Encimska kinetika govori o hitrosti encimske reakcije

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Encimska kinetika govori o hitrosti encimske reakcije"

Transcript

1 Encimska kinetika govori o hitrosti encimske reakcije uvod encimska kinetika po Michaelisu in Mentenovi kinetika večsubstratnih encimskih reakcij kinetika alosteričnih encimov encimska inhibicija

2 Kako encimi delujejo? nekatalizirana kemijska reakcija S P substrat produkt encimsko katalizirana kemijska reakcija E + S ES EP E + P E encim S substrat, P produkt ES kompleks encim-substrat EP kompleks encim-produkt POZOR, to nista aktivirana kompleksa!

3 Substrat, vezan na aktivno mesto encima Encim predstavlja za molekule, ki reagirajo (substrate), specifično okolje, reakcija poteče na aktivnem mestu encima; aktivno mesto je navadno le manjši del encima!

4 Hitrost (v) reakcije S P določa hitrostna konstanta k, to pa DG v = k [S] v = k [S 1 ] [S 2 ] k reakcija S P k reakcija S 1 + S 2 P k Boltzmannova konstanta (n.r/n A ; n = št. molov, R = plinska konstanta, N A = Avogadrova konstanta) h Planckova konstanta DG aktivacijska energija (aktivacijska prosta entalpija) R, T konstanti

5 Primerjava nekatalizirane in katalizirane reakcije Nekatalizirana reakcija S P Ravnotežje K Večja aktivacijska energija Manjša reakcijska hitrost Reakcijski mehanizem preko prehodnega stanja P S Katalizirana z encimom E + S ES EP E + P Ravnotežje K Manjša aktivacijska energija Večja reakcijska hitrost Reakcijski mehanizem preko drugih reakcijskih intermediatov in prehodnih stanj P S Aktivacijska energija ΔG # določa hitrost reakcije Katalizatorji pospešijo hitrost reakcije (znižajo aktivacijsko energijo), ne spremenijo pa ravnotežja reakcije!

6 S P E + S ES EP E + P DG o ΔG o = ΔG o = - RT ln K ΔG # < ΔG # v > v

7 S P E + S ES ES 1 ES 2 EP E + P - če je reakcija sestavljena iz zaporedja več reakcij, hitrost celotne reakcije določa najpočasnejša stopnja (največja aktivacijska energija) rate limiting step - energijske bariere so ključnega pomena za življenje če jih ne bi bilo, bi se makromolekule spontano razgrajevale v osnovne gradnike... - med evolucijo (zelo dolg čas!) so se razvili encimi, ki selektivno znižujejo aktivacijsko bariero

8 ES - komplementarnost substrata z vezavnim mestom na encimu: šibke interakcije so optimizirane v prehodnem stanju Emil Fischer 1894 E in S - ključ v ključavnico Inducirano prilagajanje encima substratu in substrata encimu Encim je komplementaren reakcijskemu prehodnemu stanju Primer: encim dihidrofolatna reduktaza; NADP+ (rdeče) in tetrahidrofolat (rumeno) sta substrata. Aktivacijska energija se zniža zaradi sproščene vezavne energije ob nastanku šibkih interakcij med encimom in substratom

9 Imaginarni encim, ki katalizira prelom kovinske palice S S P

10 Peptidaza prime substrat (dipeptid) z najmanj tremi šibkimi vezmi, mu vsili novo konformacijo v kateri je peptidna vez že natrgana (prehodno stanje!) ENCIM VODA (S 2 ) SUBSTRAT (S 1 ) S 1 + S 2 P 1 + P 2

11 Encimska kinetika Obravnava hitrost, s katero se spreminjajo reaktanti v produkte S P Hitrost podaja spremembo koncentracije substrata/produkta v časovni enoti (mol/s) v = -d(s)/dt = d(p)/dt Hitrost encimske reakcije je merilo za aktivnost encima; enote za aktivnost: U = 1μmol/min ali katal (kat) = 1mol/s Specifična aktivnost encimskega pripravka: hitrost na št. encimskih enot/mg proteina, npr. μmol/min/mg

12 Koncentracija substrata vpliva na začetno hitrost encimske reakcije S P v = Δ(P)/Δt koncentracija substrata se s časom spreminja začetna hitrost (v o ) je hitrost v času t = 0 in je karakteristična za reakcijo S 4 > S 3 > S 2 > S 1

13 ODVISNOST ZAČETNE HITROSTI (v 0 ) OD KONCENTRACIJE SUBSTRATA [S]. POZOR: TO STA DVA RAZLIČNA GRAFA!

14 Vpliv koncentracije substrata na začetno hitrost encimske reakcije maksimalna hitrost V max Graf ustreza enačbi: a morajo biti izpolnjeni določeni pogoji! Enačba se imenuje po Michaelisu in Mentenovi, ki sta jo prva izpeljala (članek 1912). Michaelisova konstanta K m

