iz skupa R. Dakl (, ). Ovo nam odmah govori da funkcija
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραEffect of Fibre Fineness on Colour and Reflectance Value of Dyed Filament Polyester Fabrics after Abrasion Process Izvirni znanstveni članek
Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe 8 Učinek finosti filamentov na barvne vrednosti in odbojnost svetlobe barvanih poliestrskih filamentnih tkanin po drgnjenju July November
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότεραVaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
Διαβάστε περισσότεραOBTOK KRVI V KAPILARAH poročilo o laboratorijskem delu
OBTOK KRVI V KAPILARAH poročilo o laboratorijskem delu 24. april 2006 Kapilare so najmanjše krvne žilice in merijo 5 10 μm. Njihove stene so sestavljene iz ene plasti celic. Skozi njih lahko prehajajo
Διαβάστε περισσότερα1. TVORBA ŠIBKEGA (SIGMATNEGA) AORISTA: Največ grških glagolov ima tako imenovani šibki (sigmatni) aorist. Osnova se tvori s. γραψ
TVORBA AORISTA: Grški aorist (dovršnik) izraža dovršno dejanje; v indikativu izraža poleg dovršnosti tudi preteklost. Za razliko od prezenta ima aorist posebne aktivne, medialne in pasivne oblike. Pri
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Διαβάστε περισσότεραLeica DM750 M Uporabniški priročnik
Leica DM750 M Uporabniški priročnik Kazalo Sestavljanje mikroskopa Leica DM750 M 7 Sestavljanje osi presvetljave 8 Sestavljanje binokularnega tubusa 9 Tubus Leica EZ z vgrajenima okularjema 10 Standardni
Διαβάστε περισσότεραPOROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Διαβάστε περισσότερα2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x
Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραMikroskop z LCD-zaslonom Bresser Biolux
SLO - NAVODILA ZA UPORABO IN MONTAŽO Kat. št.: 81 58 89 www.conrad.si NAVODILA ZA UPORABO Mikroskop z LCD-zaslonom Bresser Biolux Kataloška št.: 81 58 89 1 Kazalo Sestavni deli... 3 1. Mesto postavitve,
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότερα1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου...
ΑΠΟΖΗΜΙΩΣΗ ΘΥΜΑΤΩΝ ΕΓΚΛΗΜΑΤΙΚΩΝ ΠΡΑΞΕΩΝ ΣΛΟΒΕΝΙΑ 1. Έντυπα αιτήσεων αποζημίωσης... 2 1.1. Αξίωση αποζημίωσης... 2 1.1.1. Έντυπο... 2 1.1.2. Πίνακας μεταφράσεων των όρων του εντύπου... 3 1 1. Έντυπα αιτήσεων
Διαβάστε περισσότεραTRIGONOMETRIJA TROKUTA
TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane
Διαβάστε περισσότεραMatematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1
Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije
Διαβάστε περισσότεραLogatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013
WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.
Διαβάστε περισσότεραPOVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA
POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica
Διαβάστε περισσότεραKvantni delec na potencialnem skoku
Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:
Διαβάστε περισσότεραB) VEKTORSKI PRODUKT 1. 1) Pravilo desnega vijaka
B) VEKTORSKI PRODUKT 1 1) Prvilo desneg vijk Vsi smo že videli vijk, nekteri kkšneg privili, tisti, ki teg še niste storili, p prosite kog, ki se n vijke spozn, d vm pokže privijnje vijk. Večin vijkov
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραLeica DM500, DM500 B Uporabniški priročnik
Leica DM500, DM500 B Uporabniški priročnik Pregled poglavij Varnostni predpisi 4 Leica DM500, DM500 B 15 Pripravljeni! 18 Pozor! 25 Zdaj! 34 Nega mikroskopa 36 Dimenzije 39 Leica DM500, DM500 B Priročnik
Διαβάστε περισσότεραF2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
Διαβάστε περισσότεραSplošno o interpolaciji
Splošno o interpolaciji J.Kozak Numerične metode II (FM) 2011-2012 1 / 18 O funkciji f poznamo ali hočemo uporabiti le posamezne podatke, na primer vrednosti r i = f (x i ) v danih točkah x i Izberemo
Διαβάστε περισσότεραZgodba vaše hiše
1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040
Διαβάστε περισσότεραNavadne diferencialne enačbe
Poglavje 6 Navadne diferencialne enačbe 6.1 Uvod Splošna rešitev navadne diferencialne enačbe n-tega reda F(x, y, y, y,..., y (n) ) = 0 je n-parametrična družina funkcij. Kadar želimo iz splošne rešitve
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότερα5.2. Orientacija. Aleš Glavnik in Bojan Rotovnik
Orietacija Aleš Glavik i Boja Rotovik 52 Izvleček: Pred stav lje e so iz bra e te me iz orie ti ra ja v a ra vi, ki jih mo ra poz a ti vsak vod ik PZS, da lah ko var o vo di ude le `e ce a tu ri Pred stav
Διαβάστε περισσότεραSATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov
Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W
Διαβάστε περισσότεραVJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.
JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)
Διαβάστε περισσότεραZajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom
VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge
Διαβάστε περισσότεραLinearna algebra 2 prvi kolokvij,
1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika
Διαβάστε περισσότεραMERITVE LABORATORIJSKE VAJE
UNIVERZA V MARIBORU FAKULTETA ZA ELEKTROTEHNIKO, RAČUNALNIŠTVO IN INFORMATIKO 000 Maribor, Smetanova ul. 17 Študijsko leto: 011/01 Skupina: 9. MERITVE LABORATORIJSKE VAJE Vaja št.: 10.1 Merjenje z digitalnim
Διαβάστε περισσότεραKOMUTATIVNI I ASOCIJATIVNI GRUPOIDI. NEUTRALNI ELEMENT GRUPOIDA.
KOMUTATIVNI I ASOCIJATIVNI GRUPOIDI NEUTRALNI ELEMENT GRUPOIDA 1 Grupoid (G, ) je asocijativa akko važi ( x, y, z G) x (y z) = (x y) z Grupoid (G, ) je komutativa akko važi ( x, y G) x y = y x Asocijativa
Διαβάστε περισσότεραNajprej zapišemo 2. Newtonov zakon za cel sistem v vektorski obliki:
NALOGA: Po cesi vozi ovornjak z hirosjo 8 km/h. Tovornjak je dolg 8 m, širok 2 m in visok 4 m in ima maso 4 on. S srani začne pihai veer z hirosjo 5 km/h. Ob nekem času voznik zaspi in ne upravlja več
Διαβάστε περισσότεραМЕХАНИКА НА ФЛУИДИ (AFI, TI, EE)
Zada~i za program 2 po predmetot МЕХАНИКА НА ФЛУИДИ (AFI, TI, EE) Предметен наставник: Проф. д-р Методија Мирчевски Асистент: Виктор Илиев (rok za predavawe na programot - 07. i 08. maj 2010) (во термини
Διαβάστε περισσότερα