Sorin Peligrad Adrian Ţurcanu Marius Antonescu Florin Antohe Lucia Popa Agnes Voica. Matematică. algebră, geometrie

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sorin Peligrad Adrian Ţurcanu Marius Antonescu Florin Antohe Lucia Popa Agnes Voica. Matematică. algebră, geometrie"

Transcript

1 Sorin Peligrad drian Ţurcanu Marius ntonescu Florin ntohe Lucia Popa gnes Voica Matematică algebră, geometrie Caiet de lucru. Clasa a VI-a Partea I Modalităţi de lucru diferenţiate Pregătire suplimentară prin planuri individualizate Soluțiile testelor de autoevaluare pot fi consultate la adresa: Editura Paralela 45

2 Lucrare elaborată în conformitate cu Programa școlară în vigoare pentru clasa a VI-a, aprobată prin Ordinul Ministrului Educației Naționale nr. 5097/ Editor: Călin Vlasie Corectură: Bianca Vişan, malia Mărăşescu Tehnoredactare: Carmen Rădulescu Pregătire de tipar: Marius Badea Design copertă: Ionuț Broştianu Descrierea CIP a Bibliotecii Naţionale a României Matematică - consolidare : algebră, geometrie : caiet de lucru : clasa a VI-a / Sorin Peligrad, drian Ţurcanu, Marius ntonescu,... - Piteşti : Paralela 45, vol. ISBN Partea ISBN I. Peligrad, Sorin II. Ţurcanu, drian III. ntonescu, Marius 51 COMENZI CRTE PRIN POŞTĂ Piteşti, jud. rgeş, cod , str. Fraţii Goleşti 130 Tel.: ; Tel./fax: ; ; comenzi@edituraparalela45.ro sau accesaţi Tiparul executat la tipografia Editurii Paralela 45 tipografie@edituraparalela45.ro Copyright Editura Paralela 45, 2017 Prezenta lucrare foloseşte denumiri ce constituie mărci înregistrate, iar conţinutul este protejat de legislaţia privind dreptul de proprietate intelectuală.

3 Recapitulare 1 Exerciţii şi probleme recapitulative 1 Scrie cu cifre arabe: a) cel mai mic număr impar de două cifre distincte; b) cel mai mare număr par de trei cifre distincte; c) cel mai mic număr de trei cifre cu suma cifrelor 10; d) numerele de trei cifre cu suma cifrelor Scrie: a) cel mai mic număr de forma aab, cu a b; b) cel mai mare număr de forma aab; c) cel mai mic număr de forma abba, cu a b; d) cel mai mare număr de forma abba. 3 Scrie cu cifre romane numerele: 47, 121, 493, 672, 1255, Ordonează crescător următoarele numere scrise cu cifre romane: XL, XIV, MMXV, CXI, XIX, CM. 5 Determină: a) numărul care împărţit la 5 dă câtul 12 şi restul 3; b) cel mai mare număr natural care împărţit la 11 dă câtul 9 şi restul nenul; c) cel mai mare număr impar care împărţit la 7 dă câtul Calculează suma numerelor care împărţite la 7 dau câtul 5 şi restul nenul. 7 Determină: a) cel mai mic şi cel mai mare număr natural de 3 cifre care împărţit la 19 dă restul 4; b) câte numere naturale de 3 cifre dau la împărţirea cu 19 restul 4. 8 Calculează suma numerelor naturale de 3 cifre care împărţite la 17 dau restul Determină numărul natural abc, ştiind că: abc + bc + c = Dacă a + b = 10 şi b + c = 14, calculează: a) a + 2b + c; b) 2a + 5b + 3c; c) 5a + 3b + 2c. 11 Calculează: a) S 1 = ; b) S 2 = ; c) S 3 = ; d) S 4 = Calculează: a) : ( 142 : ) : ; { [ ]} b) ( ) :2 + 3 : Calculează restul împărţirii numărului: a) = 25a + 60b la 5, a, b ; b) B = la Compară: a) 4 25 şi 8 14 ; b) 3 33 şi 5 22 ; c) şi Calculează: a) suma pătratelor perfecte de două cifre; b) suma cuburilor perfecte de cel mult două cifre. 16 Determină ultima cifră a numărului: N = Rezolvă ecuaţiile: a) 3(2x + 1) 7 = 26; b) 2(5x + 7) + 3(2x 4) = 18; c) 3(x + 5) 6 = 2(5x + 1) Determină numărul natural x în fiecare dintre situaţiile: a) 2 x = 64; b) 3 x = 81; c) x 4 = 2 8 ; d) (2 x ) 3 4 x = 2 20 ; e) 2 x+1 3 x = 72; f) (3 x ) 5 : 9 x = Un elev are la biologie notele 9, 5 şi 7. a) Calculează media elevului cu aceste note. b) Care este nota minimă pe care trebuie să o mai obţină elevul pentru a avea media 8? 20 Suma a două numere naturale este 207. flă numerele ştiind că împărţindu-l pe unul la celălalt, obţinem câtul 5 şi restul Diferenţa a două numere naturale este 154. flă numerele, ştiind că unul este de 12 ori mai mare decât celălalt. 22 flă numerele naturale a şi b, ştiind că a + 2b = 4 şi 2a + b = 27. n+ 2 n n n rată că numărul N = este divizibil cu 19 pentru orice n. 3 RECPITULRE