15 Saturacijska kinetika (hidroliza ecetilholina)

16 Odvisnost začetne hitrosti v 0 od koncentracije substrata S (v 0 =k.[s] n ) V 0 =k[s] 1 1. red reakcije V 0 =k[s] 0 0. red reakcije

17 Vpliv koncentracije substrata začetno hitrost encimske reakcije Enačba po Michaelisu in Mentenovi Predpostavke pri izpeljavi in namen - koncept začetne hitrosti: v začetku je koncentracija P zanemarljivo majhna, ni reakcije P S (k -2 = 0) - razgradnja ES določa hitrost celotne reakcije v 0 = k 2 [ES] - encim ima eno samo aktivno mesto, če pa jih je več, so ta neodvisna - (E) o << (S) o NAMEN: ker je težko izmeriti [ES] (v 0 = k 2 ([ES])), določimo K m in V max ter z njima okarakteriziramo encimsko aktivnost

18 Michaelis-Mentenova kinetika S P Ključnega pomena za encimsko katalizo je nastanek kompleksa ES L. Michaelis in M. Menten 1912 hitra reverzibilna stopnja v 0 = k 2.[ES] počasna reverzibilna stopnja, razpad ES določa hitrost celotne reakcije Z večanjem koncentracije S se vse več encima nahaja v obliki kompleksa ES, encim postaja nasičen s substratom, zato saturacijska kinetika! (ES) je konstantna po času, stacionarno stanje steady state

19 Spremembe koncentracije [S], [P], [E], [ES] s časom K P S v 0 = k 2.[ES]

20 v 0 = k 2.[ES] hitrost nastanka ES = hitrost razpada ES = V stacionarnem stanju sta ti dve hitrosti enaki! Michaelisova konstanta K m

21 Michaelis-Mentenova enačba K m

22 Odvisnost začetne hitrosti od koncentracije substrata grafična določitev konstant K m in V max [S] << K m

23 Transformacija Michaelisove enačbe v dvojno recipročno enačbo (Lineweaver-Burk) Dvojni recipročni diagram, 1/V 0 proti 1/[S], uporaben za določitev V max in K m

24 Izražanje in primerjava katalitične učinkovitosti različnih encimov K m k cat k cat /K m

25 Izražanje in primerjava katalitične učinkovitosti različnih encimov, K m V max, K m eksperimentalno določimo če merimo v o! = K d VELJA: - velika K m majhna afiniteta encima do substrata - majhna K m velika afiniteta encima do substrata K m - odraža afiniteto encima do substrata - odraža fiziološke razmere - za mnoge encime valja: K m [S] fiziol.

26 Vrednosti K m nekaterih encimov in substratov

27 Pomen K m v fiziologiji primer: občutljivost Azijcev na alkohol Japonci in Kitajci dosežejo isti učinek alkohola (vazodilatacija, pospešen ritem srca...) že pri nižji koncentraciji zaužitega alkohola kot Evropejci Reakcije razgradnje alkohola CH 3 CH 2 OH + NAD + CH 3 CHO + H + + NADH alkoholna dehidrogenaza CH 3 CHO + NAD + CH 3 COOH + H + + NADH aldehidna dehidrogenaza Azijci imajo aldehidno dehidrogenazo z višjim K m (aldehid v krvi dolgo kroži po telesu); izoencim! Izoemcimi: katalizirajo isto reakcijo (isti substrat), različne pa so molekulske lastnosti encimov: različna encimska aktivnost (k kat in K m ), različna molekulska masa (M r ). Genski zapis je drugačen, zato druga sekvenca!

28 Izražanje in primerjava katalitične učinkovitosti različnih encimov, k kat V max = k 2.[E] t V max = k kat.[e] t ; v k ES k kat = k najpočasnejše stopnje! (v smeri, ki daje produkt!) k kat - pretvorbeno število: št. molekul substrata, ki se pretvori v produkt na eni molekuli encima v enoti časa (encim je nasičen s substratom) 0 kat

29 Kinetična učinkovitost encimov: pretvorbeno število (turnover number), k kat Slabost izražanje encimske učinkovitosti s K m ali k kat : ni upoštevana neencimska reakcija, ni informacije za koliko encim pospeši reakcijo

