Svetlobni mikroskop. Princip delovanja Pomembna kakovost leč
|
|
- Σωκράτης Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Mikroskopija Steklena krogla napolnjena z vodo - prva povečevalna naprava - Plinij prvo stoletje Antonij van Leeuwenhoek ( ) izdelal leče v velikosti bucikine glave (eritrocite, bakterije) Zaharias Jansen - izumitelj mikroskopa izdelal mikroskop z bikonveksno in bikonkavno lečo Robert Hook prvič opisal mikroskop v svoji knjigi Micrographia (1665 leta) uporabil plan-konveksni leči za objektiv in okular
2 Svetlobni mikroskop Princip delovanja Pomembna kakovost leč Ločljivost mikroskopa (D)(ločevanje dveh točk) je odvisna od valovna dolžina svetlobe (λ ) in numerične aperture (NA) D=0,61 λ / NA NA=produkt lomnega količnika medija med objektom in objektivom ter sinusa polovice kotne odprtine (α) NA= n x sin α -lomni količnik vzorca in zraka (n) apertura objektiva (α) Zaradi tehničnih omejitev je ločljivost 0,2 µm
3 Izboljšava ločljivosti Kotna odprtina, konkavno zrcalo, imerzijsko olje
4 Sestavni deli svetlobnega mikroskopa Mehanski deli: stativ, nosilec zrcala, nosilec kondenzorja, mizica, revolver, nosilec tubusa, vijaki Vir svetlobe: - močna žarnica, - kompaktna žarilna nitka Objektivi: - ahromatični, apohromatični - različne povečave (10x,20x,40x,100x) Povečave okularjev (10x,15x) Kondenzorji: - enakomerna in intenzivna osvetlitev - aperturna zaslonka
5 Priprava vzorca
6 Barvanja mikrobioloških preparatov Barvanje po Gramu ločevanje osnovnih dveh skupin bakterij Negativno barvanje (različna barvila: indijsko črno, kristal violetno, metilensko modro) Barvanje različnih struktur celice: endospor, kapsule, bičkov, vključkov, nukleotida specifična barvila Barvanje različnih skupin bakterij: npr. spirohet, rikecij, legionel, mikoplazm Acidorezistentno barvanje
7
8 Temno vidno polje Poseben postopek osvetljevanja. Svetlobi, ki gre skozi objektiv, preprečimo direkten dostop do okularja s kondenzorjem. Predmete opazujemo v odklonjeni svetlobi na temnem polju. Ker direkten žarek iz kondenzorja ne pride v objektiv je vidno polje temno, na objektu pa se žarki razpršijo, odbijejo in je svetleč. Posebni kondenzorji za osvetljevanje objektov s strani (velik kot vpada svetlobe) in močen vir svetlobe. Primerno za opazovanje prozornih predmetov, svetleči delci so mnogo bolj vidni in zato lahko opazujemo zelo majhne objekte.
9 Fazno kontrastno mikroskopija Fazna ploščica za objektivom zavre ali pospeši žarke - ustvari fazno razliko direktnih in uklonskih žarkov. Po interference direktnih in uklonskih žarkov se amplitudi seštejeta v ravnini realne slike. Direktni žarek, se na objektu pospeši, po interferenci je amplituda manjša in objekt je na sliki temnejši. Zaradi različne optične gostote preparata je lahko objekt temen, ozadje svetlejše in dobimo jasno kontrastno sliko. objektiv
10 Primerjava slike presevna svetloba fazni kontrast temno polje
11 Fluorescenčna mikroskopija Fluorescenca Avtofluorescenca (pigmenti avtotrofov,npr.klorofil, ) Fluorokromi (različni, odvisno kaj sledimo) Objekt osvetljujemo s kratkovalovno UV svetlobo ali modro svetlobo,.. Zelo uporabna metoda (ekologija, medicina )
12 Priprava preparata filtracija barvanje štetje
13 Filtracija Koncentracija vzorca na filtru Vrste filtrov: različnih materialov (stekleni, celulozni, polikarbonatni, ) Različne velikosti por odvisno od vrste materiala (od 10 µm do 0,02 µm) Različne dimenzije odvisno od uporabe(volumna tekočine)
14 Barvila: DAPI AO SYBR Primulin
15 Fluorescentna in situ hibridizacija Fiksacija celic Povečanje permeabilnosti celične stene Dodatek specifičnih sond Spiranje & barvanje Pregled pod mikroskopom
16 Transmisijska elektronska mikroskopija TEM Osnovni principi so enaki kot pri svetlobni mikroskopiji, le da s snopom elektronov raziskujemo objekt. Uporabljamo snop elektronov in elektromagnetne leče (kondenzor, objektiv in projektiv namesto okularja). Elektronska puška (katoda z napetostjo pospeši elektrone proti anodi). S projektivom projiciramo sliko objekta na zaslon, ki zažari na mestih, ki jih bombardirajo elektroni. Ločljivost je 0,1 nm, pov. do 10 6 x Delamo v vakuumu Potrebna je posebna priprava vzorca.
