3/25/2016. Hemijske komponente ćelije
|
|
- Θάνος Στεφανόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Hemijske komponente ćelije Molekuli u ćeliji Najbitniji molekuli u ćeliji su poznati. Putevi sinteze i razgradnje su poznati za većinu ćelijskih konstituenata. Hemijska energija pokreće biosintezu. Organizacija molekula u ćeliji: 1. Atomi 2. Mali molekuli 3. Makromolekuli 4. Supramolekularni agregati Atomi Molekularna mimikrija 95% suve mase ćelije otpada na: C (50%), O(20%), H (10%), N (10%), P (4%), S (1%) Na, K, Cl, Ca, Fe, Zn svaki prisutan manje od 1% 1
2 Voda je kolevka života Mali molekuli (MW = ) Ćelije sadrže 70% vode, Oko 30% su organske komponente Osobina Objašnjenje Primer Kohezija H-veze drže zajedno Lišće povlači vodu iz korena; seme molekule vode bubri i klija Visoka polarnost Voda privlači jone i polarne Mnoge vrste molekual se slobodno molekule i rastvara ih kreću u ćeliji, dozvoljavajući različite hemijske reakcije Visoki toplotni kapacitet H-veze mogu da apsorbuju i Voda služi kao stabilizator otpuste veliku količinu toplote temperature hidrofilni Rastvarač koji znači -ŽIVOT hidrofobni Izomeri Molekuli istog atomskog sastava ali različitog rasporeda atoma u prostoru. Strukturni izomeri su vrsta izomera kod kojih su atomi na različit način međusobno spojeni, a nastaju zbog sposobnosti C atoma međusobno formira jednostruke, dvostruke i trostruke kovalentne veze. 2
3 Geometrijski izomeri imaju ista kovalentna partnerstva ali se razlikuju u prostornom rasporedu. Izomeri Funkcionalne grupe Enantiomeri su stereoizomeri koji se odnose kao predmet i lik u ogledalu i ujedno se ne mogu međusobno preklopiti. Najznačajnije funkcionalne grupe: Hidroksilana OH Karbonilna >C=O Karboksilna COOH Amnio NH2 Sulfhidrlna SH Fosfatna PO4 Četiri glavne klase malih molekula Četiri glavne klase malih molekula Amino kiseline Subjedinice proteina 20 amino kiselina Bočna grupa amino kiselina određuju prirodu amino kiselina i diktiraju strukturu proteina(nepolarne, polarne i naelektrisane) Nikleotidi Baza (adenin, citozin,timin, guanin, uracil) + sugar + fosfat Subjedinice of DNK i RNK ATP glavni izvor energije 3
4 Četiri glavne klase malih molekula Šećeri Monosaharidi (npr. Glukoza ili riboza) Disaharidi Oligosaharidi Šećeri su subjedinice polisaharida (celuloza, glikogen, skrob) 14 Četiri glavne klase malih molekula Makromolekuli (MW ,000,000) Lipidi Masne kiseline, trigliceridi, steroidi, ulja, masti, hormoni Sastavljeni od subjedinica povezanih kovalentnim vezama 4
5 Proteini: stvaranje peptidne veze 20 amino kiselina mogu se kategorizovati na osnovu bočne grupe u 4 kategorije: nepolarne, polarne, bazne i kisele. Konformacija (oblik) proteina određen je AA sekvencom Konformacija (oblik) proteina određen je AA sekvencom Sva 3 tipa nekovalentnih veza učestvuju u sklapanju proteina Vodonične veze igrajnu glavnu ulogu u savijanju polipeptidnog lanca 5
6 Proteini mogu imati različite oblike Složenost građe proteina Primarna => sekundarna => tercijarna => kvartarna struktura (sekvenca AA) (lokalno sklapanje) (usložnjavanje SS) (dve ili više subjedinica) Primarna struktura proteina je linearni redosled AA Sekundarna struktura je srž arhitekture proteina - Ala - Glu - Val - Thr - Asp - Pro - Gly - 6