30 Najboljši način za izražanje encimske aktivnosti: k kat /K m

31 Alosterični proteini (encimi) Alosterični proteini (encimi) sestojijo iz več podenot (multimerni proteini) in imajo več vezavnih mest (za substrat in/ali modulator) Alosterični proteini (podenote) zavzamejo različne konformacije Konformacijsko spremembo (prehod v manj ali bolj aktivno obliko) povzroči modulator (ligand, pri encimih tudi S) Modulatorji so ali inhibitorji ali aktivatorji Če je normalni ligand obenem modulator homotropična modulacija (O 2 na Hb, substrat pri encimu) ; če je modulator druga molekula heterotropična modulacija Mnogi alosterični proteini imajo več modulatorjev obenem gre za heterotropične in homotropične modulatorje Vezava liganda na multimerni protein (O 2 na Hb, S na encimu) je kooperativna vezava vezava enega liganda vpliva na afiniteto drugih vezavnih mest (O 2 je ligand in pozitivni homotropični aktivator Hb, S deluje enako pri alosteričnem encimu) Za kooperativno vezavo je značilna sigmoidna krivulja Sigmoidna krivulja omogoča občutjiv odgovor na majhne spremembe koncentracije liganda v okolju

32 Hb (2D5Z.pdb)

33 Prehod Hb iz T (deoksi) v R (oksi) konformacijo vezava O 2 konformacija T konformacija R

34 2 modela za pretvorbo neaktivne v aktivno obliko proteina po kooperativni vezavi liganda; pri encimih je ligand kar S (L = S) (a) Usklajen model: vse podenote so v isti konformaciji, bodisi bodisi (b) Skupni model: vsaka podenota je lahko ali v eni ali v drugi konformaciji, ali

35 Saturacijske krivulje Mb in Hb Vezava O 2 na Mb in Hb Vezava O 2 na R, T in naravni Hb

36 Kinetika alosteričnih encimov analogija s Hb sigmoidna krivulja alosterični encim (več soodvisnih aktivnih mest) hiperbolična krivulja- Michaelis-Mentenov encim (eno samo aktivno mesto ali več neodvisnih mest) homotropična alosterija! v 0 k kat ES ES Y E t Y 1 K' n S ' S n K

37 Dve vrsti modulatorjev alosteričnih encimov heterotropična alosterija! modulatorji vplivajo na K m S modulatorji vplivajo na V max S M M

38 Bi(več)substratne reakcije (velikanska večina je takih!) S 1 + S 2 P 1 + P 2 Primer: prenos funkcionalne skupine (fosforilne, amino...) z enega substrata na drug substrat ATP + D-glukoza ADP + D-glukoza-6-fosfat ATP + D-fruktoza ADP + D-fruktoza-6-fosfat ak 1 + ketokislina 2 ketokoslina 1 + ak 2

39 Prenos fosforilne skupine z enega na drug substrat S 1 + S 2 P 1 + P 2 ATP + D-glukoza ADP + D-glukoza-6-fosfat ATP + D-fruktoza ADP + D-fruktoza-6-fosfat

40 Transaminacija: encim transaminaza (koencim piridoksalfosfat) prenos aminske skupine Glutamat/piruvat transaminaza (GPT) Glutamat/oksaloacetat transaminaza (GOT) -R = -CH 3 -R, -CH 2 -COOH

41 Primer: Prenos NH 2 skupine z enega na drug substrat Koencim: piridiksal-fosfat Proces: TRANSAMINACIJA Encimi: TRANSAMINAZE H 2 N- + O= H 2 N- + O=

42 Mehanizem encimsko kataliziranih bisubstratnih reakcij Encimske reakcije, ki vključujejo ternarni kompleks Encimske reakcije, pri katerih ne nastaja ternarni kompleks (ping-pong mehanizem)

43 Kako ugotoviti mehanizem bisubstratnih reakcij? Kinetična analiza bisubstratnih reakcij (dvojni recipročni diagram) potek reakcije preko ternarnega komleksa ping-pong mehanizem

44 Na encimsko aktivnost vplivajo zunanje razmere V max, K m eksperimentalno določimo V max, K m karakteristični za encim V max, K m spreminjata se z zunanjimi razmerami: - ph - temperatura - ionska moč

45 Vpliv ph na encimsko aktivnost (v 0 ) pepsin glukoza-6-fosfataza

46 Peptidaza prime substrat (dipeptid) z najmanj tremi šibkimi vezmi, mu vsili novo konformacijo v kateri je peptidna vez že natrgana (prehodno stanje!)