4 LGEBRĂ 1 Ce aflu Capitolul I. DIVIZIBILITTE NUMERELOR NTURLE Operaţii cu numere naturale; reguli de calcul cu puteri Competenţa: Recunoaşterea unor mulţimi finite; mulţimea numerelor naturale pare/impare, mulţimea cifrelor unui număr Numărul de elemente al unei mulţimi se numeşte cardinalul mulţimii. Numerele naturale sunt numerele care pot reprezenta cardinalul unor mulţimi. Cardinalul mulţimii vide este 0, deci 0 este număr natural. Mulţimea numerelor naturale se notează cu, deci = {0, 1, 2, 3, 4, }. Mulţimea numerelor naturale diferite de 0 se notează cu *, deci * = {1, 2, 3, 4, }. În clasele I-IV au fost învăţate operaţiile de adunare, scădere, înmulţire şi împărţire cu numere naturale. În clasa a V-a au fost completate cunoştinţele despre împărţirea numerelor naturale şi a fost definită operaţia de ridicare la putere. Principalele proprietăţi ale acestor operaţii sunt: dunarea este comutativă, este asociativă, iar 0 este element neutru. Exemple: = ( ) + ( ) = = Suma cifrelor numărului este 2 pentru orice n *. n de ( 1 100) ( 2 99 )... ( 50 51) = = 50 de paranteze ( ) ( ) ( ) ( ) ( ) = = = : 2 = de paranteze ( + 1) nn n= ( 1 + n) n: 2 = (suma lui Gauss). 2 Scăderea nu este comutativă. Egalitatea a b = b a are loc dacă şi numai dacă a = b. Exemplu: x 5 = 5 x x = 5 Înmulţirea este comutativă, asociativă, 1 este element neutru şi este distributivă faţă de adunare şi scădere. Exemple: = (25 4) (8 3) = = Produsul cifrelor numărului este 20, pentru orice n *. n de 1 Teorema împărţirii cu rest: Pentru orice numere naturale a şi b, b 0, există două numere naturale unice c şi r, astfel încât a = b c + r şi r < b. Observaţie. Teorema împărţirii cu rest este un procedeu prin care putem să aflăm câtul şi restul unor împărţiri, atunci când acestea sunt greu de calculat direct. În astfel de situaţii, încercăm să scriem deîmpărţitul ca produsul dintre împărţitor şi un număr (acesta va fi câtul!), adunat cu un alt număr mai mic decât împărţitorul (acesta va fi restul!). DIVIZIBILITTE NUMERELOR NTURLE 7

5 8 Exemple: 1. Calculează câtul şi restul împărţirii numărului 6a + 3b + 25 la 3. 6a + 3b + 25 = 3(2a + b + 8) + 1 şi 1 < 3, deci câtul împărţirii lui 6a + 3b + 25 la 3 este 2a + b + 8, iar restul este Calculează câtul şi restul împărţirii numărului la = 2 2 ( ) + 3 şi 3 < 4, deci câtul este , iar restul este 3. Ridicarea la putere este definită astfel: a a... a, pentru n 2 n factori Dacă a * n, atunci a = a, pentru n = 1, 0 n = 0, pentru orice n *, iar 0 0 nu are sens. 1, pentru n = 0 Exemple: 10 3 = 1000, 1 10 = 1, 0 5 = 0, 7 0 = 1, 12 2 = 144. Reguli de calcul cu puteri: am a n = a m+n a m : a n = a m n, dacă m n (a m ) n = a m n (a b) m = a m b m a m : b m = (a : b) m, dacă a b (a m b n ) : (a p b q ) = a m p b n q, dacă m p şi n q Exemple: = 2 40 ; 3 45 : 3 25 = 3 20 ; (5 7 ) 10 = 5 70 ; (2a) 3 = 2 3 a 3 = 8a 3 ; = (5 3) 7 = 15 7 ; 6 17 : 2 17 = (6 : 2) 17 = 3 17 ; ( ) 2 : ( ) = ( ) : ( ) = = 2 49 = 98. a mn este o putere care are ca exponent altă putere; se calculează mai întâi exponentul. Exemplu: = 10 8 = În calcule trebuie respectate ordinea efectuării operaţiilor şi a parantezelor. Ce am înţeles 1. Calculează, folosind formula sumei lui Gauss: a) = ( )... : 2 = = ( ) b) = = Încercuieşte numerele care dau restul 2 la împărţirea la 5: 42; 31; 64; 27; 5051; Orice număr care dă restul 2 la împărţirea la 5 are ultima cifră... sau Calculează: a) : 3 19 =... b) (2 5 ) 8 : 4 17 =... c) : =... Ştiu cum să rezolv 1 Determină cel mai mic număr natural de 3 cifre care împărţit la 37 dă restul 19. Soluţie: 100 = ; = 7; = 93; 93 = , deci 93 este cel mai mare număr de două cifre care împărţit la 37 dă restul 19; = 130; 130 = , deci 130 este cel mai mic număr de trei cifre care împărţit la 37 dă restul Dacă x + y + z = 10 şi y z = 5, calculează 8x + 11y + 5z. Soluţie: x + y + z = x + 8y + 8z = 80 8x + 8y + 8z + 3y 3z = x + 11y + 5z = 95. y z = 5 3 3y 3z = 15