7 Sekundarna struktura je srž arhitekture proteina Sklapanje polipeptidnih lanaca daje tercijarnu strukturu proteina Motiv je karakteristična kombinacija elemenata sekundrane strukture ( npr. β α β motiv, β bačva itd.) Interakcijama između više polipeptidnih lanaca nastaje kvartarna struktura Proteinski domeni su moduli iz kojih su izgrađeni veći proteini 7
8 Promena u redosledu AA Denaturacija i renaturacija proteina Uloga proteina Kataliza (enzimi) Odbrana (Imunoglobulini) Ćelijsko prepoznavanje (receptori, MHC) Transport (Hb, Mb, citohrom) Membranski transport (Na/K pumpa, jonske pumpe) Strukturna (kolgen, keratin, fibrin, elastin) Pokret (aktin, miozin) Osmoregulacija ( serumski albumin) Regulacija ekspresije gena ( represor) Fiziološka ( hormoni: insulin, vazopresin, oksitocin..) Depoi ( AK, jona npr. feritrin, kalmodulin, kazein) 31 Biološki katalizatori. Smanjenje Ea Enzimi 32 8
9 Modeli ES interakcije Koenzimi A) Ključ-brava B) Indukovano uklapanje Koenzim Vitamin Hemijska reakcija NAD + ;NADP + Niacin Oksido-redukcija FAD Riboflavin (B 2 ) Oksido-redukcija Tiamin-pirofosfat Tiamin(B 1 ) Prenos aldehidne grupe CoA Pantotenat Prenos acilne grupe Biotin Biotin Karboksilacija Piridokasal fosfat Piridoksal (B 6 ) transaminacija Regulacija enzimske aktivnosti Alosterična regulacija Mehanizam povratne sprege Alosterična regulacija Fosforilacija
10 Fosforilacija proteina 37 10
SEKUNDARNE VEZE međumolekulske veze
PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura
Διαβάστε περισσότεραCILJNA MESTA DEJSTVA LEKOVA
FARMACEUTSKA HEMIJA 1 CILJNA MESTA DEJSTVA LEKVA Predavač: Prof. dr Slavica Erić Ciljna mesta dejstva leka CILJNA MESTA NA MLEKULARNM NIVU: lipidi (lipidi ćelijske membrane) ugljeni hidrati (obeleživači
Διαβάστε περισσότεραBiohemijski i mikrobiološki principi I DEO
Biohemijski i mikrobiološki principi I DEO Prof.dr Danijela Kojić uvod biomolekuli ugljeni hidrati aminokiseline i proteini lipidi nukleinske kiseline enzimi i regulacija enzimske aktivnosti bioenergetika
Διαβάστε περισσότεραSekundarne struktura proteina Fibrilni proteini
Sekundarne struktura proteina Fibrilni proteini Nivoi strukture proteina (strukturna hijerarhija) proteina Nivoi strukture proteina Primarna struktura Sekundarna struktura Super-sekundarna struktura Tercijarnastruktura
Διαβάστε περισσότεραSTVARANJE VEZE C-C POMO]U ORGANOBORANA
STVAAJE VEZE C-C PM]U GAAA 2 6 rojne i raznovrsne reakcije * idroborovanje alkena i reakcije alkil-borana 3, Et 2 (ili TF ili diglim) Ar δ δ 2 2 3 * cis-adicija "suprotno" Markovnikov-ljevom pravilu *
Διαβάστε περισσότερα3. razred gimnazije- opšti i prirodno-matematički smer ALKENI. Aciklični nezasićeni ugljovodonici koji imaju jednu dvostruku vezu.
ALKENI Acikliči ezasićei ugljovodoici koji imaju jedu dvostruku vezu. 2 4 2 2 2 (etile) viil grupa 3 6 2 3 2 2 prope (propile) alil grupa 4 8 2 2 3 3 3 2 3 3 1-bute 2-bute 2-metilprope 5 10 2 2 2 2 3 2
Διαβάστε περισσότεραSEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija
SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!