47 kumulativni vpliv Vpliv ph na encime je navadno kompleksen primer kimotripsin vpliv na k kat vpliv na afiniteto E do S (K M )

48 Vpliv ph in temperature na encimsko aktivnost (V)

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost

Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna hitrost FFA: Laboratorijska medicina, Molekularna encimologija, 2010/2011 3.predavanje Jure Stojan 2. predavanje termodinamične osnove, encimske katalize encimska kataliza časovni potek encimske reakcije začetna

Διαβάστε περισσότερα

Mehanizmi encimske katalize

Mehanizmi encimske katalize Mehanizmi encimske katalize Kompleks ES stabilizirajo šibke interakcije Sledi razcep ES in nastanek vezi po različnih mehanizmih, ki vključujejo prehodni nastanek kovalentnih vezi - približanje in orientacija

Διαβάστε περισσότερα

Encimi. Splošne lastnosti - osnove delovanja, specifičnost, energijski vidik nekatalizirane in encimsko katalizirane reakcije

Encimi. Splošne lastnosti - osnove delovanja, specifičnost, energijski vidik nekatalizirane in encimsko katalizirane reakcije Encimi Splošne lastnosti - osnove delovanja, specifičnost, energijski vidik nekatalizirane in encimsko katalizirane reakcije Kofaktorji, koencimi in prostetične skupine Mehanizmi encimske katalize Klasifikacija

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Encimi.

Encimi. Encimi Encimi so biološki katalizatorji, ki pospešijo hitrost kemijskih reakcij v bioloških sistemih. Delujejo tako, da znižajo aktivacijsko energijo za pretvorbo reaktantov (imenujemo jih substrati) v

Διαβάστε περισσότερα

Funkcije proteinov (pogojene s strukturo)

Funkcije proteinov (pogojene s strukturo) Funkcije proteinov (pogojene s strukturo) Oporna funkcija (strukturni proteini, npr keratini, kolagen...) Transport/skladiščenje določenih molekul (ligandov, npr. Hb, Mb) Uravnavanje procesov (DNA-vezavni

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Glukoneogeneza. Glukoneogeneza. Glukoneogeneza. poteka v jetrih in ledvični skorji, v citoplazmi in delno v mitohondrijih.

Glukoneogeneza. Glukoneogeneza. Glukoneogeneza. poteka v jetrih in ledvični skorji, v citoplazmi in delno v mitohondrijih. poteka v jetrih in ledvični skorji, v citoplazmi in delno v mitohondrijih. Izhodne spojine:, laktat, in drugi intermediati cikla TKK glukogene aminokisline, glicerol Kaj pa maščobne kisline? Ireverzibilne

Διαβάστε περισσότερα

Uravnavanje encimske aktivnosti

Uravnavanje encimske aktivnosti Uravnavanje encimske aktivnosti Uvod Mehanizmi encimske katalize Inhibicija encimov Modulacija aktivnosti alosteričnih encimov Uravnavanje encimske aktivnosti: - uravnavanje koncentracije encimov - spreminjanje

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Eliminacijski zadatak iz Matematike 1 za kemičare

Eliminacijski zadatak iz Matematike 1 za kemičare Za mnoge reakcije vrijedi Arrheniusova jednadžba, koja opisuje vezu koeficijenta brzine reakcije i temperature: K = Ae Ea/(RT ). - T termodinamička temperatura (u K), - R = 8, 3145 J K 1 mol 1 opća plinska

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Sreda, 3. junij 2015 SPLOŠNA MATURA Državni izpitni center *M15143113* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sreda, 3. junij 2015 SPLOŠNA MATURA RIC 2015 M151-431-1-3 2 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

ENCIMI ZGRADBA ENCIMOV NEKATERI ENCIMI IN NJIHOVI KOFAKTORJI

ENCIMI ZGRADBA ENCIMOV NEKATERI ENCIMI IN NJIHOVI KOFAKTORJI Visoko specializirani proteini in mala skupina katalitičnih molekul RNA biološki katalizatorji Katalizirajo kemijske reakcije v živih organizmih - pospeševanje do 10 6-10 16 x Zmanjšajo E a, ne vplivajo

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

1 Uvod v biokemijo. Slika. Nekakj spoznanj s področja biokemije.

1 Uvod v biokemijo. Slika. Nekakj spoznanj s področja biokemije. Univerza na Primorskem, Fakulteta za vede o zdravju Prehransko svetovanje - dietetika, 1. stopenjski študij Predmet: Biokemija, 1. letnik Avtorica: Doc. dr. Zala Jenko Pražnikar 1 Uvod v biokemijo Biokemijo

Διαβάστε περισσότερα

Matjaž Zorko Medicinska fakulteta

Matjaž Zorko Medicinska fakulteta Univerza v Ljubljani, Fakulteta za farmacijo, 2009 MOLEKULARNA ENCIMOLOGIJA KLASIFIKACIJA IN NOMENKLATURA ENCIMOV (s primeri) Matjaž Zorko Medicinska fakulteta GLEJ: http://ibk.mf.uni-lj.si/teaching/lab_medicina/default.html

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Jure Stojan in Marko Goličnik Medicinska fakulteta