6 GEOMETRIE 20 Ce ştiu 92 Capitolul I. DREPT Punct, dreaptă, plan; poziţiile relative ale unui punct faţă de o dreaptă; poziţiile relative a două drepte Competenţa: Identificarea unor drepte într-o configuraţie geometrică dată Geometria este o ramură a... care se ocupă cu studiul proprietăţilor figurilor şi corpurilor geometrice. Deşi primele dovezi ale studiului geometrie datează din Babilon şi Egipt în jurul anului 3000 î.hr., cuvântul geometrie provine din limba greacă (geo = pământ, metria = măsură). Principalele figuri geometrice învăţate până acum sunt: triunghiul,..., iar principalele corpuri geometrice sunt: cubul,.... Ce aflu Punctul, dreapta şi planul sunt noţiunile principale ale geometriei plane. cestea sunt folosite pentru definirea celorlalte noţiuni. Punctele se notează cu litere mari de tipar (, B, C,...) şi se reprezintă în desene ca în figura 1. Două puncte pot fi distincte ( B) sau identice (C = D). Dreptele se notează cu litere mici (a, b, c, ) şi se reprezintă în desen ca în figura 2. Un punct poate să aparţină unei drepte sau să fie exterior acesteia. În figura 3, d şi B d. xioma dreptei: Fiind date două puncte distincte, există o dreaptă şi numai una care să le conţină. Cu alte cuvinte, două puncte distincte determină o dreaptă. Drepta determinată de punctele distincte şi B se notează B (figura 4). Trei sau mai multe puncte care aparţin aceleiaşi drepte se numesc coliniare. Putem nota faptul că punctele, B, C sunt coliniare astfel:, B, C (figura 5). Dreapta d din figura 5 se poate nota şi B, C sau BC, iar B = C = BC = d. Dacă, B, C sunt trei puncte coliniare, în această ordine, ca în figura 5, atunci punctele şi C sunt de o parte şi de alta a punctului B, punctele B şi C sunt de aceeaşi parte a punctului, punctele şi B sunt de aceeaşi parte a punctului C, iar punctul B este între şi C. Mai multe drepte care au un punct comun se numesc drepte concurente. În figura 6, a b c = {O}, deci cele trei drepte sunt concurente. d a B Figura 1 Figura 2 B Figura 3 Figura 4 B B Figura 5 a b c O Figura 6 C d C

7 Planele se notează cu litere greceşti (α, β, γ, ) şi se reprezintă în desen ca în figura 7. Un punct poate să aparţină unui plan ( α), sau poate fi exterior acestuia (B α). Fiind date trei puncte necoliniare, B, C, există un plan şi numai unul care să le conţină. xioma planului: Trei puncte necoliniare determină un plan. Planul determinat de punctele necoliniare, B, C se notează (BC). Dacă două puncte distincte aparţin unui plan, atunci orice punct care aparţine dreptei ce trece prin cele două puncte aparţine acelui plan. Dacă două puncte distincte aparţin unui plan, atunci dreapta determinată de acestea este inclusă în acel plan ( α, B α, B B α). O dreaptă poate fi inclusă într-un plan, poate avea un punct comun cu un plan sau poate să nu aibă puncte comune cu acesta, caz în care spunem că este paralelă cu planul. În figura 8, a α, b α = {} şi d α. Două drepte conţinute în acelaşi plan se numesc coplanare, iar două drepte care nu sunt conţinute în acelaşi plan se numesc necoplanare. Două drepte coplanare care nu au puncte comune se numesc paralele (a b a b = ). Dreptele paralele se reprezintă în desen ca în figura 9. Dacă trei sau mai multe drepte au două câte două un punct comun, atunci sunt coplanare sau concurente. Pentru mate-campioni α b α a b B Figura 7 Figura 8 Figura 9 Fiind date n puncte, n, n 3, oricare trei necoliniare, atunci oricare două determină o dreaptă. stfel, numărul dreptelor determinate de cele n puncte este egal cu numărul perechilor ce conţin două din cele n puncte, adică n(n 1). 2 Fiind date n puncte, n, n 3, astfel încât exact p din cele n puncte sunt coliniare şi nu există alte trei n(n 1) p(n 1) puncte coliniare, atunci numărul dreptelor determinate de cele n puncte este Ce am înţeles 1. Fie, B, C trei puncte distincte. cestea determină: a) o dreaptă dacă sunt...; b)... drepte dacă sunt necoliniare. 2. Dreptele distincte B, C şi D se numesc drepte Calculează numărul maxim de drepte determinat de: a) 8 puncte... b) 14 puncte... c) 22 de puncte... d) 201 puncte... a d DREPT 93