Διαβάστε περισσότεραTercijarna struktura globuralnih proteina. Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni
Tercijarna struktura globuralnih proteina Rendgenska strukturna analiza proteina Konformaciona stabilnost proteina Supersekundarne strukture/domeni Nivoi strukture proteina (strukturna hijerarhija) Tercijarna
Διαβάστε περισσότεραOsnovne karakteristike 3-D strukture molekula DNK i RNK
Osnovne karakteristike 3-D strukture molekula DNK i RNK Rendgenska strukturna analiza (vlakana) DNK Watson-Crickov model (B) DNK Zašto dvostruki heliks? Polimorfizam DNK: kanonske (standardne/prosečne)
Διαβάστε περισσότεραHEMIJSKA VEZA TEORIJA VALENTNE VEZE
TEORIJA VALENTNE VEZE Kovalentna veza nastaje preklapanjem atomskih orbitala valentnih elektrona, pri čemu je region preklapanja između dva jezgra okupiran parom elektrona. - Nastalu kovalentnu vezu opisuje
Διαβάστε περισσότερα100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =
100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =
Διαβάστε περισσότεραAminokiseline. Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina 22.12.2014
Anabolizam azotnihjedinjenja: Biosinteza aminokiselina, glutationa i biološki aktivnih amina Predavanja iz opšte biohemije Školska 2014/2015. godina Aminokiseline 1 Metabolizam aminokiselina Proteini iz
Διαβάστε περισσότεραKiselo bazni indikatori
Kiselo bazni indikatori Slabe kiseline ili baze koje imaju različite boje nejonizovanog i jonizovanog oblika u rastvoru Primer: slaba kiselina HIn(aq) H + (aq) + In (aq) nejonizovani oblik jonizovani oblik
Διαβάστε περισσότεραevina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine
prof.goran Poš AMINOKISELINE elementarne jedinke proteina (belančevina) evina) - retko se nalaze u slobodnom stanju - međusobno povezane čineći i peptide i proteine AMINO-(karboksilne) (karboksilne)-kiseline
Διαβάστε περισσότεραNOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika
NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan
Διαβάστε περισσότεραISPITNA PITANJA ZA USMENI DIO ISPITA
UNIVERZITET CRNE GORE MEDICINSKI FAKULTET MEDICINSKA BIOHEMIJA ISPITNA PITANJA ZA USMENI DIO ISPITA STUDIJSKI PROGRAM MEDICINA I ENZIMOLOGIJA 1. Opšte osobine enzima i struktura molekula enzima 2. Izoenzimi.
Διαβάστε περισσότεραRESOURCE JUNIOR ČOKOLADA NestleHealthScience. RESOURCE JUNIOR Okus čokolade: ACBL Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml)
RESOURCE JUNIOR ČOKOLADA NestleHealthScience RESOURCE JUNIOR Okus čokolade: ACBL 198-1 Prehrambeno cjelovita hrana 300 kcal* (1,5 kcal/ml) */200 ml Hrana za posebne medicinske potrebe Prehrambeno cjelovita
Διαβάστε περισσότεραVODA ELEKTROLITI I ACIDO-BAZNA RAVNOTEŽA...
SADRŽAJ UVOD 1 1. BIOHEMIJA ĆELIJE... 1-1 1.1 UVOD... 1-2 1.2 ĆELIJA KAO OSNOVNA ŽIVA JEDINICA TELA... 1-2 1.3 VANĆELIJSKA TEČNOST UNUTRAŠNJA OKOLINA... 1-2 1.4 BIOELEMENTI I BIOMOLEKULI... 1-3 1.5 ĆELIJA
Διαβάστε περισσότερα3.1 Granična vrednost funkcije u tački
3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili
Διαβάστε περισσότεραS t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:
S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110
Διαβάστε περισσότεραREAKCIJE ELIMINACIJE
REAKIJE ELIMINAIJE 1 . DEIDROALOGENAIJA (-X) i DEIDRATAIJA (- 2 O) su najčešći tipovi eliminacionih reakcija X Y + X Y 2 Dehidrohalogenacija (-X) X strong base + " X " X = l, Br, I 3 E 2 Mehanizam Ova
Διαβάστε περισσότεραPITANJA ZA USMENI ISPIT IZ BIOHEMIJE
PITANJA ZA USMENI ISPIT IZ BIOHEMIJE PROTEINI STRUKTURA I FUNKCIJE 1. Struktura proteina nivoi organizacije molekula 2. Proteini koji transportuju kiseonik hemoglobin i mioglobin ENZIMI 1. Opšte osobine
Διαβάστε περισσότεραPri međusobnom spajanju atoma nastaje energetski stabilniji sistem. To se postiže:
HEMIJSKE VEZE Pri međusobnom spajanju atoma nastaje energetski stabilniji sistem. To se postiže: - prelaskom atoma u pozitivno i negativno naelektrisane jone koji se međusobno privlače, jonska veza - sparivanjem
Διαβάστε περισσότεραOperacije s matricama
Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M
Διαβάστε περισσότεραHEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO?
HEMIJSKA VEZA ŠTA DRŽI STVARI (ATOME) ZAJEDNO? U OKVIRU OVOG POGLAVLJA ĆEMO RADITI Jonska i kovalentna veza. Metalna veza. Elektronska teorija hemijske veze. Struktura molekula. Međumolekulske interakcije.
