Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA. Ispitna knjižica 1 BIO IK-1 D-S001. BIO IK-1 D-S001.indb

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA. Ispitna knjižica 1 BIO IK-1 D-S001. BIO IK-1 D-S001.indb"

Transcript

1 Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA Ispitna knjižica 1 12.indb :38:53

2 Prazna stranica 99.indb :38:53

3 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni nastavnik. Nalijepite identifikacijsku naljepnicu na sve ispitne materijale koje ste dobili u omotnici. Ispit traje 120 minuta bez prekida. Zadatci se nalaze u dvjema ispitnim knjižicama. Redoslijed rješavanja birajte sami. Dobro rasporedite vrijeme kako biste mogli riješiti sve zadatke. Možete pisati po stranicama ove knjižice, ali ne zaboravite prepisati odgovore na list za odgovore. Ispred svake skupine zadataka je uputa za njihovo rješavanje. Pozorno ju pročitajte. Tijekom pisanja ispita dopušteno je rabiti kemijsku olovku plave ili crne boje. Kada riješite test, provjerite svoje odgovore. Želimo Vam puno uspjeha! Ova ispitna knjižica ima 16 stranica, od toga 3 prazne. Način popunjavanja lista za odgovore Dobro Ispravljanje pogrješnoga unosa Loše 99.indb :38:53

4 I. Zadatci višestrukoga izbora U sljedećim zadatcima između četiriju ponuđenih trebate odabrati jedan odgovor. Odgovore obilježite znakom X i obvezno ih prepišite na list za odgovore. Točan odgovor donosi 1 bod. 1. Koja se od navedenih tvari ne će obojiti u plavo pomoću Lugolove otopine? škrobno brašno bjelanjak jajeta neoljuštena riža gomolj krumpira 2. Između kojih je veza pohranjena energija u ATP-u? adenina i riboze dvaju fosfata riboze i fosfata adenina i fosfata 3. Vinska mušica (Drozophila melanogaster) ima 8 kromosoma. Koliko će molekula DNA biti u stanici vinske mušice u profazi I. mejoze? Koja je uloga klorofila u fotosintezi? proizvodnja kisika razgradnja organskih spojeva sinteza organskih spojeva vezanje svjetlosne energije 01.indb :38:53

5 5. Koju staničnu tvorbu ima biljna, a nema životinjska stanica? staničnu stijenku Golgijevo tijelo centriol ribosom 6. Iz kojega se zametnoga listića razvijaju kosti i mišići? iz blastocela iz ektoderma iz mezoderma iz endoderma 7. Odaberite ispravno poredane faze u razvoju nove jedinke nakon oplodnje. zigota morula gastrula blastula morula blastula zigota gastrula morula zigota gastrula blastula zigota morula blastula gastrula 8. Odaberite ispravno poredane stanične tvorbe razvijene biljne stanice prema veličini od najmanje prema najvećoj. vakuola ribosom kloroplast jezgra ribosom kloroplast jezgra vakuola jezgra vakuola ribosom kloroplast kloroplast jezgra vakuola ribosom 9. Koja je od navedenih sistematskih kategorija viša od reda? vrsta porodica koljeno rod 01.indb :38:54

6 10. U čemu se od navedenoga nalaze simbiontske dušikove bakterije roda Rhizobium? u korijenu djeteline u sjemenci graha u lukovici luka u gomolju krumpira 11. Koji od navedenih organizama ne pripada carstvu Monera? laktobacil streptokok mikoplazma peronospora 12. Gdje se nalazi zrela klica ili embrio biljaka sjemenjača? u usplođu ploda u sjemenci u polenu u plodnici tučka 13. Koji pojam točno označuje stablo hrasta? haploidni sporofit diploidni sporofit haploidni gametofit diploidni gametofit 14. Gdje se odvija energetski najvrjedniji dio staničnoga disanja? u staničnoj citoplazmi u matriksu mitohondrija na vanjskoj membrani mitohondrija na unutarnjoj membrani mitohondrija 01.indb :38:54