8 178 Modele de teză TEZ 1 (1p) 1. Scrie toţi divizorii numărului 14. (1p) 2. Calculează complementul şi suplementul unui unghi cu măsura de 33. (1p) 3. Determină valoarea numărului x astfel încât 2017 x = (1p) 4. Calculează 0,25 + 0, ( 3 ) (1p) 5. Determină cel mai mic număr natural care împărţit la 7 dă restul 5 şi împărţit la 11 dă restul 9. (1p) 6. Determină numerele de forma 2a6b divizibile cu 45. (1p) 7. Dacă B CD = {O} şi m( OD) m( OC) = 48, calculează m( BOD). (1p) 8. rată că numerele 7n + 8 şi 6n + 7 sunt prime între ele pentru orice număr natural n. (1p) 9. Bisectoarele a două unghiuri adiacente formează un unghi cu măsura de 37. flă măsurile celor două unghiuri, ştiind că unul dintre ele are măsura cu 16 mai mică decât dublul măsurii celuilalt. TEZ 2 (1p) 1. Scrie toţi multipli de două cifre ai numărului 19. (1p) 2. Desenează trei drepte concurente a, b, c în planul α şi punctele a, B b, C c şi D a astfel încât B CD. ab = 0, (1p) 3. Determină numărul natural ab ştiind că ( ) (1p) 4. Suma a două numere prime este 61. Calculează produsul acestora. (1p) 5. Determină măsurile a două unghiuri ştiind că sunt complementare şi unul dintre unghiuri are măsura cu 22 mai mare decât triplul măsurii celuilalt. (1p) 6. Fie numărul 2 32 N = rată că: a) N 5. b) N 31. (1p) 7. Determină valorile numărului natural n astfel încât (n + 1) (3n + 11). (1p) 8. Determină cel mai mic număr natural diferit de 5 care împărţit pe rând la 9, 15 şi 12 dă de fiecare dată restul 5. (1p) 9. Calculează câte drepte distincte determină 15 puncte în fiecare dintre următoarele situaţii: a) oricare trei puncte sunt necoliniare; b) 4 dintre cele 15 puncte sunt coliniare, iar, în rest, oricare trei puncte sunt necoliniare.

9 Cuprins RECPITULRE 1. Exerciţii şi probleme recapitulative Modele de teste pentru evaluarea iniţială...5 LGEBRĂ Capitolul I. DIVIZIBILITTE NUMERELOR NTURLE 1. Operaţii cu numere naturale; reguli de calcul cu puteri Divizor, multiplu Criteriile de divizibilitate cu 10, 2, 5, 3, Proprietăţi ale relaţiei de divizibilitate în Numere prime, numere compuse Descompunerea numerelor naturale în produs de puteri de numere prime Divizori comuni a două sau mai multor numere naturale; c.m.m.d.c Numere prime între ele Multiplii comuni a două sau mai multor numere naturale; c.m.m.m.c.; relaţia dintre c.m.m.d.c. şi c.m.m.m.c Probleme simple care se rezolvă folosind divizibilitatea...42 Test de autoevaluare...45 Recapitulare şi sistematizare prin teste...46 Capitolul II. OPERŢII CU NUMERE RŢIONLE POZITIVE 11. Fracţii echivalente; fracţii ireductibile Noţiunea de număr raţional; forme de scriere a unui număr raţional; Ì dunarea numerelor raţionale pozitive Scăderea numerelor raţionale pozitive Înmulţirea numerelor raţionale pozitive Ridicarea la putere cu exponent număr natural a unui număr raţional pozitiv Reguli de calcul cu puteri Împărţirea numerelor raţionale pozitive Ordinea efectuării operaţiilor...85 Test de autoevaluare...89 Recapitulare şi sistematizare prin teste...90 GEOMETRIE Capitolul I. DREPT 20. Punct, dreaptă, plan; poziţiile relative ale unui punct faţă de o dreaptă; poziţiile relative a două drepte Semidreapta, semiplanul Segment. Lungimea unui segment; distanţa dintre două puncte Segmente congruente; construcţia unui segment congruent cu un segment dat Mijlocul unui segment; simetricul unui punct faţă de un punct Test de autoevaluare Recapitulare şi sistematizare prin teste...114