Διαβάστε περισσότεραCIKLUS LIMUNSKE KISELINE (CLK)
SVEUČILIŠTE U ZAGREBU FAKULTET KEMIJSKOG INŽENJERSTVA I TEHNOLOGIJE CIKLUS LIMUNSKE KISELINE (CLK) Doc. dr. sc. Dragana Vuk Metabolička sudbina piruvata 1. Oksidacijska dekarboksilacija piruvata 2. Ciklus
Διαβάστε περισσότεραProteini. Naziv PROTEINI potiče od Grčke reči proteios, što znači PRVI
Proteini Uvod aziv PRTEII potiče od Grčke reči proteios, što znači PRVI čine osnovu života, ulaze u sastav svih živih bića emijski, proteini ili belančevine, su prirodni makromolekuli To su poliamidi izgrañeni
Διαβάστε περισσότεραPROTEINI. Doc. dr Snežana Marković
PROTEINI Doc. dr Snežana Marković Institut za biologiju i ekologiju Prirodno-matematički fakultet Univerzitet u Kragujevcu Proteos prvi, najvažniji. 20 proteinogenih L- aminokiselina (AK). AK na istom
Διαβάστε περισσότεραPID: Domen P je glavnoidealski [PID] akko svaki ideal u P je glavni (generisan jednim elementom; oblika ap := {ab b P }, za neko a P ).
0.1 Faktorizacija: ID, ED, PID, ND, FD, UFD Definicija. Najava pojmova: [ID], [ED], [PID], [ND], [FD] i [UFD]. ID: Komutativan prsten P, sa jedinicom 1 0, je integralni domen [ID] oblast celih), ili samo
Διαβάστε περισσότεραMEĐUMOLEKULSKE SILE JON-DIPOL DIPOL VODONIČNE NE VEZE DIPOL DIPOL-DIPOL DIPOL-INDUKOVANI INDUKOVANI JON-INDUKOVANI DISPERZNE SILE
MEĐUMLEKULSKE SILE JN-DIPL VDNIČNE NE VEZE DIPL-DIPL JN-INDUKVANI DIPL DIPL-INDUKVANI INDUKVANI DIPL DISPERZNE SILE MEĐUMLEKULSKE SILE jake JNSKA VEZA (metal-nemetal) KVALENTNA VEZA (nemetal-nemetal) METALNA
Διαβάστε περισσότεραOsnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju
RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)
Διαβάστε περισσότερα41. Jednačine koje se svode na kvadratne
. Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k
Διαβάστε περισσότεραApsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.
Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala
Διαβάστε περισσότεραSvetlosna energija absorbuje se hlorofilima u biljnim ćelijama. Hloroplast
Svetlosna energija absorbuje se hlorofilima u biljnim ćelijama Hloroplast Procesom ćelijskog disanja deponovana energija u šećerima erima prevodi se u ATP i druge energetske metabolite. Istovremeno se
Διαβάστε περισσότεραZašto se baviti BOTANIKOM i
BOTANIKA Zašto se baviti BOTANIKOM i biljkama? BOTANIKA Temelj za razumijevanje ostalih kolegija na studijima Šumarskoga fakulteta Kada završim fakultet cijeli radni vijek ću se baviti biljkama Ljubav
Διαβάστε περισσότεραBiohemija proteina i nukleinskih kiselina
Biohemija proteina i nukleinskih kiselina Biohemija proteina i nukleinskih kiselina Predavanja: Profesor Vesna Niketić vniketic@chem.bg.ac.rs Docent Natalija Polović polovicn@chem.bg.ac.rs Vežbe: Dr Natalija
Διαβάστε περισσότεραMehanizmidejstvaenzima. Himotripsin
Mehanizmidejstvaenzima Himotripsin Principi katalize Specifična kiselo-bazna kataliza Elektrostatska kataliza Elektrofilna kataliza Nukleofilna kataliza (kovalentna kataliza) Nukleofilna kataliza Opšta
Διαβάστε περισσότεραSvi živi organizmi imaju potrebu za konstantnim prilivom energije kako bi održali ćelijsku strukturu i rast. 4/17/2013
Metabolizam Svi živi organizmi imaju potrebu za konstantnim prilivom energije kako bi održali ćelijsku strukturu i rast. Kemotrofni organizmi; dobivaju slobodnu energiju gj oksidacijom hranjivih tvari
Διαβάστε περισσότεραISPITNA PITANJA OSNOVI BIOHEMIJE
UNIVERZITET PRIVREDNA AKADEMIJA, NOVI SAD STOMATOLOŠKI FAKULTET PANČEVO ISPITNA PITANJA OSNOVI BIOHEMIJE Prof. dr Esma R. Isenović 1. Biohemija kao nauka, zadaci izučavanja i discipline 1. Koja je definicija
Διαβάστε περισσότεραBELANČEVINE. Uvod. čine osnovu života, ulaze u sastav svih živih bića
BELANČEVINE Uvod Belančevine ili proteini su visokomolekulski prirodni proizvodi (prirodni makromolekuli) izgrañeni od α-aminokiselina, koje su meñusobno povezane peptidnim vezama u makromolekulske nizove.