17 Priprava vzorca za TEM Ultramikroton: Fiksacija vzorca (glutaraldehid, Osmijev tetraoksid) Sušenje (etanol, aceton) Utrjevanje vzorca (polimerizacija plastike) Rezanje (ultratanke rezine) Nalaganje na mrežice Freez-fracture: Hitro zamrzovanje vzorca (tekoči dušik) Rezanje, lomljenje z nožem Naparevanje s težkimi kovinami Primeren za opazovanje celičnih struktur, virusov
18 Vrstična elektronska mikroskopija SEM Priprava preparata podobna kot pri TEM. S pomočjo ozkega snopa elektronov osvetljujemo površine objektov, ki je prevlečena s kovino. Primarni elektroni povzroče emisijo sekundarnih elektronov, ki jih zbere kolektor. Na kolektorju je fotopomnoževalka, ta ojača dobljeni tok, ki napaja katodno cev (televizijska katodna cev). Dobimo sliko površine preparata. Slika je 2D, vendar zaradi senc kot 3D (elektroni se odbijajo pod različnim kotom). Velika globinska ostrina globinska predstava o površini objekta. Povečave od 15 x do 10 6 x Delamo v vakuumu
19 Konfokalna laserska mikroskopija SCLM Opazujemo žive materiale v kombinaciji laserske svetlobe in fluorescentne ali svetlobne mikroskopije preko računalnika. Žarek usmerimo na različno globino, preparat režemo v plasteh z laserjem; posnetke z različnih globin spravimo in naknadno obdelujemo kot tridimenzionalno sliko. Večja resolucija Uporabna metoda v mikrobni ekologiji Opazujemo filogenetsko različne populacije v habitatu (površine biofilmov,mucusnih agregatov, globino določenega proteina,
20 Druge oblike mikroskopiranja AMF - Mikroskopija na atomsko silo Z laserskim tipalom pregledujemo površino v treh dimenzijah
21 opazujemo žive preparate, ni potrebna priprava preparata zelo velika ločljivost ( 0,1 do 0,01 Å) 3D opazovanje celičnih struktur, opazovanje na nivoju molekul (npr. LPS struktura c. membrane)
22 Merjenje dimenzij z mikroskopom Milimetersko merilce Velikost vidnega polja
23 Določanje števila mikroorganizmov z mikroskopom Število objektov preštejemo v vidnem polju (najmanj 30 polj izračunamo pov. število/vzorec, st.dev.) (n) določimo velikost površine na katero nanesemo vzorec (P) določimo velikost vidnega polja (P1), volumen vzorca (V) Število/ml = P x n/ P1 x V
MIKROSKOP IN MIKROSKOPIRANJE
Gimnazija Murska Sobota POROČILO K LABORATORIJSKI VAJI MIKROSKOP IN MIKROSKOPIRANJE Sandra Gorčan, 4.c prof. Edita Vučak Murska Sobota,8.10.2003 UVOD: Mikroskop je naprava, ki služi za gledanje mikroskopsko
Διαβάστε περισσότεραSVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA
SVETLOBNI MIKROSKOP IN OSNOVE MIKROSKOPIRANJA 1 Uvod Mikroskop je optični instrument sestavljen iz sistema leč, ki so v isti optični osi nameščene v primerni medsebojni razdalji in nam omogočajo, da opazujemo
Διαβάστε περισσότεραGimnazija Ptuj. Mikroskop. Referat. Predmet: Fizika. Mentor: Prof. Viktor Vidovič. Datum: Avtor: Matic Prevolšek
Gimnazija Ptuj Mikroskop Referat Predmet: Fizika Mentor: Prof. Viktor Vidovič Datum: 14. 3. 2010 Avtor: Matic Prevolšek Kazalo Opis mikroskopa 3 Povečava mikroskopa 5 Zgradba mikroskopa Ločljivost mikroskopa
Διαβάστε περισσότεραMERJENJE Z MIKROSKOPOM