10 Capitolul II. UNGHIURI 25. Unghiul. Clasificare Măsurarea unghiurilor cu raportorul Unghi drept, unghi ascuţit, unghi obtuz; unghiuri congruente Calcule cu măsuri de unghiuri exprimate în grade şi minute sexagesimale Unghiuri adiacente; bisectoarea unui unghi Unghiuri suplementare; unghiuri complementare Unghiuri opuse la vârf Unghiuri formate în jurul unui punct Test de autoevaluare Recapitulare şi sistematizare prin teste Capitolul III. CONGRUENŢ TRIUNGHIURILOR 33. Triunghi, elemente; perimetru; clasificarea triunghiurilor Construcţia triunghiurilor: cazurile L.U.L., U.L.U., L.L.L Congruenţa triunghiurilor oarecare Criterii de congruenţă a triunghiurilor: L.U.L, U.L.U., L.L.L Elemente de raţionament geometric Metoda triunghiurilor congruente Test de autoevaluare Recapitulare şi sistematizare prin teste MODELE DE TEZĂ PROBLEME PREGĂTITORE PENTRU OLIMPIDE ŞI CONCURSURI RĂSPUNSURI...182

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Subiecte Clasa a V-a

Subiecte Clasa a V-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b.

Lucrare. Varianta aprilie I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2. sau p b. Lucrare Soluţii 28 aprilie 2015 Varianta 1 I 1 Definiţi noţiunile de număr prim şi număr ireductibil. Soluţie. Vezi Curs 6 Definiţiile 1 şi 2 Definiţie. Numărul întreg p se numeşte număr prim dacă p 0,

Διαβάστε περισσότερα

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii:

TRIUNGHIUL. Profesor Alina Penciu, Școala Făgăraș, județul Brașov A. Definitii: TRIUNGHIUL Profesor lina Penciu, Școala Făgăraș, județul rașov Daca, si sunt trei puncte necoliniare, distincte doua câte doua, atunci ( ) [] [] [] se numeste triunghi si se noteaza cu Δ. Orice Δ determina

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3)

BARAJ DE JUNIORI,,Euclid Cipru, 28 mai 2012 (barajul 3) BARAJ DE JUNIORI,,Euclid Cipru, 8 mi 0 (brjul ) Problem Arătţi că dcă, b, c sunt numere rele cre verifică + b + c =, tunci re loc ineglitte xy + yz + zx Problem Fie şi b numere nturle nenule Dcă numărul

Διαβάστε περισσότερα

Să se arate că n este număr par. Dan Nedeianu

Să se arate că n este număr par. Dan Nedeianu Primul test de selecție pentru juniori I. Să se determine numerele prime p, q, r cu proprietatea că 1 p + 1 q + 1 r 1. Fie ABCD un patrulater convex cu m( BCD) = 10, m( CBA) = 45, m( CBD) = 15 și m( CAB)

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. bh lh 2. abc. abc. formula înălţimii GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Subiecte Clasa a VI-a

Subiecte Clasa a VI-a Clasa a VI Lumina Math Intrebari (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt.

Vectori liberi Produs scalar Produs vectorial Produsul mixt. 1 Vectori liberi. 2 Produs scalar. 3 Produs vectorial. 4 Produsul mixt. liberi 1 liberi 2 3 4 Segment orientat liberi Fie S spaţiul geometric tridimensional cu axiomele lui Euclid. Orice pereche de puncte din S, notată (A, B) se numeşte segment orientat. Dacă A B, atunci direcţia

Διαβάστε περισσότερα

3. Locuri geometrice Locuri geometrice uzuale

3. Locuri geometrice Locuri geometrice uzuale 3. Locuri geometrice 3.. Locuri geometrice uzuale oţiunea de loc geometric în plan care se găseşte şi în ELEETELE LUI EUCLID se pare că a fost folosită încă de PLATO (47-347) şi ARISTOTEL(383-3). Locurile

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu,

Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Asemănarea triunghiurilor O selecție de probleme de geometrie elementară pentru gimnaziu Constantin Chirila Colegiul Naţional Garabet Ibrãileanu, Iaşi Repere metodice ale predării asemănării în gimnaziu

Διαβάστε περισσότερα

OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ CLASA A V-A

OLIMPIADA DE MATEMATICĂ ETAPA LOCALĂ CLASA A V-A OLIMPIAA E MATEMATICĂ 3 februarie 014 CLASA A V-A 1.) Ultima cifră a unui număr natural de patru cifre este 7. acă mutăm cifra 7 de pe locul unităţilor pe locul miilor, ob inem un număr cu 86 mai mare

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc =

GEOMETRIE PLANĂ TEOREME IMPORTANTE ARII. = înălţimea triunghiului echilateral h =, R =, r = R = bh lh 2 A D ++ D. abc. abc = GEOMETRIE PLNĂ TEOREME IMPORTNTE suma unghiurilor unui triunghi este 8º suma unghiurilor unui patrulater este 6º unghiurile de la baza unui triunghi isoscel sunt congruente într-un triunghi isoscel liniile

Διαβάστε περισσότερα

Dreapta in plan. = y y 0

Dreapta in plan. = y y 0 Dreapta in plan 1 Dreapta in plan i) Presupunem ca planul este inzestrat cu un reper ortonormat de dreapta (O, i, j). Fiecarui punct M al planului ii corespunde vectorul OM numit vector de pozitie al punctului

Διαβάστε περισσότερα

Lectia VII Dreapta si planul

Lectia VII Dreapta si planul Planul. Ecuatii, pozitii relative Dreapta. Ecuatii, pozitii relative Aplicatii Lectia VII Dreapta si planul Oana Constantinescu Oana Constantinescu Lectia VII Planul. Ecuatii, pozitii relative Dreapta.