Διαβάστε περισσότεραRiješeni zadaci: Nizovi realnih brojeva
Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički
Διαβάστε περισσότεραENZIMI KAO CILJNA MESTA DEJSTVA LEKOVA. Enzimi kao ciljna mesta dejstva lekova
FARMACEUTSKA HEMIJA 1 ENZIMI KAO CILJNA MESTA DEJSTVA LEKOVA Predavač: Prof. dr Slavica Erić Enzimi kao ciljna mesta dejstva lekova -enzimi učestvuju u hemijskoj reakciji ali pri tome ostaju nepromenjeni
Διαβάστε περισσότεραVodik. dr.sc. M. Cetina, doc. Tekstilno-tehnološki fakultet, Zavod za primijenjenu kemiju
Vodik Najzastupljeniji element u svemiru (maseni udio iznosi 90 %) i sastavni dio Zvijezda. Na Zemlji je po masenom udjelu deseti element po zastupljenosti. Zemljina gravitacija premalena je da zadrži
Διαβάστε περισσότεραOsnove biokemije Seminar 2
Osnove biokemije Seminar 2 B. Mildner Rješenje zadaće 1.(zadaća od 4. 3. 2014) 1. D 11. C 2. C 12. B 3. B 13. C 4. B 14. B 5. C 15. D 6. D 16. A 7. A 17. C 8. B 18. D 9. D 19. A 10. C 20. C 1 1. Za vodu
Διαβάστε περισσότεραPARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)
(Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom
Διαβάστε περισσότεραXI dvoqas veжbi dr Vladimir Balti. 4. Stabla
XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla
Διαβάστε περισσότερα18. listopada listopada / 13
18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu
Διαβάστε περισσότεραOM2 V3 Ime i prezime: Index br: I SAVIJANJE SILAMA TANKOZIDNIH ŠTAPOVA
OM V me i preime: nde br: 1.0.01. 0.0.01. SAVJANJE SLAMA TANKOZDNH ŠTAPOVA A. TANKOZDN ŠTAPOV PROZVOLJNOG OTVORENOG POPREČNOG PRESEKA Preposavka: Smičući napon je konsanan po debljini ida (duž pravca upravnog
Διαβάστε περισσότερα1. Duljinska (normalna) deformacija ε. 2. Kutna (posmina) deformacija γ. 3. Obujamska deformacija Θ
Deformaije . Duljinska (normalna) deformaija. Kutna (posmina) deformaija γ 3. Obujamska deformaija Θ 3 Tenor deformaija tenor drugog reda ij γ γ γ γ γ γ 3 9 podataka+mjerna jedinia 4 Simetrinost tenora
Διαβάστε περισσότεραEliminacijski zadatak iz Matematike 1 za kemičare
Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska
Διαβάστε περισσότεραGrafičko prikazivanje atributivnih i geografskih nizova
Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički
Διαβάστε περισσότεραIMOBILIZACIJA AKTIVNIH TVARI ZA BIOLOŠKO PREPOZNAVANJE
IMBILIZACIJA AKTIVI TVARI ZA BILŠK PREPZAVAJE EZIMI ATITIJELA RECEPTRI MIKRRGAIZMI ŽIVTIJSKE ILI BILJE STAICE ŽIVTIJSKA I BILJA VLAKA KLJUČI PRCES PRI IZRADI BISEZRA IMBILIZACIJA BILŠKE TVARI - AJČEŠĆE
Διαβάστε περισσότερα4. razred gimnazije - opšti i prirodno-matematički smer UGLJENI HIDRATI
. razred gimnazije - opšti i prirodno-matematički smer 07 UGLJENI IDRATI Ugljeni hidrati su najrasprostranjenija jedinjenja u živom svetu. rganska jedinjenja ugljenika, vodonika i kiseonika u kojima je
Διαβάστε περισσότερα1. razred gimnazije- opšti i prirodno-matematički smer STRUKTURA MOLEKULA HEMIJSKA VEZA
EMIJSKE VEZE 1 razred gimnazije- opšti i prirodno-matematički smer STRUKTURA MLEKULA Molekul je najsitnija čestica koja se sastoji od dva ili više istih atoma, a to su molekuli elemenata: Cl 2, 2, N 2,
Διαβάστε περισσότεραMATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15
MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda
Διαβάστε περισσότεραDinamika strukture DNK helix coil (razvijeni niz) prelazi. Reakcije baza: mutacije/oštećenja DNK