7 15. Što se od navedenoga događa tijekom Krebsova ciklusa? anaerobna razgradnja glukoze nastajanje molekula vode oslobađanje ugljikova(iv) oksida sinteza pirogrožđane kiseline 16. Mekušci su evolucijski najrazvijenija skupina beskolutićavaca. Koji se organski sustavi prvi put javljaju u mekušaca? višeslojna koža i vanjski kostur optjecajni i dišni sustav prohodno probavilo i živčani sustav osjetila i endokrini sustav 17. Koji beskralježnjak ima zatvoreni krvotok? jastog pijavica pčela hobotnica 18. Koji sisavci nemaju razvijenu posteljicu? glodavci primati kukcojedi tobolčari 19. Koji od navedenih organizama pripada žarnjacima? sipa kvrgavi volak bezupka ušati klobuk 01.indb :38:54

8 20. Koja bi od navedenih životinja najlakše preživjela sušu? žuti mukač riđovka daždevnjak čovječja ribica 21. Odaberite ispravno poredane životinje prema složenosti dišnoga sustava od najjednostavnijega prema najsloženijem. hrušt virnjak sokol krokodil sokol krokodil virnjak hrušt virnjak hrušt krokodil sokol krokodil sokol virnjak hrušt 22. Kojim je molekulama povećana koncentracija u krvnoj plazmi čovjeka koji boluje od zarazne bolesti? albuminima α-globulinima fibrinogenima γ-globulinima 23. U kojem slučaju postoji mogućnost pojave hemolitičke bolesti novorođenčeta? majka Rh-, dijete Rh- majka Rh-, dijete Rh+ majka Rh+, dijete Rh- majka Rh+, dijete Rh+ 24. Marija je namjerno ubrzano i duboko disala sve dok joj se nije pojavila vrtoglavica. Što se događa u njezinoj krvi? javlja se acidoza javlja se alkaloza smanjuje se koncentracija O 2 povećava se koncentracija CO 2 01.indb :38:54

9 25. Odaberite ispravno poredane dijelove živčanoga sustava u refleksnoj reakciji. receptor osjetilni neuron motorički neuron efektor motorički neuron efektor osjetilni neuron receptor osjetilni neuron receptor efektor motorički neuron efektor motorički neuron receptor osjetilni neuron 26. Genski lanac DNA sadrži 1200 nukleotida. Koliko će aminokiselina imati protein čijom sintezom upravlja taj lanac DNA? Koji je od navedenih genotipova dominantni homozigot za prvo, a heterozigot za drugo svojstvo? aabb AABB AaBb AABb 28. Koje kromosome sadrži zigota čovjeka? 23 autosoma i 23 spolna kromosoma 44 autosoma i 2 spolna kromosoma 46 autosoma i 2 spolna kromosoma 22 autosoma i 1 spolni kromosom 29. Koji je od navedenih čovjekovih predaka najstariji u nizu roda Homo? Homo habilis Homo neanderthalensis Homo erectus Homo sapiens 01.indb :38:54

10 30. Koja je uloga hobotnice u hranidbenome lancu? nametnika grabežljivca proizvođača razlagača 31. Što od navedenoga opisuje sukcesiju? izmjena perja sazrijevanje plodova zaraštavanje jezera seoba ptica 32. Odaberite ispravno poredane biome od sjevernoga pola do ekvatora. tajge tundre savane listopadne šume tundre tajge listopadne šume savane savane listopadne šume tundre tajge listopadne šume savane tajge tundre 01.indb :38:54

11 II. Zadatci povezivanja i sređivanja U sljedećim zadatcima svakoj čestici pitanja označenoj brojem pridružite odgovarajuću česticu odgovora označenu slovom. Odgovore obilježite znakom X i obvezno ih prepišite na list za odgovore. Svaki točan odgovor donosi 1 bod. 33. Staničnim strukturama pridružite odgovarajuće uloge. 1. ribosom 2. lizosom 3. mitohondrij 4. centriol spaja kromatide jednoga kromosoma obavlja stanično disanje stvara diobeno vreteno podupire stanicu E. sintetizira bjelančevine F. probavlja hranjive tvari E. F. G. H. 34. Protoktistima pridružite odgovarajuće osobine. 1. kistac 2. kvaščeva gljivica 3. zelena pupavka 4. siva plijesan uzrokuje octeno vrenje uzrokuje alkoholno vrenje sadrži otrovne tvari koje oštećuju živčani sustav sadrži stanične otrove koji oštećuju jetru E. stvara antibiotik penicilin F. stvara paučinaste prevlake s crnim posipom E. F. G. H. 05.indb :38:54