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1998 Clasa a V-a CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 998 Clasa a V-a. La gara Timișoara se eliberează trei bilete de tren: unul pentru Arad, altul pentru Deva și al treilea pentru Reșița. Cel pentru Deva

Διαβάστε περισσότερα

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0

DEFINITIVAT 1993 PROFESORI I. sinx. 0, dacă x = 0 DEFINITIVAT 1993 TIMIŞOARA PROFESORI I 1. a) Metodica predării noţiunii de derivată a unei funcţii. b) Să se reprezinte grafic funci a sinx, dacă x (0,2π] f : [0,2π] R, f(x) = x. 0, dacă x = 0 2. Fie G

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul numarului intrebarii

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează

7. Fie ABCD un patrulater inscriptibil. Un cerc care trece prin A şi B intersectează TEMĂ 1 1. În triunghiul ABC, fie D (BC) astfel încât AB + BD = AC + CD. Demonstraţi că dacă punctele B, C şi centrele de greutate ale triunghiurilor ABD şi ACD sunt conciclice, atunci AB = AC. India 2014

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a

Concursul de matematica Arhimede Editia a IV-a. Etapa I-a 25 noiembrie Subiecte clasa a III-a Editia a IV-a. Etapa I-a 5 noiembrie 006. Subiecte clasa a III-a I. Aflati cea mai mica suma de forma în care s-au folosit doar cifrele 0,,, 4, 5, 6 o singura data. Aratati variantele posibile. II. a)

Διαβάστε περισσότερα

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma:

CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a. 1. Scriem numerele naturale nenule consecutive sub forma: CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 2018 Clasa a V-a 1. Scriem numerele naturale nenule consecutive sub forma: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,... (pe fiecare

Διαβάστε περισσότερα

riptografie şi Securitate

riptografie şi Securitate riptografie şi Securitate - Prelegerea 12 - Scheme de criptare CCA sigure Adela Georgescu, Ruxandra F. Olimid Facultatea de Matematică şi Informatică Universitatea din Bucureşti Cuprins 1. Schemă de criptare

Διαβάστε περισσότερα

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi

COMBINATORICĂ. Mulţimile ordonate care se formează cu n elemente din n elemente date se numesc permutări. Pn Proprietăţi OMBINATORIĂ Mulţimile ordoate care se formează cu elemete di elemete date se umesc permutări. P =! Proprietăţi 0! = ( ) ( ) ( ) ( ) ( ) ( )! =!! =!! =! +... Submulţimile ordoate care se formează cu elemete

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

Criptosisteme cu cheie publică III

Criptosisteme cu cheie publică III Criptosisteme cu cheie publică III Anul II Aprilie 2017 Problema rucsacului ( knapsack problem ) Considerăm un număr natural V > 0 şi o mulţime finită de numere naturale pozitive {v 0, v 1,..., v k 1 }.

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

III. Reprezentarea informaţiei în sistemele de calcul

III. Reprezentarea informaţiei în sistemele de calcul Metode Numerice Curs 3 III. Reprezentarea informaţiei în sistemele de calcul III.1. Reprezentarea internă a numerelor întregi III. 1.1. Reprezentarea internă a numerelor întregi fără semn (pozitive) Reprezentarea

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ ŞI INFORMATICĂ MARIAN ŢARINĂ. Ediţia a XVII-a, 7 8 Aprilie CLASA a IV-a Ediţia a XVII-a, 7 8 Aprilie 207 SUBIECTUL CLASA a IV-a Într-o zi de Duminică, la Salina Turda, a venit un grup de vizitatori, băieți și de două ori mai multe fete. Au intrat în Salină 324 băieți și 400

Διαβάστε περισσότερα

MULTIMEA NUMERELOR REALE

MULTIMEA NUMERELOR REALE www.webmteinfo.com cu noi totul pre mi usor MULTIMEA NUMERELOR REALE office@ webmteinfo.com 1.1 Rdcin ptrt unui numr nturl ptrt perfect Ptrtul unui numr rtionl este totdeun pozitiv su zero (dic nenegtiv).