1. laboratorijska vaja MERJENJE Z MIKROSKOPOM Uvod Mikroskop Mikroskop (iz grških besed mikrós majhno in skopeîn gledati, videti) je posebna optična naprava, ki je sestavljena iz sistema leč, za opazovanje
Διαβάστε περισσότεραMikroskop Osnove mikroskopiranja
Mikroskop Osnove mikroskopiranja Uvod v svetlobni mikroskop B.T. 2001 PRVI DEL Osnovna načela v svetlobni mikroskopiji Uvod v svetlobni mikroskop Kaj je mikroskop? Kako deluje? V knjižici bo bralec našel
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki
Διαβάστε περισσότερα1. vzporedni žarek (vzporeden je optični osi), ki ga zbiralna leča lomi tako, da gre na drugi strani skozi gorišče,
6 Mikroskop Pri tej vaji bomo spoznali uporabo leč, sestavili preprost mikroskop, določili njegovo povečavo in ločljivost ter se naučili, kako pravilno nastaviti osvetlitev. Mikroskop in druge optične
Διαβάστε περισσότεραMikroskop in mikroskopiranje
Škofijska klasična gimnazija Mikroskop in mikroskopiranje Projektna naloga pri informatiki in biologiji Avtor: Alja Hanuna, 1.c Mentor: Brigita Brajkovič, prof. Helena Medvešek, prof. Šolsko leto 2007/2008
Διαβάστε περισσότεραDiferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci
Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja
Διαβάστε περισσότεραTretja vaja iz matematike 1
Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +
Διαβάστε περισσότεραFunkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2
Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a
Διαβάστε περισσότεραVaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.
Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,
Διαβάστε περισσότεραTRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM
TRANSMISIJSKI ELEKTRONSKI MIKROSKOP - TEM Princip mikroskopa - delovni prostor s p = 10-4 torr (sipanje in absorpcija snopa elektronov na plinu) - ogrevan filament iz W kot vir elektronov paralelen elektronski
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA
Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραSPEKTRI ELEKTROMAGNETNEGA VALOVANJA
SPEKTRI ELEKTROMAGNETNEGA VALOVANJA - Načini pridobivanja posameznih vrst spektrov - Izvori sevanja - Ločevanje valovanj z različnimi λ - Naprave za selekcijo el.mag.valovanja za različne λ. 1. Načini
Διαβάστε περισσότεραJerneja Čučnik Mikroskopiranje in tipi celic Gimnazija Celje Center Mikroskopiranje in tipi celic
Ime in priimek: Jerneja Čučnik Razred: 4.b Šola: Gimnazija Celje Center Mentor: Saša ogrizek, prof. Datum izvedbe vaje: 24.9.2009 1 1. UVOD Mikroskop je instrument za preučevanje predmetov, ki so premajhni,
Διαβάστε περισσότεραOsnove elektrotehnike uvod
Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx
Διαβάστε περισσότεραROBERT HOOKE IN MIKROSKOP
ROBERT HOOKE IN MIKROSKOP UČENKA: Tjaša Šabeder,9.b Herzog UČITELJICA: Andreja DATUM: 30.10.2014 PREDMET: Biologija 1. ROBERT HOOK Robert Hooke se je 18. julija leta 1635 rodil na otoku Wight v Freshwaterju
Διαβάστε περισσότεραZaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma
Διαβάστε περισσότεραKontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.
Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.
Διαβάστε περισσότεραPoglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM
Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s
Διαβάστε περισσότεραPoročilo laboratorijskih vaj pri predmetu Gradiva. Optični mikroskop
Optični mikroskop Mikroskop (Beseda izhaja iz dveh grških besed: mikro pomeni majhno, drobno in skop - ki pomeni gledati. Torej lahko mikroskop poimenujemo tudi drobnogled.) je priprava s katero lahko
Διαβάστε περισσότεραSKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK
SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi
Διαβάστε περισσότεραVaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje
Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,
Διαβάστε περισσότεραKristalna struktura polikristaliničnih snovi
MIKROSTRUKTURA 1 Kristalna struktura polikristaliničnih snovi Snovi redko nastopajo v monokristalinični obliki - izjemi sta monokristal SiO 2 (kvarc) v kvarčnih urah in monokristal Si v sestavnih delih
Διαβάστε περισσότεραTeoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke
Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke T. Kranjc, PeF 6. marca 2009 Kazalo 1 Modul 7: Svetloba in slike 1 1.1 Uvod................................ 1 2 Odboj svetlobe
Διαβάστε περισσότεραFluorescenčna mikrospektroskopija (FMS) - lokalizacija molekularnih spektroskopskih informacij s fluorescenčnim mikroskopom
Fluorescenčna mikrospektroskopija (FMS) - lokalizacija molekularnih spektroskopskih informacij s fluorescenčnim mikroskopom Janez Štrancar Laboratorij za biofiziko, IJS / CO NAMASTE Zakaj je ta slika netipčna
Διαβάστε περισσότεραKotne in krožne funkcije
Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete
Διαβάστε περισσότεραEMV in optika, izbrane naloge
EMV in optika, izbrane naloge iz različnih virov 1 Elektro magnetno valovanje 1.1 Električni nihajni krogi 1. (El. nihanje in EMV/8) (nihajni čas) Nihajni krog sestavljata ploščati kondenzator s ploščino
Διαβάστε περισσότεραIZPIT IZ ANALIZE II Maribor,
Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),
Διαβάστε περισσότεραKODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK
1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24
Διαβάστε περισσότεραNastanek slike. Nastanek slike (1/3) Univerza v Ljubljani Fakulteta za elektrotehniko. Iz vsebine. Nastanek slike (2/3)
Univerza v Ljubljani Fakulteta za elektrotehniko Nastanek slike Stanislav Kovačič http://vision.e.uni-lj.si/ Nastanek slike (1/3) Proces nastajanja slike (upoabljanja) je okaj zapleten. Rezultat upoabljanja
Διαβάστε περισσότεραIterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013
Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:
Διαβάστε περισσότεραNumerično reševanje. diferencialnih enačb II
Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke
Διαβάστε περισσότεραDelovna točka in napajalna vezja bipolarnih tranzistorjev
KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.
Διαβάστε περισσότεραPolarizacija laserske svetlobe
Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega
Διαβάστε περισσότεραTransformator. Delovanje transformatorja I. Delovanje transformatorja II
Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.
Διαβάστε περισσότεραEMV in optika, zbirka nalog
Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen
Διαβάστε περισσότερα1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja
ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost
Διαβάστε περισσότερα1. Trikotniki hitrosti
. Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca
Διαβάστε περισσότεραOdvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena
Διαβάστε περισσότεραFizikalne osnove svetlobe in fotometrija
Fakulteta za elektrotehniko Univerze v Ljubljani Laboratorij za razsvetljavo in fotometrijo 2. letnik Aplikativna elektrotehnika - 64627 Električne inštalacije in razsvetljava Fizikalne osnove svetlobe
Διαβάστε περισσότεραARHITEKTURA DETAJL 1, 1:10
0.15 0.25 3.56 0.02 0.10 0.12 0.10 SESTV S2 polimer-bitumenska,dvoslojna(po),... 1.0 cm po zahtevah SIST DIN 52133 in nadstandardno, (glej opis v tehn.poročilu), npr.: PHOENIX STR/Super 5 M * GEMINI P
Διαβάστε περισσότεραSvetlobni merilniki odbojnosti
13. Seminar Optične Komunikacije Laboratorij za Sevanje in Optiko Fakulteta za Elektrotehniko Ljubljana, 1. - 3. februar 2006 Svetlobni merilniki odbojnosti Matjaž Vidmar Seznam prosojnic: Slika 1 Meritev
Διαβάστε περισσότεραNEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE
NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,
Διαβάστε περισσότεραVaje: Električni tokovi
Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete
Διαβάστε περισσότεραBooleova algebra. Izjave in Booleove spremenljivke
Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre
Διαβάστε περισσότεραElektrooptični pojav
Elektrooptični pojav Uvod Močno zunanje električno polje znatno vpliva na strukturo snovi. V kristalih se denimo spremeni oblika osnovne celice, v tekočinah pride do orientacijskega urejanja molekul (podolgovate
Διαβάστε περισσότεραPONOVITEV SNOVI ZA 4. TEST
PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.