Jure Stojan in Marko Goličnik Medicinska fakulteta Univerza v Ljubljani, Fakulteta za farmacijo, 2015/16 Program: Laboratorijska biomedicina Predmet: MOLEKULARNA ENCIMOLOGIJA Jure Stojan in Marko Goličnik Medicinska fakulteta Prof. dr. Matjaž Zorko do

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013

Logatherm WPL 14 AR T A ++ A + A B C D E F G A B C D E F G. kw kw /2013 WP 14 R T d 9 10 11 53 d 2015 811/2013 WP 14 R T 2015 811/2013 WP 14 R T Naslednji podatki o izdelku izpolnjujejo zahteve uredb U 811/2013, 812/2013, 813/2013 in 814/2013 o dopolnitvi smernice 2010/30/U.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

Izločanje zdravilnih učinkovin iz telesa:

Izločanje zdravilnih učinkovin iz telesa: Izločanje zdravilnih učinkovin iz telesa: kinetični vidiki Biofarmacija s farmakokinetiko Aleš Mrhar Izločanje učinkovin Izraženo s hitrostjo in maso, dx/dt = k e U očistkom in volumnom, Cl = k e V Hitrost

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba.

Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. 1. Osnovni pojmi Enačba, v kateri poleg neznane funkcije neodvisnih spremenljivk ter konstant nastopajo tudi njeni odvodi, se imenuje diferencialna enačba. Primer 1.1: Diferencialne enačbe so izrazi: y

Διαβάστε περισσότερα

Aleš Mrhar. kinetični ni vidiki. Izraženo s hitrostjo in maso, dx/dt očistkom

Aleš Mrhar. kinetični ni vidiki. Izraženo s hitrostjo in maso, dx/dt očistkom Izločanje zdravilnih učinkovin u iz telesa: kinetični ni vidiki Biofarmacija s farmakokinetiko Univerzitetni program Farmacija Aleš Mrhar Izločanje učinkovinu Izraženo s hitrostjo in maso, dx/ k e U očistkom

Διαβάστε περισσότερα

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1

Katedra za farmacevtsko kemijo. Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks. 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Katedra za farmacevtsko kemijo Sinteza mimetika encima SOD 2. stopnja: Mn 3+ ali Cu 2+ salen kompleks 25/11/2010 Vaje iz Farmacevtske kemije 3 1 Sinteza kompleksa [Mn 3+ (salen)oac] Zakaj uporabljamo brezvodni

Διαβάστε περισσότερα

METABOLIZEM OGLJIKOVIH HIDRATOV

METABOLIZEM OGLJIKOVIH HIDRATOV METABOLIZEM OGLJIKOVIH HIDRATOV KAKO CELICA DOBI GLUKOZO IN OSTALE MONOSAHARIDE? HRANA ZNOTRAJCELIČNI GLIKOGEN ali ŠKROB razgradnja s prebavnimi encimi GLUKOZA in ostali monosaharidi fosforilitična cepitev

Διαβάστε περισσότερα

FARMAKOKINETIKA. Hitrosti procesov Farmakokinetični ni parametri Aplikacija. Tatjana Irman Florjanc

FARMAKOKINETIKA. Hitrosti procesov Farmakokinetični ni parametri Aplikacija. Tatjana Irman Florjanc FARMAKOKINETIKA Hitrosti procesov Farmakokinetični ni parametri Aplikacija Tatjana Irman Florjanc Inštitut za farmakologijo in eksperimentalno toksikologijo, MF, Univerza v Ljubljani V praksi - kontrola

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Encimi v tleh. k 1 E + S ES E + P. k 3. k 2

Encimi v tleh. k 1 E + S ES E + P. k 3. k 2 Encimi v tleh k 1 E + S ES E + P k 2 k 3 1 Encimi in definicije encim (E) je protein, ki ga producira celica in deluje kot katalizator znižuje aktivacijsko energijo in na ta način pospeši hitrost reakcije

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Proizvodnja in uporaba encimov

Proizvodnja in uporaba encimov Kmetijska šola Grm Sevno 13 8000 Novo mesto Proizvodnja in uporaba encimov ( predmet: Biotehnologija ) Gorenja vas; 7.3.2007 Avtor: Lidija Gorenc Jožica Koračin, 3.c Mentor: Jana Goršin Fabjan Kazalo:

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

[ E] [ ] kinetika encimske pretvorbe. razpolovni čas. ln pretvorba encimov sledi kinetiki prvega reda

[ E] [ ] kinetika encimske pretvorbe. razpolovni čas. ln pretvorba encimov sledi kinetiki prvega reda kinetika encimske pretvorbe pretvorba encimov sledi kinetiki prvega reda sinteza encimov sledi kinetiki nultega reda v ravnotežju de = k E s kd dt [ ] ' ' [ Et ] k s ks ' ' [ E ] k [ E ] k [ E ] = 1 e