Dinamika strukture DNK helix coil (razvijeni niz) prelazi (reversibilna denaturacija-renaturacija) Reakcije baza: mutacije/oštećenja DNK Interakcije molekula DNK sa vodom ligandima Reversibilna denaturacija
Διαβάστε περισσότεραBioregulatori bioregulatorima. Koenzimi Vitamini
BIREGULATRI Bioregulatori Mnogi biohemijski procesi u organizmu zavise od strukture i funkcije specifičnih molekula koji se nalaze u ćeliji. eki od njih su nazvani bioregulatorima. To su najčešće organski
Διαβάστε περισσότεραIskazna logika 3. Matematička logika u računarstvu. novembar 2012
Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)
Διαβάστε περισσότεραM086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost
M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.
Διαβάστε περισσότεραDISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović
DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,
Διαβάστε περισσότεραSeminar 13.b. Glikogen GLIKOGEN. B. Mildner
Seminar 13.b Glikogen B. Mildner GLIKOGEN 1 Glikogen Nereducirani kraj Glikogen je jako dostupni skladišni oblik glukoze; kao i jako velik, razgranat polimer; Glukozne jedinice su povezane α-1,4-glikozidnim
Διαβάστε περισσότεραO ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola)
ili S kao nukleofili-acetali, ketali i hidrati (Adicija alkohola, vode, adicija tiola) 1 Adicija alkohola 2 AETALI I PLUAETAL AETALI 3 Adicijom jednog mola alkohola na mol aldehida ili ketona nastaje poluacetal
Διαβάστε περισσότεραUNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka
UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju
Διαβάστε περισσότεραKlasifikacija blizu Kelerovih mnogostrukosti. konstantne holomorfne sekcione krivine. Kelerove. mnogostrukosti. blizu Kelerove.
Klasifikacija blizu Teorema Neka je M Kelerova mnogostrukost. Operator krivine R ima sledeća svojstva: R(X, Y, Z, W ) = R(Y, X, Z, W ) = R(X, Y, W, Z) R(X, Y, Z, W ) + R(Y, Z, X, W ) + R(Z, X, Y, W ) =
Διαβάστε περισσότεραPRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).
PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo
Διαβάστε περισσότεραProteini i njihove trodimenzionalne strukture
Proteini i njihove trodimenzionalne strukture Boris Mildner 1 Proteine izgrađuju dvadeset različitih aminokiselina Proteini su linearni polimeri a nastaju povezivanjem monomernih jedinica, koje nazivamo
Διαβάστε περισσότεραELEKTROTEHNIČKI ODJEL
MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,
Διαβάστε περισσότεραHemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:
Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Jonska, Kovalentna i Metalna Luisovi simboli veoma zgodan
Διαβάστε περισσότεραKontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A
Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi
Διαβάστε περισσότεραElementi spektralne teorije matrica
Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena
Διαβάστε περισσότεραBIOREGULATORI 13.XII.2016.
BIREGULATRI 13.XII.2016. Bioregulatori Mnogi biohemijski procesi u organizmu zavise od strukture i funkcije specifičnih molekula koji se nalaze u ćeliji. eki od njih su nazvani bioregulatorima. To su najčešće
Διαβάστε περισσότεραNastaju sjedinjavanjem prostih jedinjenja ili jona, zbog čega se nazivaju kompleksna (složena) jedinjenja. CuSO 4. (aq) + 4NH 3. (aq) [Cu(H 2.