Διαβάστε περισσότερα50 odtenkov svetlobe
50 odtenkov svetlobe Evgenija Burger, Katharina Pavlin, Tamara Pogačar, Mentor: Žiga Krajnik Povzetek Za vsakim dežjem posije sonce. Je pojav mavrice res tako preprost kot ta rek? Kakšna fizikalno-matematična
Διαβάστε περισσότεραRazsvetljava z umetno svetlobo
Fakulteta za kemijo in kemijsko tehnologijo Univerze v Ljubljani Oddelek za tehniško varnost 3. letnik Univerzitetni študij Elektrotehnika in varnost Razsvetljava Razsvetljava z umetno svetlobo predavatelj
Διαβάστε περισσότεραmatrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):
4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n
Διαβάστε περισσότεραMichelsonov interferometer
Michelsonov interferometer Namen vaje: Spoznavanje valovnih značilnosti laserske svetlobe Spoznavanje načela delovanja interferometra Brezdotično merjenje kratkih pomikov Eksperimentalne naloge 1. Sestaviti
Διαβάστε περισσότεραIntegralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)
Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2
Διαβάστε περισσότερα2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA
2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano
Διαβάστε περισσότεραCENTER ZA ELEKTRONSKO MIKROSKOPIJO (CEM)
CENTER ZA ELEKTRONSKO MIKROSKOPIJO (CEM) Center za elektronsko mikroskopijo (CEM) je infastrukturna enota, ki združuje analitsko opremo s področja elektronske mikroskopije, ki je nujna za izvajanje razvojnoraziskovalnega
Διαβάστε περισσότεραPROCESIRANJE SIGNALOV
Rešive pisega izpia PROCESIRANJE SIGNALOV Daum: 7... aloga Kolikša je ampliuda reje harmoske kompoee arisaega periodičega sigala? f() - -3 - - 3 Rešiev: Časova fukcija a iervalu ( /,/) je lieara fukcija:
Διαβάστε περισσότερα*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center
Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:
Διαβάστε περισσότεραCO2 + H2O sladkor + O2
VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)
Διαβάστε περισσότεραVALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA
VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje
Διαβάστε περισσότεραFotometrija mersko vrednotenje svetlobe
EDC Kranj - višja strokovna šola Kumunala Javna razsvetljava Fotometrija mersko vrednotenje svetlobe 4. poglavje predavatelj doc. dr. Grega Bizjak, u.d.i.e. Javna razsvetljava: Fotometrija 2 Svetloba kot
Διαβάστε περισσότεραVideo tehnologija. Video tehnologija. Gradniki video sistemov. Seminarske naloge
Video tehnologija Video tehnologija 1. Uvod elektronski zajem, shranjevanje, prenos in reprodukcija slik in gibljivih slik TV in prikazovalniki z osebnimi računalniki fizikalne osnove svetloba, barve,
Διαβάστε περισσότεραODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI
ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα- Geodetske točke in geodetske mreže
- Geodetske točke in geodetske mreže 15 Geodetske točke in geodetske mreže Materializacija koordinatnih sistemov 2 Geodetske točke Geodetska točka je točka, označena na fizični površini Zemlje z izbrano
Διαβάστε περισσότεραF2_ zadaća_ L 2 (-) b 2
F2_ zadaća_5 24.04.09. Sistemi leća: L 2 (-) Realna slika (S 1 ) postaje imaginarni predmet (P 2 ) L 1 (+) P 1 F 1 S 1 P 2 S 2 F 2 F a 1 b 1 d -a 2 slika je: realna uvećana obrnuta p uk = p 1 p 2 b 2 1.