12 35. Vrstama biljaka pridružite odgovarajuće sistematske skupine. 1. kukuruz 2. selagina 3. maslačak 4. smreka mahovina jednosupnica paprat golosjemenjača E. crvotočina F. dvosupnica E. F. G. H. 36. Skupinama životinja pridružite odgovarajuće osobine. 1. metilji 2. grinje 3. spužve 4. gujavice razmnožavanje pupanjem disanje škrgama neprohodno probavilo zatvoreni krvotok E. člankovite noge F. vodožilni sustav E. F. G. H. 05.indb :38:54

13 37. Vitaminima pridružite poremećaje koji nastaju zbog njihova nedostatka. 1. vitamin A 2. vitamin B 3. vitamin C 4. vitamin D skorbut rahitis sterilnost noćna sljepoća E. pelagra F. gušavost E. F. G. H. 38. Geološkim epohama pridružite odgovarajuće događaje. 1. paleozoik 2. mezozoik 3. arheozoik 4. kenozoik doba gmazova doba čovjeka pojava vodozemaca pojava beskralježnjaka E. pojava života na Zemlji F. pojava praživotinja E. F. G. H. 05.indb :38:54

14 39. Ekološkim pojmovima pridružite odgovarajuće značenje. 1. vegetacija 2. endem 3. flora 4. areal nedjeljiva cjelina životne zajednice i staništa biljne vrste nekoga područja područje na Zemlji gdje živi neka vrsta biljne zajednice nekoga područja E. stanište na kojem živi biocenoza F. vrsta ograničenoga areala E. F. G. H. 40. Biotičkim čimbenicima pridružite odgovarajuće organizme. 1. simbioza 2. predatorstvo 3. parazitizam 4. kompeticija vidra i riba kuna i lasica djetlić i galeb islandski lišaj E. modrozelena bakterija F. ehinokok i pas E. F. G. H. 05.indb :38:54

15 Prazna stranica 99.indb :38:54

16 Prazna stranica 99.indb :38:54

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni nastavnik.

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA. Ispitna knjižica 1 FIZ IK-1 D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja FIZIKA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001

Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA. viša razina MAT A D-S001 Nacionalni centar za vanjsko vrednovanje obrazovanja MATEMATIKA viša razina MAT A D-S Prazna stranica MAT A D-S 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne

Διαβάστε περισσότερα

MATEMATIKA. osnovna razina MATB.11.HR.R.K1.20 MAT B D-S011. MAT B D-S011.indd :03:46

MATEMATIKA. osnovna razina MATB.11.HR.R.K1.20 MAT B D-S011. MAT B D-S011.indd :03:46 MATEMATIKA osnovna razina MAT B D-S MAT.HR.R.K. 44 MAT B D-S.indd 9.7. :3:46 Prazna stranica MAT B D-S 99 MAT B D-S.indd 9.7. :3:46 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

MATEMATIKA. viša razina MAT A D-S004 MATA.04.HR.R.K1.24. MAT A D-S004.indb :56:26

MATEMATIKA. viša razina MAT A D-S004 MATA.04.HR.R.K1.24. MAT A D-S004.indb :56:26 MATEMATIKA viša razina MAT A D-S4 MAT4.HR.R.K.4 MAT A D-S4.indb 6.. :56:6 Prazna stranica MAT A D-S4 99 MAT A D-S4.indb 6.. :56:6 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI

21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE GODINE 8. RAZRED TOČNI ODGOVORI 21. ŠKOLSKO/OPĆINSKO/GRADSKO NATJECANJE IZ GEOGRAFIJE 2014. GODINE 8. RAZRED TOČNI ODGOVORI Bodovanje za sve zadatke: - boduju se samo točni odgovori - dodatne upute navedene su za pojedine skupine zadataka

Διαβάστε περισσότερα

MATEMATIKA. viša razina MAT A D-S005 MATA.05.HR.R.K1.28. MAT A D-S005.indd :31:16

MATEMATIKA. viša razina MAT A D-S005 MATA.05.HR.R.K1.28. MAT A D-S005.indd :31:16 MATEMATIKA viša razina MAT A D-S5 MAT5.HR.R.K.8 MAT A D-S5.indd 8.. 3:3:6 Prazna stranica MAT A D-S5 99 MAT A D-S5.indd 8.. 3:3:6 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

GLAZBENA UMJETNOST. Rezultati državne mature 2010.