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Osnove biokemije Enzimska kinetika. Boris Mildner. Kinetika proučava brzine reakcija

Osnove biokemije Enzimska kinetika. Boris Mildner. Kinetika proučava brzine reakcija Osnove biokemije Enzimska kinetika Boris Mildner Kinetika proučava brzine reakcija Za reakciju: A P Brzina reakcije v je: v = - d[a]/dt = d[p]/dt (1) pri čemu d označava smanjenje koncentracije supstrata,

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Nastanek NADH in NADPH Prenos elektronov in nastanek ATP

Nastanek NADH in NADPH Prenos elektronov in nastanek ATP Nastanek NADH in NADPH Prenos elektronov in nastanek ATP Glavne metabolične poti glukoze Glikoliza (Embden Meyerhofova metabolna pot) Fosfoglukonatna (pentozafosfatna) pot: nekatere živali Katabolizem

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

pretvarja v nestrupeno obliko, ki lahko vstopa v biosintezo nukleotidov *i) NH 4

pretvarja v nestrupeno obliko, ki lahko vstopa v biosintezo nukleotidov *i) NH 4 1. Piruvat karboksilaza a) je aktivirana z acetil koencimom A b) je regulatorni encim glukoneogeneze c) se nahaja v citosolu d) vsebuje prostetično skupino biotin e) potrebuje za svojo aktivnost NADH *f)

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

UVOD CIKLUS CITRONSKE KISLINE (CCK) = KREBSOV CIKLUS = CIKLUS TRIKARBOKSILNIH KISLIN

UVOD CIKLUS CITRONSKE KISLINE (CCK) = KREBSOV CIKLUS = CIKLUS TRIKARBOKSILNIH KISLIN CIKLUS CITRONSKE KISLINE (CCK) = KREBSOV CIKLUS = CIKLUS TRIKARBOKSILNIH KISLIN Glavne metabolične poti oglj. hidratov pri rastlinah in živalih GLIKOGEN, ŠKROB Riboza 5-fosfat + NADPH+H + katabolizem fosfoglukonatna

Διαβάστε περισσότερα

FUNKCIJA PROTEINOV, PRIMERI FIBRILARNI PROTEINI. α KERATIN

FUNKCIJA PROTEINOV, PRIMERI FIBRILARNI PROTEINI. α KERATIN FUNKCIJA PROTEINOV, PRIMERI FIBRILARNI PROTEINI keratin, kolagen, fibroin, spidroin GLOBULARNI PROTEINI domenska zgradba proteinov MIOGLOBIN, HEMOGLOBIN vezava kisika zgradba konformacijske spremembe ob

Διαβάστε περισσότερα

Raztopine. Raztopine. Elektroliti. Elektrolit je substanca, ki pri raztapljanju (v vodi) daje ione. A a B b aa b+ + bb a-

Raztopine. Raztopine. Elektroliti. Elektrolit je substanca, ki pri raztapljanju (v vodi) daje ione. A a B b aa b+ + bb a- Raztopine Mnoge analizne metode temeljijo na opazovanju ravnotežnih sistemov, ki se vzpostavijo v raztopinah. Najpogosteje uporabljeno topilo je voda! RAZTOPINE: topljenec topilo (voda) (Enote za koncentracije!)

Διαβάστε περισσότερα

Prehrana in metabolizem

Prehrana in metabolizem Prehrana in metabolizem Hranila Energija Kataliza in encimi Oksidacije-redukcije Prenašalci elektronov Visoko energetske spojine Fermentacija Respiracija in transport elektronov Metabolizem vsi kemični

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO

VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO OSNOVNA ŠOLA PRIMOŽA TRUBARJA LAŠKO VPLIV REAKCIJSKIH SPREMENLJIVK NA POTEK IN HITROST MODELNE REAKCIJE NATRIJEVEGA TIOSULFATA S KLOROVODIKOVO KISLINO (RAZISKOVALNO DELO) Avtorici: Lea Lešek Povšič in

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina:

S t r a n a 1. 1.Povezati jonsku jačinu rastvora: a) MgCl 2 b) Al 2 (SO 4 ) 3 sa njihovim molalitetima, m. za so tipa: M p X q. pa je jonska jačina: S t r a n a 1 1.Povezati jonsku jačinu rastvora: a MgCl b Al (SO 4 3 sa njihovim molalitetima, m za so tipa: M p X q pa je jonska jačina:. Izračunati mase; akno 3 bba(no 3 koje bi trebalo dodati, 0,110