Διαβάστε περισσότεραFotometrija mersko vrednotenje svetlobe
Fotometrija mersko vrednotenje svetlobe Svetloba kot del EM spektra Pri fotometriji svetlobo obravnavamo kot del elektromagnetnega spektra, ki se nahaja med mikrovalovi in rentgenskimi žarki. Ima pa tudi
Διαβάστε περισσότεραLeica DM750 M Uporabniški priročnik
Leica DM750 M Uporabniški priročnik Kazalo Sestavljanje mikroskopa Leica DM750 M 7 Sestavljanje osi presvetljave 8 Sestavljanje binokularnega tubusa 9 Tubus Leica EZ z vgrajenima okularjema 10 Standardni
Διαβάστε περισσότεραFunkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1
Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,
Διαβάστε περισσότεραDržavni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA
Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor
Διαβάστε περισσότεραΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ
GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE
Διαβάστε περισσότεραIZVODI ZADACI (I deo)
IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a
Διαβάστε περισσότεραFazni diagram binarne tekočine
Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,
Διαβάστε περισσότεραPOROČILO. št.: P 1100/ Preskus jeklenih profilov za spuščen strop po točki 5.2 standarda SIST EN 13964:2004
Oddelek za konstrkcije Laboratorij za konstrkcije Ljbljana, 12.11.2012 POROČILO št.: P 1100/12 680 01 Presks jeklenih profilov za spščen strop po točki 5.2 standarda SIST EN 13964:2004 Naročnik: STEEL
Διαβάστε περισσότεραINTELIGENTNO UPRAVLJANJE
INTELIGENTNO UPRAVLJANJE Fuzzy sistemi zaključivanja Vanr.prof. Dr. Lejla Banjanović-Mehmedović Mehmedović 1 Osnovni elementi fuzzy sistema zaključivanja Fazifikacija Baza znanja Baze podataka Baze pravila
Διαβάστε περισσότεραMichelsonov interferometer
Michelsonov interferometer Uvod Michelsonov interferometer [1] je sestavljen iz treh osnovnih elementov: dveh ravnih zrcal ter polprepustnega zrcala. Shema interferometra je prikazana na sliki 1. Interferenčno
Διαβάστε περισσότεραFrekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič
Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov
Διαβάστε περισσότεραOLYMPUS CHK - 2 Mikroskop
NAVODILO ZA UPORABO APARATA OLYMPUS CHK - 2 Mikroskop Kratka navodila za rokovanje z instrumentom. Pred uporabo dobro preberi tudi originalna navodila, posebej za uporabo vseh možnih funkcij! Navodila
Διαβάστε περισσότεραCM707. GR Οδηγός χρήσης... 2-7. SLO Uporabniški priročnik... 8-13. CR Korisnički priručnik... 14-19. TR Kullanım Kılavuzu... 20-25
1 2 3 4 5 6 7 OFFMANAUTO CM707 GR Οδηγός χρήσης... 2-7 SLO Uporabniški priročnik... 8-13 CR Korisnički priručnik... 14-19 TR Kullanım Kılavuzu... 20-25 ENG User Guide... 26-31 GR CM707 ΟΔΗΓΟΣ ΧΡΗΣΗΣ Περιγραφή
Διαβάστε περισσότεραTekočinska kromatografija
Tekočinska kromatografija Kromatografske tehnike uporabljamo za ločevanje posameznih komponent v vzorcu. Ločitev temelji na različnem porazdeljevanju komponent med stacionarno fazo, ki se nahaja v kromatografski
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραMERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA
VAJA 3. Merjeje lomega količika iz Brewster-jevega kota VAJA 3. - MERJENJE LOMNEGA KOLIČNIKA IZ BREWSTER-JEVEGA KOTA 3.1. Odboj svetlobe a površii stekla Povezavo med koti vpadega, odbitega i lomljeega