GLAZBENA UMJETNOST. Rezultati državne mature 2010. GLAZBENA UJETNOST Rezultati državne mature 2010. Deskriptivna statistika ukupnog rezultata PARAETAR VRIJEDNOST N 112 k 61 72,5 St. pogreška mjerenja 5,06 edijan 76,0 od 86 St. devijacija 15,99 Raspon 66

Διαβάστε περισσότερα

MAT B MATEMATIKA. osnovna razina MATB.32.HR.R.K1.20 MAT B D-S032. MAT B D-S032.indd :38:21

MAT B MATEMATIKA. osnovna razina MATB.32.HR.R.K1.20 MAT B D-S032. MAT B D-S032.indd :38:21 MAT B MATEMATIKA osnovna razina MAT3.HR.R.K. MAT B D-S3 MAT B D-S3.indd 5.3.6. :38: Prazna stranica MAT B D-S3 99 MAT B D-S3.indd 5.3.6. :38: OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne

Διαβάστε περισσότερα

Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA

Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA Nacionalni centar za vanjsko vrednovanje obrazovanja BIOLOGIJA Ispitna knjižica 1 12 Prazna stranica 99 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte test dok to ne odobri dežurni

Διαβάστε περισσότερα

MATEMATIKA. viša razina MATA.15.HR.R.K1.24 MAT A D-S015

MATEMATIKA. viša razina MATA.15.HR.R.K1.24 MAT A D-S015 MATEMATIKA viša razina MAT A D-S5 MAT5.HR.R.K.4 344 Prazna stranica MAT A D-S5 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni

Διαβάστε περισσότερα

MAT B MATEMATIKA. osnovna razina MATB.33.HR.R.K1.20 MAT B D-S033. MAT B D-S033.indd :26:26

MAT B MATEMATIKA. osnovna razina MATB.33.HR.R.K1.20 MAT B D-S033. MAT B D-S033.indd :26:26 MAT B MATEMATIKA osnovna razina MAT33.HR.R.K. MAT B D-S33 MAT B D-S33.indd 8.6.6. :6:6 Prazna stranica MAT B D-S33 99 MAT B D-S33.indd 8.6.6. :6:6 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih.

Διαβάστε περισσότερα

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A

Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Kontrolni zadatak (Tačka, prava, ravan, diedar, poliedar, ortogonalna projekcija), grupa A Ime i prezime: 1. Prikazane su tačke A, B i C i prave a,b i c. Upiši simbole Î, Ï, Ì ili Ë tako da dobijeni iskazi

Διαβάστε περισσότερα

Grafičko prikazivanje atributivnih i geografskih nizova

Grafičko prikazivanje atributivnih i geografskih nizova Grafičko prikazivanje atributivnih i geografskih nizova Biserka Draščić Ban Pomorski fakultet u Rijeci 17. veljače 2011. Grafičko prikazivanje atributivnih nizova Atributivni nizovi prikazuju se grafički

Διαβάστε περισσότερα

18. listopada listopada / 13

18. listopada listopada / 13 18. listopada 2016. 18. listopada 2016. 1 / 13 Neprekidne funkcije Važnu klasu funkcija tvore neprekidne funkcije. To su funkcije f kod kojih mala promjena u nezavisnoj varijabli x uzrokuje malu promjenu

Διαβάστε περισσότερα

FIZIKA. Ispitna knjižica 1 FIZ.13.HR.R.K1.12 FIZ IK-1 D-S013

FIZIKA. Ispitna knjižica 1 FIZ.13.HR.R.K1.12 FIZ IK-1 D-S013 FIZIKA Ispitna knjižica 1 FIZ.13.HR.R.K1.1 3149 1 1 Prazna stranica 99 opće UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri dežurni nastavnik.