KMPLEKSI Nastaju sjedinjavanjem prostih jedinjenja ili jona, zbog čega se nazivaju kompleksna (složena) jedinjenja. CuS 4 (s) 2 Cu 2+ (aq) + S 2-4 (aq) CuS 4 (aq) + 4N 3 (aq) [Cu ]S 4 (aq) [Cu( 2 ] 2+
Διαβάστε περισσότεραPARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,
PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati
Διαβάστε περισσότεραKaskadna kompenzacija SAU
Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su
Διαβάστε περισσότεραIZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)
IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO
Διαβάστε περισσότεραTEST PITANJA BIOHEMIJA UGLJENI HIDRATI
TEST PITANJA BIOHEMIJA UGLJENI HIDRATI 1. Kakve osobine pokazuju monosaharidi: a) osidacione b) redukcione c) metilirajuće 2. Skrob, kao dominantan šećer u ishrani čoveka, se razlaže do disaharida u: a)
Διαβάστε περισσότεραAPROKSIMACIJA FUNKCIJA
APROKSIMACIJA FUNKCIJA Osnovni koncepti Gradimir V. Milovanović MF, Beograd, 14. mart 2011. APROKSIMACIJA FUNKCIJA p.1/46 Osnovni problem u TA Kako za datu funkciju f iz velikog prostora X naći jednostavnu
Διαβάστε περισσότεραFizička hemija makromolekula
Fizička hemija makromolekula Šk. 2013/2014 Uvodno predavanje Oktobar 2013. Dr Gordana Ćirić-Marjanović, vanredni profesor Cilj i sadržaj predmeta Cilj predmeta je upoznavanje studenata sa reakcionim mehanizmima
Διαβάστε περισσότεραMoguća i virtuelna pomjeranja
Dnamka sstema sa vezama Moguća vrtuelna pomjeranja f k ( r 1,..., r N, t) = 0 (k = 1, 2,..., K ) df k dt = r + t = 0 d r = r dt moguća pomjeranja zadovoljavaju uvjet: df k = d r + dt = 0. t δ r = δx +
Διαβάστε περισσότεραMETABOLIZAM UGLJENIH HIDRATA
METABOLIZAM UGLJENIH HIDRATA 14.02.2018. Zbirni pregled glikolize i ciklusa trikarboksilnih kiselina Glikoliza omogućava oksidaciju glukoze u uslovima sa ili bez O 2. U uslovima prisustva O 2,
Διαβάστε περισσότεραPravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom.
1 Pravilo 1. Svaki tip entiteta ER modela postaje relaciona šema sa istim imenom. Pravilo 2. Svaki atribut entiteta postaje atribut relacione šeme pod istim imenom. Pravilo 3. Primarni ključ entiteta postaje
Διαβάστε περισσότεραUgljeni hidrati. Uvod. masti, belančevine CO 2. O + hν + hlorofil fotosinteza + H 2. glukoza. skrob. ishrana. ishrana glikogen. celuloza.
Ugljeni hidrati Uvod C 2 + 2 + hν + hlorofil fotosinteza glukoza skrob ishrana celuloza ishrana glikogen masti, belančevine glukoza C 2 + 2 + energija 1 Definicija Ugljeni hidrati su polihidroksi aldehidi,
Διαβάστε περισσότεραnumeričkih deskriptivnih mera.
DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,
Διαβάστε περισσότεραI.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?
TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja
Διαβάστε περισσότεραRastvori rastvaračem rastvorenom supstancom
Rastvori Rastvor je homogen sistem sastavljen od najmanje dvije supstance-jedne koja je po pravilu u velikom višku i naziva se rastvaračem i one druge, koja se naziva rastvorenom supstancom. Rastvorene
Διαβάστε περισσότεραHemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze:
Hemijska veza Kada su atomi povezani jedan sa drugim tada kažemo da izmeñu njih postoji hemijska veza Generalno postoji tri vrste hemijske veze: Jonska, Kovalentna i Metalna Luisovi simboli veoma zgodan
Διαβάστε περισσότεραMašinsko učenje. Regresija.