Διαβάστε περισσότερα

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov

vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov. 6. vaja Kvan*ta*vno določanje proteinov 28. 3. 11 UV- spektrofotometrija Biuretska metoda Absorbanca pri λ=28 nm (A28) UV- spektrofotometrija Biuretska metoda vstopni žarek intenziteta I Lowrijeva metoda Bradfordova metoda Bradfordova metoda

Διαβάστε περισσότερα

ENCIMI V ORGANIZIRANIH SISTEMIH

ENCIMI V ORGANIZIRANIH SISTEMIH ENCIMI V ORGANIZIRANIH SISTEMIH EC klasifikacija: po reakcijah, ki jih katalizira Encimski sistemi: so poteini z več kot eno encimsko akevnostjo RazvrsEtev po organiziranose: muleencimski protein proteini

Διαβάστε περισσότερα

ZGRADBA ENCIMOV ENCIMI ENCIMI REAKCIJE, KINETIKA IN INHIBICIJA. Aktivni samo v nativni konformaciji. M = Da. Enostavni in sestavljeni

ZGRADBA ENCIMOV ENCIMI ENCIMI REAKCIJE, KINETIKA IN INHIBICIJA. Aktivni samo v nativni konformaciji. M = Da. Enostavni in sestavljeni EIMI REAKIJE, KIETIKA I IIBIIJA Visoko specializirani proteini in mala skupina katalitičnih molekul RA biološki katalizatorji Katalizirajo kemijske reakcije v živih organizmih - pospeševanje do 10 6-10

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

Osnove sklepne statistike

Osnove sklepne statistike Univerza v Ljubljani Fakulteta za farmacijo Osnove sklepne statistike doc. dr. Mitja Kos, mag. farm. Katedra za socialno farmacijo e-pošta: mitja.kos@ffa.uni-lj.si Intervalna ocena oz. interval zaupanja

Διαβάστε περισσότερα

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα.

Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. 2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό διατίθεται με του όρους χρήσης Creative Commons (CC) Αναφορά Δημιουργού Μη Εμπορική Χρήση Όχι Παράγωγα Έργα. Για εκπαιδευτικό υλικό, όπως εικόνες, διαγράμματα,

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah

Energije in okolje 1. vaja. Entalpija pri kemijskih reakcijah Entalpija pri kemijskih reakcijah Pri obravnavi energijskih pretvorb pri kemijskih reakcijah uvedemo pojem entalpije, ki popisuje spreminjanje energije sistema pri konstantnem tlaku. Sistemu lahko povečamo

Διαβάστε περισσότερα

VAJA 1 ALBUMINU NEZNANE KONCENTRACIJE DOLOČITE KONCENTRACIJO: Izmerite A 280 albumina v vzorcu. Vrednost absorbance vzorca naj ne preseže 1!

VAJA 1 ALBUMINU NEZNANE KONCENTRACIJE DOLOČITE KONCENTRACIJO: Izmerite A 280 albumina v vzorcu. Vrednost absorbance vzorca naj ne preseže 1! VAJA 1 ALBUMINU NEZNANE KONCENTRACIJE DOLOČITE KONCENTRACIJO: Izmerite A 280 albumina v vzorcu. Vrednost absorbance vzorca naj ne preseže 1! S pomočjo standardne raztopine (raztopina albumina koncentracije

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

13. Vaja: Reakcije oksidacije in redukcije

13. Vaja: Reakcije oksidacije in redukcije 1. Vaja: Reakcije oksidacije in redukcije a) Osnove: Oksidacija je reakcija pri kateri posamezen element (reducent) oddaja elektrone in se pri tem oksidira (oksidacijsko število se zviša). Redukcija pa

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

DOLOČANJE)ENCIMSKE)AKTIVNOSTI)V)KLINIČNE)NAMENE)

DOLOČANJE)ENCIMSKE)AKTIVNOSTI)V)KLINIČNE)NAMENE) DLČANJEENCIMSKEAKTIVNSTIVKLINIČNENAMENE 20encimovseru=nskopregledujevkliniki 1954sougotovilipovezanostsrčnegainfarktainpovišanekonc. aspartataminotransferazevserumu danesnarapolagovelikoabzapreciznodoločanjekoncproteinov

Διαβάστε περισσότερα

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013

Iterativno reševanje sistemov linearnih enačb. Numerične metode, sistemi linearnih enačb. Numerične metode FE, 2. december 2013 Numerične metode, sistemi linearnih enačb B. Jurčič Zlobec Numerične metode FE, 2. december 2013 1 Vsebina 1 z n neznankami. a i1 x 1 + a i2 x 2 + + a in = b i i = 1,..., n V matrični obliki zapišemo:

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ

ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ GR ΠΡΙΤΣΙΝΑΔΟΡΟΣ ΛΑΔΙΟΥ ΑΕΡΟΣ ΓΙΑ ΠΡΙΤΣΙΝΙΑ M4/M12 ΟΔΗΓΙΕΣ ΧΡΗΣΗΣ - ΑΝΤΑΛΛΑΚΤΙΚΑ H OLJLAJNYOMÁSÚ SZEGECSELŐ M4/M12 SZEGECSEKHEZ HASZNÁLATI UTASÍTÁS - ALKATRÉSZEK SLO OLJNO-PNEVMATSKI KOVIČAR ZA ZAKOVICE

Διαβάστε περισσότερα

Zakonitosti hitrosti reakcije in konstante hitrosti (Rate laws)

Zakonitosti hitrosti reakcije in konstante hitrosti (Rate laws) Zakonioi hiroi reakcije in konane hiroi (Rae law) Merjena hiro reakcije je odvina od koncenracije reakanov na neko poenco. v k [A] [B] k konana hiroi reakcije (neodvina od koncenracije) (odvina od T) Ekperimenalno

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Teze predavanj iz mikrobne biokemije*

Teze predavanj iz mikrobne biokemije* Tom Turk Teze predavanj iz mikrobne biokemije* Ljubljana, november 1996, oktober 2003 *slike so na CD v ppt formatu, besedilo v drobnem tisku je priporočljivo ni pa obvezno, Študentom mikrobiologije 1.

Διαβάστε περισσότερα

FIZIKA NAVODILA ZA OCENJEVANJE

FIZIKA NAVODILA ZA OCENJEVANJE Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA

FTN Novi Sad Katedra za motore i vozila. Teorija kretanja drumskih vozila Vučno-dinamičke performanse vozila: MAKSIMALNA BRZINA : MAKSIMALNA BRZINA Maksimalna brzina kretanja F O (N) F OI i m =i I i m =i II F Oid Princip određivanja v MAX : Drugi Njutnov zakon Dokle god je: F O > ΣF otp vozilo ubrzava Kada postane: F O = ΣF otp

Διαβάστε περισσότερα

Metabolizem in energija

Metabolizem in energija Metabolizem in energija . Metabolizem Vsota vseh kemijskih reakcij v organizmu, njihovo uravnavanje, in vse energetske spremembe ki potekajo v organizmih. Metabolizem vključuje različne metabolične poti,

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

METABOLIZEM OGLJIKOVIH HIDRATOV

METABOLIZEM OGLJIKOVIH HIDRATOV METABLIZEM GLJIKVIH HIDRATV KAK CELICA DBI GLUKZ IN STALE MNSAHARIDE? HRANA ZNTRAJCELIČNI GLIKGEN ali ŠKRB razgradnja s prebavnimi encimi GLUKZA in ostali monosaharidi fosforilitična cepitev prenos do

Διαβάστε περισσότερα

Poglavje 10. Molekule Kovalentna vez

Poglavje 10. Molekule Kovalentna vez Poglavje 10 Molekule Atomi se vežejo v molekule. Vezavo med atomi v molkuli posredujejo zunanji - valenčni elektroni. Pri vseh molekularnih vezeh negativni naboj elektronov posreduje med pozitinvimi ioni

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013

Postavitev hipotez NUJNO! Milena Kova. 10. januar 2013 Postavitev hipotez NUJNO! Milena Kova 10. januar 2013 Osnove biometrije 2012/13 1 Postavitev in preizku²anje hipotez Hipoteze zastavimo najprej ob na rtovanju preizkusa Ob obdelavi jih morda malo popravimo

Διαβάστε περισσότερα

Φάση 1 Φάση 2 Φάση 3 προϊόν χρόνος

Φάση 1 Φάση 2 Φάση 3 προϊόν χρόνος 1 Ως ενζυμική μονάδα ορίζεται η ποσότητα ενζύμου που απαιτείται για να μετατραπεί 1 μmol συγκεκριμένου υποστρώματος/min υπό αυστηρά καθορισμένες συνθήκες (συνήθως 25 o C). Ο παραπάνω ορισμός είναι αποδεκτός

Διαβάστε περισσότερα

Hitrost reakcije je lahko tudi krmiljena od težav pri prenosu kemijskih elementov oz. molekul od mesta reakcije.

Hitrost reakcije je lahko tudi krmiljena od težav pri prenosu kemijskih elementov oz. molekul od mesta reakcije. REAKCIJSKA KINETIKA REAKCIJSKA KINETIKA Termodinamika ne pove nič o pogojih napredovanja nekega procesa proti ravnotežju ter nič o mehanizmu reakcij. Pri ekstraktivnih procesih često zavisi hitrost proizvodnje

Διαβάστε περισσότερα