Διαβάστε περισσότερα

MATEMATIKA. viša razina MATA.09.HR.R.K1.24 MAT A D-S009. MAT A D-S009.indd :58:07

MATEMATIKA. viša razina MATA.09.HR.R.K1.24 MAT A D-S009. MAT A D-S009.indd :58:07 MATEMATIKA viša razina MAT A D-S9 MAT9.HR.R.K.4 47 MAT A D-S9.indd 7.. 8:58:7 Prazna stranica MAT A D-S9 99 MAT A D-S9.indd 7.. 8:58:7 UPUTE Pozorno slijedite sve upute. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

FIZIKA. Ispitna knjižica 1 FIZ.22.HR.R.K1.16 FIZ IK-1 D-S022. FIZ IK-1 D-S022.indd :25:38

FIZIKA. Ispitna knjižica 1 FIZ.22.HR.R.K1.16 FIZ IK-1 D-S022. FIZ IK-1 D-S022.indd :25:38 FIZIKA Ispitna knjižica 1 FIZ.22.HR.R.K1.16 12 1.indd 1 4.5.25. 14:25:38 Prazna stranica 99 2.indd 2 4.5.25. 14:25:38 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte

Διαβάστε περισσότερα

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija

SEMINAR IZ KOLEGIJA ANALITIČKA KEMIJA I. Studij Primijenjena kemija SEMINAR IZ OLEGIJA ANALITIČA EMIJA I Studij Primijenjena kemija 1. 0,1 mola NaOH je dodano 1 litri čiste vode. Izračunajte ph tako nastale otopine. NaOH 0,1 M NaOH Na OH Jak elektrolit!!! Disoira potpuno!!!

Διαβάστε περισσότερα

MATEMATIKA. viša razina MATA.19.HR.R.K1.24 MAT A D-S019

MATEMATIKA. viša razina MATA.19.HR.R.K1.24 MAT A D-S019 MATEMATIKA viša razina MAT A D-S9 MAT9.HR.R.K.4 6657 Prazna stranica MAT A D-S9 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Διαβάστε περισσότερα

RIJEŠENI ZADACI I TEORIJA IZ

RIJEŠENI ZADACI I TEORIJA IZ RIJEŠENI ZADACI I TEORIJA IZ LOGARITAMSKA FUNKCIJA SVOJSTVA LOGARITAMSKE FUNKCIJE OSNOVE TRIGONOMETRIJE PRAVOKUTNOG TROKUTA - DEFINICIJA TRIGONOMETRIJSKIH FUNKCIJA - VRIJEDNOSTI TRIGONOMETRIJSKIH FUNKCIJA

Διαβάστε περισσότερα

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto

Trigonometrija 2. Adicijske formule. Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Trigonometrija Adicijske formule Formule dvostrukog kuta Formule polovičnog kuta Pretvaranje sume(razlike u produkt i obrnuto Razumijevanje postupka izrade složenijeg matematičkog problema iz osnova trigonometrije

Διαβάστε περισσότερα

KEM KEMIJA. Ispitna knjižica 1 KEM.25.HR.R.K1.20 KEM IK-1 D-S025. KEM IK-1 D-S025.indd :05:13

KEM KEMIJA. Ispitna knjižica 1 KEM.25.HR.R.K1.20 KEM IK-1 D-S025. KEM IK-1 D-S025.indd :05:13 KEM KEMIJA Ispitna knjižica 1 KEM.25.HR.R.K1.20 12 1.indd 1 2.5.26. 14:05:13 Prazna stranica 99 2.indd 2 2.5.26. 14:05:13 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

ELEKTROTEHNIČKI ODJEL

ELEKTROTEHNIČKI ODJEL MATEMATIKA. Neka je S skup svih živućih državljana Republike Hrvatske..04., a f preslikavanje koje svakom elementu skupa S pridružuje njegov horoskopski znak (bez podznaka). a) Pokažite da je f funkcija,

Διαβάστε περισσότερα

Riješeni zadaci: Nizovi realnih brojeva

Riješeni zadaci: Nizovi realnih brojeva Riješei zadaci: Nizovi realih brojeva Nizovi, aritmetički iz, geometrijski iz Fukciju a : N R azivamo beskoači) iz realih brojeva i ozačavamo s a 1, a,..., a,... ili a ), pri čemu je a = a). Aritmetički

Διαβάστε περισσότερα

MAT A MATEMATIKA. viša razina MATA.32.HR.R.K1.24 MAT A D-S032. MAT A D-S032.indd :02:26

MAT A MATEMATIKA. viša razina MATA.32.HR.R.K1.24 MAT A D-S032. MAT A D-S032.indd :02:26 MAT A MATEMATIKA viša razina MAT3.HR.R.K.4 MAT A D-S3 MAT A D-S3.indd 9.3.6. 4::6 Prazna stranica MAT A D-S3 99 MAT A D-S3.indd 9.3.6. 4::6 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite

Διαβάστε περισσότερα

Zavrxni ispit iz Matematiqke analize 1

Zavrxni ispit iz Matematiqke analize 1 Građevinski fakultet Univerziteta u Beogradu 3.2.2016. Zavrxni ispit iz Matematiqke analize 1 Prezime i ime: Broj indeksa: 1. Definisati Koxijev niz. Dati primer niza koji nije Koxijev. 2. Dat je red n=1

Διαβάστε περισσότερα

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012

Iskazna logika 3. Matematička logika u računarstvu. novembar 2012 Iskazna logika 3 Matematička logika u računarstvu Department of Mathematics and Informatics, Faculty of Science,, Serbia novembar 2012 Deduktivni sistemi 1 Definicija Deduktivni sistem (ili formalna teorija)

Διαβάστε περισσότερα

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x

2 tg x ctg x 1 = =, cos 2x Zbog četvrtog kvadranta rješenje je: 2 ctg x Zadatak (Darjan, medicinska škola) Izračunaj vrijednosti trigonometrijskih funkcija broja ako je 6 sin =,,. 6 Rješenje Ponovimo trigonometrijske funkcije dvostrukog kuta! Za argument vrijede sljedeće formule:

Διαβάστε περισσότερα

TRIGONOMETRIJSKE FUNKCIJE I I.1.

TRIGONOMETRIJSKE FUNKCIJE I I.1. TRIGONOMETRIJSKE FUNKCIJE I I Odredi na brojevnoj trigonometrijskoj kružnici točku Et, za koju je sin t =,cost < 0 Za koje realne brojeve a postoji realan broj takav da je sin = a? Izračunaj: sin π tg

Διαβάστε περισσότερα

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1

Strukture podataka i algoritmi 1. kolokvij 16. studenog Zadatak 1 Strukture podataka i algoritmi 1. kolokvij Na kolokviju je dozvoljeno koristiti samo pribor za pisanje i službeni šalabahter. Predajete samo papire koje ste dobili. Rezultati i uvid u kolokvije: ponedjeljak,

Διαβάστε περισσότερα

MATEMATIKA. osnovna razina MATB.24.HR.R.K1.20 MAT B D-S024

MATEMATIKA. osnovna razina MATB.24.HR.R.K1.20 MAT B D-S024 MATEMATIKA osnovna razina MAT B D-S4 MAT4.HR.R.K. 679 Prazna stranica MAT B D-S4 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA

ZBIRKA POTPUNO RIJEŠENIH ZADATAKA **** IVANA SRAGA **** 1992.-2011. ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE POTPUNO RIJEŠENI ZADACI PO ŽUTOJ ZBIRCI INTERNA SKRIPTA CENTRA ZA PODUKU α M.I.M.-Sraga - 1992.-2011.

Διαβάστε περισσότερα

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE

POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE **** MLADEN SRAGA **** 011. UNIVERZALNA ZBIRKA POTPUNO RIJEŠENIH ZADATAKA PRIRUČNIK ZA SAMOSTALNO UČENJE SKUP REALNIH BROJEVA α Autor: MLADEN SRAGA Grafički urednik: BESPLATNA - WEB-VARIJANTA Tisak: M.I.M.-SRAGA

Διαβάστε περισσότερα

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1.

Pismeni ispit iz matematike Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: ( ) + 1. Pismeni ispit iz matematike 0 008 GRUPA A Riješiti sistem jednačina i diskutovati rješenja sistema u zavisnosti od parametra: λ + z = Ispitati funkciju i nacrtati njen grafik: + ( λ ) + z = e Izračunati

Διαβάστε περισσότερα

MAT A MATEMATIKA. viša razina MATA.41.HR.R.K1.28 MAT A D-S041

MAT A MATEMATIKA. viša razina MATA.41.HR.R.K1.28 MAT A D-S041 MAT A MATEMATIKA viša razina MAT4.HR.R.K.8 MAT A D-S4 Prazna stranica MAT A D-S4 99 OPĆE UPUTE Pozorno pročitajte sve upute i slijedite ih. Ne okrećite stranicu i ne rješavajte zadatke dok to ne odobri

Διαβάστε περισσότερα

Numerička matematika 2. kolokvij (1. srpnja 2009.)