Διαβάστε περισσότεραPošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,
PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,
Διαβάστε περισσότεραPRAKTIKUM RAZSVETLJAVA
Univerza v Ljubljani Fakulteta za elektrotehniko PRAKTKUM ZA PREDMET RAZSVETLJAVA Študent(ka): Študijsko leto poslušanja: 010/11 Datum pregleda vaj: Predlagana ocena vaj: Podpis ocenjevalca: Pripravila:
Διαβάστε περισσότεραUNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone
UNIVERZA V LJUBLJANI FMF, oddelek za fiziko seminar Laser na proste elektrone Bojan Žunkovič mentor: doc. dr. Matjaž Žitnik 7. maj 2007 Povzetek V preteklosti je bilo sinhrotronsko sevanje pri pospeševanju
Διαβάστε περισσότεραFizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2013/14 Vsebina 1. vaje: Velikostni redi, leče, mikroskop 2 2. vaje: Newtnovi zakoni gibanja: kinematika, sile, navori, energija 4 3. vaje: Gravitacija,
Διαβάστε περισσότεραSlika 1.120: Frekvenčne omejitve za različne fotopretvornike. Slika 1.121: Diagram relativnih občutljivosti v primerjavi s spektralno emisijo žarnice
Optoelektronske komponente 1.7 OPTOELEKTRONSKE KOMPONENTE Splošno Foto-električni efekt je pojav, pri katerem svetloba vpliva ali spremeni fizikalne oz. kemične lastnosti neke snovi. V kolikor je komponenta
Διαβάστε περισσότεραZgodba vaše hiše
1022 1040 Zgodba vaše hiše B-panel strani 8-11 Osnovni enobarvni 3020 3021 3023 paneli 3040 3041 Zasteklitve C-panel strani 12-22 S-panel strani 28-35 1012 1010 1013 2090 2091 1022 1023 1021 1020 1040
Διαβάστε περισσότερα- LABORATORIJSKE VAJE
FIZIKA - LABORATORIJSKE VAJE - 3. letnik Ime in priimek: Razred: Šolsko leto: 2015/2016 1 Št. vaje 1. 2. 3. 4. 5. 6. 7. 8. 9. Ocena Podpis Povprečna ocena: Končna ocena: Opombe: 2 1. OSVETLJENOST IME IN
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότερα13. Jacobijeva metoda za računanje singularnega razcepa
13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva
Διαβάστε περισσότερα8. Diskretni LTI sistemi
8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z
Διαβάστε περισσότερα1. kolokvij iz predmeta Fizika 2 (VSŠ)
0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno
Διαβάστε περισσότεραPisni izpit iz predmeta Fizika 2 (UNI)
0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni
Διαβάστε περισσότεραFizika (BF, Biologija)
dr. Andreja Šarlah Fizika (BF, Biologija) gradivo za vaje 2009/10 Vsebina 1. vaje: Matematični uvod: funkcije, vektorji & Newtnovi zakoni gibanja: kinematika, sile, navori, energija 2 2. vaje: Coulombov
Διαβάστε περισσότεραSLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)
Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja
Διαβάστε περισσότεραOSNOVE HIDROSTATIKE. - vede, ki preučuje mirujoče tekočine
OSNOVE HIDROSTATIKE - vede, ki preučuje mirujoče tekočine HIDROSTATIKA Značilnost, da je sila na katero koli točko v tekočini enaka iz vseh smeri. Če ta pogoj o ravnovesju sil ne velja, se tekočina premakne
Διαβάστε περισσότεραSlika 1: Piezoelektrični vžigalnik za plin in visokonapetostni piezoelement (levo); piezozvočnik/piezomikrofon
4 Piezoelektričnost Pri nekaterih snoveh pride ob njihovi deformaciji zaradi stiska ali natega do kopičenja naboja nasprotnih predznakov na nasproti ležečih stranicah. Ta pojav, pri katerem se spremeni
Διαβάστε περισσότερα