Mašinsko učenje. Regresija. Danijela Petrović May 17, 2016 Uvod Problem predviđanja vrednosti neprekidnog atributa neke instance na osnovu vrednosti njenih drugih atributa. Uvod Problem predviđanja vrednosti
Διαβάστε περισσότεραBetonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri
Betonske konstrukcije 1 - vežbe 3 - Veliki ekscentricitet -Dodatni primeri 1 1 Zadatak 1b Čisto savijanje - vezano dimenzionisanje Odrediti potrebnu površinu armature za presek poznatih dimenzija, pravougaonog
Διαβάστε περισσότερα6 ogljikovih atomov: HEKSOZE (npr. glukoza, fruktoza, galaktoza) Ločimo dve vrsti glukoze: α glukoza in. β glukoza, ki se
OGLJIKOVI HIDRATI Monosaharidi enostavni sladkorji Spojine C, H, O v razmerju 1:2:1 3 ogljikovi atomi: TRIOZE 5 ogljikovih atomov: PENTOZE (npr. riboza, deoksiriboza) 6 ogljikovih atomov: HEKSOZE (npr.
Διαβάστε περισσότεραSlabe kemijske veze, kemijski sastav stanice, DNA
Slabe kemijske veze, kemijski sastav stanice, DNA Definicija i područje interesa molekularne biologije Funkcija Biokemija Genetika Proteini Geni Molekularna biologija Molekularna biologija sinteza genetike
Διαβάστε περισσότεραA L D O L N A R E A K C I J A
A L D L A E A K C I J A * U PTI^IM USLVIMA * Katalizovane bazama * Katalizovane kiselinama * U APTI^IM USLVIMA (eakcije preformiranih enolata ili dirigovane adicije) * U baznim uslovima * U kiselim uslovima
Διαβάστε περισσότεραPOGON SA ASINHRONIM MOTOROM
OGON SA ASNHRON OTORO oučavaćemo amo ogone a tofaznim motoom. Najčešće koišćeni ogon. Ainhoni moto: - ota kontukcija; - jeftin; - efikaan. ETALN RSTEN LANRANO JEZGRO BAKARNE ŠKE KAVEZN ROTOR NAOTAJ LANRANO
Διαβάστε περισσότεραPROSTA GREDA (PROSTO OSLONJENA GREDA)
ROS GRED (ROSO OSONJEN GRED) oprečna sila i moment savijanja u gredi y a b c d e a) Zadana greda s opterećenjem l b) Sile opterećenja na gredu c) Određivanje sila presjeka grede u presjeku a) Unutrašnje
Διαβάστε περισσότεραKiselo-bazne ravnoteže
Uvod u biohemiju (školska 2016/17.) Kiselo-bazne ravnoteže NB: Prerađena/adaptirana prezentacija američkih profesora! Primeri kiselina i baza iz svakodnevnog života Arrhenius-ova definicija kiselina i
Διαβάστε περισσότεραPoglavlje 7. Blok dijagrami diskretnih sistema
Poglavlje 7 Blok dijagrami diskretnih sistema 95 96 Poglavlje 7. Blok dijagrami diskretnih sistema Stav 7.1 Strukturni dijagram diskretnog sistema u kome su sve veliqine prikazane svojim Laplasovim transformacijama
Διαβάστε περισσότερα( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)
A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko
Διαβάστε περισσότερα1 Uvod - polimeri i polimerni materijali
1 Uvod - polimeri i polimerni materijali 1.1 Osnovni pojmovi i vrste polimera Polimeri su organska ili neorganska jedinjenja izgrađena od molekula velikih molekulskih masa (makromolekula) u kojima su atomske
Διαβάστε περισσότεραPROSTORNI STATIČKI ODREĐENI SUSTAVI
PROSTORNI STATIČKI ODREĐENI SUSTAVI - svi elementi ne leže u istoj ravnini q 1 Z F 1 F Y F q 5 Z 8 5 8 1 7 Y y z x 7 X 1 X - svi elementi su u jednoj ravnini a opterećenje djeluje izvan te ravnine Z Y
Διαβάστε περισσότεραDOLOČANJE)ENCIMSKE)AKTIVNOSTI)V)KLINIČNE)NAMENE)
DLČANJEENCIMSKEAKTIVNSTIVKLINIČNENAMENE 20encimovseru=nskopregledujevkliniki 1954sougotovilipovezanostsrčnegainfarktainpovišanekonc. aspartataminotransferazevserumu danesnarapolagovelikoabzapreciznodoločanjekoncproteinov
Διαβάστε περισσότεραU stvaranju hemijske veze među atomima učestvuju samo elektroni u najvišem energetskom nivou valentni elektroni
HEMIJSKA VEZA ELEKTRONSKA TEORIJA VALENCE U stvaranju hemijske veze među atomima učestvuju samo elektroni u najvišem energetskom nivou valentni elektroni Atomi teže da postignu oktet elektrona na poslednjem
Διαβάστε περισσότερα