Numerička matematika 2. kolokvij (1. srpnja 2009.) Numerička matematika 2. kolokvij (1. srpnja 29.) Zadatak 1 (1 bodova.) Teorijsko pitanje. (A) Neka je G R m n, uz m n, pravokutna matrica koja ima puni rang po stupcima, tj. rang(g) = n. (a) Napišite puni

Διαβάστε περισσότερα

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu

Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Zadaci sa prethodnih prijemnih ispita iz matematike na Beogradskom univerzitetu Trigonometrijske jednačine i nejednačine. Zadaci koji se rade bez upotrebe trigonometrijskih formula. 00. FF cos x sin x

Διαβάστε περισσότερα

3.1 Granična vrednost funkcije u tački

3.1 Granična vrednost funkcije u tački 3 Granična vrednost i neprekidnost funkcija 2 3 Granična vrednost i neprekidnost funkcija 3. Granična vrednost funkcije u tački Neka je funkcija f(x) definisana u tačkama x za koje je 0 < x x 0 < r, ili

Διαβάστε περισσότερα

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je,

PARCIJALNI IZVODI I DIFERENCIJALI. Sama definicija parcijalnog izvoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, PARCIJALNI IZVODI I DIFERENCIJALI Sama definicija parcijalnog ivoda i diferencijala je malo teža, mi se njome ovde nećemo baviti a vi ćete je, naravno, naučiti onako kako vaš profesor ahteva. Mi ćemo probati

Διαβάστε περισσότερα

TRIGONOMETRIJA TROKUTA

TRIGONOMETRIJA TROKUTA TRIGONOMETRIJA TROKUTA Standardne oznake u trokutuu ABC: a, b, c stranice trokuta α, β, γ kutovi trokuta t,t,t v,v,v s α,s β,s γ R r s težišnice trokuta visine trokuta simetrale kutova polumjer opisane

Διαβάστε περισσότερα

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova)

- pravac n je zadan s točkom T(2,0) i koeficijentom smjera k=2. (30 bodova) MEHANIKA 1 1. KOLOKVIJ 04/2008. grupa I 1. Zadane su dvije sile F i. Sila F = 4i + 6j [ N]. Sila je zadana s veličinom = i leži na pravcu koji s koordinatnom osi x zatvara kut od 30 (sve komponente sile

Διαβάστε περισσότερα

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k.

(P.I.) PRETPOSTAVKA INDUKCIJE - pretpostavimo da tvrdnja vrijedi za n = k. 1 3 Skupovi brojeva 3.1 Skup prirodnih brojeva - N N = {1, 2, 3,...} Aksiom matematičke indukcije Neka je N skup prirodnih brojeva i M podskup od N. Ako za M vrijede svojstva: 1) 1 M 2) n M (n + 1) M,

Διαβάστε περισσότερα

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost

M086 LA 1 M106 GRP. Tema: Baza vektorskog prostora. Koordinatni sustav. Norma. CSB nejednakost M086 LA 1 M106 GRP Tema: CSB nejednakost. 19. 10. 2017. predavač: Rudolf Scitovski, Darija Marković asistent: Darija Brajković, Katarina Vincetić P 1 www.fizika.unios.hr/grpua/ 1 Baza vektorskog prostora.

Διαβάστε περισσότερα

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15

MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 MATRICE I DETERMINANTE - formule i zadaci - (Matrice i determinante) 1 / 15 Matrice - osnovni pojmovi (Matrice i determinante) 2 / 15 (Matrice i determinante) 2 / 15 Matrice - osnovni pojmovi Matrica reda

Διαβάστε περισσότερα

Ispitivanje toka i skiciranje grafika funkcija

Ispitivanje toka i skiciranje grafika funkcija Ispitivanje toka i skiciranje grafika funkcija Za skiciranje grafika funkcije potrebno je ispitati svako od sledećih svojstava: Oblast definisanosti: D f = { R f R}. Parnost, neparnost, periodičnost. 3

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2011./2012. BIOLOGIJA. BIOLOGIJA 2012.indd :26:50

Ispitni katalog za državnu maturu u školskoj godini 2011./2012. BIOLOGIJA. BIOLOGIJA 2012.indd :26:50 Ispitni katalog za državnu maturu u školskoj godini 2011./2012. BIOLOGIJA BIOLOGIJA 2012.indd 1 7.10.2011 15:26:50 Stručna radna skupina za izradbu ispitnih materijala iz Biologije: mr. sc. Zrinka Pongrac