Διαβάστε περισσότερα

Geometrie computationala 2. Preliminarii geometrice

Geometrie computationala 2. Preliminarii geometrice Platformă de e-learning și curriculă e-content pentru învățământul superior tehnic Geometrie computationala 2. Preliminarii geometrice Preliminarii geometrice Spatiu Euclidean: E d Spatiu de d-tupluri,

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

3. REPREZENTAREA PLANULUI

3. REPREZENTAREA PLANULUI 3.1. GENERALITĂŢI 3. REPREZENTAREA PLANULUI Un plan este definit, în general, prin trei puncte necoliniare sau prin o dreaptă şi un punct exterior, două drepte concurente sau două drepte paralele (fig.3.1).

Διαβάστε περισσότερα

Matrice. Determinanti. Sisteme liniare

Matrice. Determinanti. Sisteme liniare Matrice 1 Matrice Adunarea matricelor Înmulţirea cu scalar. Produsul 2 Proprietăţi ale determinanţilor Rangul unei matrice 3 neomogene omogene Metoda lui Gauss (Metoda eliminării) Notiunea de matrice Matrice

Διαβάστε περισσότερα

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ GRIGORE MOISIL EDIŢIA a II - a, 8 aprilie 2006

CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ GRIGORE MOISIL EDIŢIA a II - a, 8 aprilie 2006 CONCURSUL INTERJUDEŢEAN DE MATEMATICĂ GRIGORE MOISIL EDIŢIA a II - a, 8 aprilie 006 SUBIECTE PENTRU CLASA a III - a Rezolvaţi şi alegeţi varianta de răspuns corectă, haşurând în căsuţa de răspunsuri pentru

Διαβάστε περισσότερα

EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă

EDITURA PARALELA 45. Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă. clasa a VIII-a. mate 2000 excelenţă Maranda Linţ Dorin Linţ Rozalia Marinescu Dan Ştefan Marinescu Mihai Monea Steluţa Monea Marian Stroe Matematică de excelenţă pentru concursuri, olimpiade şi centre de excelenţă clasa a VIII-a mate 000

Διαβάστε περισσότερα

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare

Ministerul Educaţiei Naționale Centrul Naţional de Evaluare şi Examinare Miisterul Educaţiei Națioale Cetrul Naţioal de Evaluare şi Eamiare Eameul de bacalaureat aţioal 08 Proba E c) Matematică M_mate-ifo Clasa a XI-a Toate subiectele sut obligatorii Se acordă 0 pucte di oficiu

Διαβάστε περισσότερα

prof. Busuioc Gianina Elena

prof. Busuioc Gianina Elena Şcoala Gimnazială Nr. 6 Vaslui prof. Busuioc Gianina Elena 1 La realizarea acestui proiect au colaborat elevii: Baciu Dragoş, Barbu Călina, Burdujanu Robert, Cobzaru Albert, Epure Mălina, Fuşneică Angel,

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

COMPETENłE GENERALE VALORI ŞI ATITUDINI

COMPETENłE GENERALE VALORI ŞI ATITUDINI Şcoala cu clasele I - VIII Leiceşti - Argeş Responsabil Director, Matematică - Algebră clasa a VI - a ( ore pe săptămână) comisie metodică, L.S. Matematică - Geometrie clasa a VI - a ( ore pe săptămână)

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare

Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R. 4.1 Proprietăţi topologice ale lui R Puncte de acumulare Capitolul 4 PROPRIETĂŢI TOPOLOGICE ŞI DE NUMĂRARE ALE LUI R În cele ce urmează, vom studia unele proprietăţi ale mulţimilor din R. Astfel, vom caracteriza locul" unui punct în cadrul unei mulţimi (în limba

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Axiomatica Hilbert a spaţiului euclidian

Axiomatica Hilbert a spaţiului euclidian Axiomatica Hilbert a spaţiului euclidian Mircea Crâşmăreanu Prezentare generală a sistemului axiomatic Hilbert Prin Geometrie Euclidiană se înţelege într-un sens general şi clasic acea geometrie ce are

Διαβάστε περισσότερα

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. <

1. Scrieti in casetele numerele log 7 8 si ln 8 astfel incat inegalitatea obtinuta sa fie adevarata. < Copyright c 009 NG TCV Scoala Virtuala a Tanarului Matematician 1 Ministerul Educatiei si Tineretului al Republicii Moldova Agentia de Evaluare si Examinare Examenul de bacalaureat la matematica, 17 iunie

Διαβάστε περισσότερα

Criterii de comutativitate a grupurilor

Criterii de comutativitate a grupurilor Criterii de comutativitate a grupurilor Marius Tărnăuceanu 10.03.2017 Abstract În această lucrare vom prezenta mai multe condiţii suficiente de comutativitate a grupurilor. MSC (2010): 20A05, 20K99. Key

Διαβάστε περισσότερα

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ

CONCURS DE ADMITERE, 17 iulie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ CONCURS DE ADMITERE, 7 iulie 207 Proba scrisă la MATEMATICĂ SUBIECTUL I (30 puncte) ) (0 puncte) Să se arate că oricare ar

Διαβάστε περισσότερα

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB =

y y x x 1 y1 Elemente de geometrie analiticã 1. Segmente 1. DistanŃa dintre douã puncte A(x 1,y 1 ), B(x 2,y 2 ): AB = 2. Panta dreptei AB: m AB = Elemente de geometrie analiticã. Segmente. DistanŃa dintre douã puncte A(, ), B(, ): AB = ) + ( ) (. Panta dreptei AB: m AB = +. Coordonatele (,) ale mijlocului segmentului AB: =, =. Coordonatele punctului

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

O adaptare didactica a unui sistem axiomatic

O adaptare didactica a unui sistem axiomatic O adaptare didactica a unui sistem axiomatic Oana Constantinescu In acest document dorim sa prezentam o adaptare a unui sistem axiomatic semiformalizat pentru geometria in plan si in spatiu. Spunem adaptare

Διαβάστε περισσότερα

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra

Aplicaţii ale numerelor complexe în geometrie, utilizând Geogebra ale numerelor complexe în geometrie, utilizând Geogebra Adevărul matematic, indiferent unde, la Paris sau la Toulouse, este unul şi acelaşi (Blaise Pascal) Diana-Florina Haliţă grupa 331 dianahalita@gmailcom

Διαβάστε περισσότερα

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A.

a) (3p) Sa se calculeze XY A. b) (4p) Sa se calculeze determinantul si rangul matricei A. c) (3p) Sa se calculeze A. Bac Variata Proil: mate-izica, iormatica, metrologie Subiectul I (3 p) Se cosidera matricele: X =, Y = ( ) si A= a) (3p) Sa se calculeze XY A b) (4p) Sa se calculeze determiatul si ragul matricei A c)

Διαβάστε περισσότερα

Testul nr. 1. Testul nr. 2

Testul nr. 1. Testul nr. 2 CONCURSUL INTERJUDEȚEAN DE MATEMATICĂ TRAIAN LALESCU, 1986 Clasa a V-a 1. Este numărul 1+2+3+ +1985 par? 2. Să se afle cel mai mic număr natural care împărțit la 5 dă restul 4, împărțit la 6 dă restul

Διαβάστε περισσότερα

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii

CONCURSUL DE MATEMATICĂ APLICATĂ ADOLF HAIMOVICI, 2017 ETAPA LOCALĂ, HUNEDOARA Clasa a IX-a profil științe ale naturii, tehnologic, servicii Clasa a IX-a 1 x 1 a) Demonstrați inegalitatea 1, x (0, 1) x x b) Demonstrați că, dacă a 1, a,, a n (0, 1) astfel încât a 1 +a + +a n = 1, atunci: a +a 3 + +a n a1 +a 3 + +a n a1 +a + +a n 1 + + + < 1

Διαβάστε περισσότερα

Cercul lui Euler ( al celor nouă puncte și nu numai!)

Cercul lui Euler ( al celor nouă puncte și nu numai!) Cercul lui Euler ( al celor nouă puncte și nu numai!) Prof. ION CĂLINESCU,CNDG, Câmpulung Voi prezenta o abordare simplă a determinării cercului lui Euler, pe baza unei probleme de loc geometric. Preliminarii:

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică

GEOMETRIE PENTRU GIMNAZIU Partea I (cls. a V a, a VI a, a VII a) Geometrie pentru pregătirea Evaluării Naționale la Matematică Geometrie pentru pregătirea Evaluării Naționale la Matematică (Cls. a V a, a VI a, a VII a) UNITĂȚI DE MĂSURĂ Lungime rie Volum Capacitate DE REȚINUT! Masă 1hm 1ha 1dam 1ar 1dm 1l 1q 1kg 1t 1kg 1v 1kg

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Cum folosim cazuri particulare în rezolvarea unor probleme

Cum folosim cazuri particulare în rezolvarea unor probleme Cum folosim cazuri particulare în rezolvarea unor probleme GHEORGHE ECKSTEIN 1 Atunci când întâlnim o problemă pe care nu ştim s-o abordăm, adesea este bine să considerăm cazuri particulare ale acesteia.

Διαβάστε περισσότερα

BACALAUREAT 2007 SESIUNEA IULIE M1-1

BACALAUREAT 2007 SESIUNEA IULIE M1-1 BACALAUREAT 2007 SESIUNEA IULIE M1-1 Filiera teoretică, specializarea matematică - informatică. Filiera vocaţională, profil Militar, specializarea matematică - informatică. a) Să se calculeze modulul vectorului

Διαβάστε περισσότερα

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi

GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE. Gabriel POPA, Paul GEORGESCU c August 20, 2009, Iaşi GEOMETRIE VECTORIALĂ, ANALITICĂ ŞI DIFERENŢIALĂ. PROBLEME REZOLVATE Gabriel POPA, Paul GEORGESCU c August 0, 009, Iaşi Cuprins 1 SPAŢIUL VECTORILOR LIBERI. STRUCTURA AFINĂ 4 SPAŢIUL VECTORILOR LIBERI.

Διαβάστε περισσότερα