Διαβάστε περισσότερα

Teorijske osnove informatike 1

Teorijske osnove informatike 1 Teorijske osnove informatike 1 9. oktobar 2014. () Teorijske osnove informatike 1 9. oktobar 2014. 1 / 17 Funkcije Veze me du skupovima uspostavljamo skupovima koje nazivamo funkcijama. Neformalno, funkcija

Διαβάστε περισσότερα

41. Jednačine koje se svode na kvadratne

41. Jednačine koje se svode na kvadratne . Jednačine koje se svode na kvadrane Simerične recipročne) jednačine Jednačine oblika a n b n c n... c b a nazivamo simerične jednačine, zbog simeričnosi koeficijenaa koeficijeni uz jednaki). k i n k

Διαβάστε περισσότερα

( , 2. kolokvij)

( , 2. kolokvij) A MATEMATIKA (0..20., 2. kolokvij). Zadana je funkcija y = cos 3 () 2e 2. (a) Odredite dy. (b) Koliki je nagib grafa te funkcije za = 0. (a) zadanu implicitno s 3 + 2 y = sin y, (b) zadanu parametarski

Διαβάστε περισσότερα

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z.

Pismeni ispit iz matematike GRUPA A 1. Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj, zatim naći 4 z. Pismeni ispit iz matematike 06 007 Napisati u trigonometrijskom i eksponencijalnom obliku kompleksni broj z = + i, zatim naći z Ispitati funkciju i nacrtati grafik : = ( ) y e + 6 Izračunati integral:

Διαβάστε περισσότερα

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD

ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA. školska 2013./2014. godina TEST MATEMATIKA UPUTE ZA RAD ZAVRŠNI ISPIT NA KRAJU OSNOVNOG OBRAZOVANJA I ODGOJA školsk 0./04. godin TEST MATEMATIKA UPUTE ZA RAD Test koji trebš riješiti im 0 zdtk. Z rd je predviđeno 0 minut. Zdtke ne morš rditi prem redoslijedu

Διαβάστε περισσότερα

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke.

Ĉetverokut - DOMAĆA ZADAĆA. Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. Ĉetverokut - DOMAĆA ZADAĆA Nakon odgledanih videa trebali biste biti u stanju samostalno riješiti sljedeće zadatke. 1. Duljine dijagonala paralelograma jednake su 6,4 cm i 11 cm, a duljina jedne njegove

Διαβάστε περισσότερα

Operacije s matricama

Operacije s matricama Linearna algebra I Operacije s matricama Korolar 3.1.5. Množenje matrica u vektorskom prostoru M n (F) ima sljedeća svojstva: (1) A(B + C) = AB + AC, A, B, C M n (F); (2) (A + B)C = AC + BC, A, B, C M

Διαβάστε περισσότερα

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova)

( , treći kolokvij) 3. Na dite lokalne ekstreme funkcije z = x 4 + y 4 2x 2 + 2y 2 3. (20 bodova) A MATEMATIKA (.6.., treći kolokvij. Zadana je funkcija z = e + + sin(. Izračunajte a z (,, b z (,, c z.. Za funkciju z = 3 + na dite a diferencijal dz, b dz u točki T(, za priraste d =. i d =.. c Za koliko

Διαβάστε περισσότερα

Elementi spektralne teorije matrica

Elementi spektralne teorije matrica Elementi spektralne teorije matrica Neka je X konačno dimenzionalan vektorski prostor nad poljem K i neka je A : X X linearni operator. Definicija. Skalar λ K i nenula vektor u X se nazivaju sopstvena

Διαβάστε περισσότερα

Mitohondriji i kloroplasti Stanično disanje Fotosinteza Evolucija metaboličkih reakcija

Mitohondriji i kloroplasti Stanično disanje Fotosinteza Evolucija metaboličkih reakcija Mitohondriji i kloroplasti Stanično disanje Fotosinteza Evolucija metaboličkih reakcija MITOHONDRIJI -u svim eukariotskim stanicama -njihov broj ovisi o metaboličkoj aktivnosti stanice (nekoliko stotina

Διαβάστε περισσότερα

1 Promjena baze vektora

1 Promjena baze vektora Promjena baze vektora Neka su dane dvije različite uredene baze u R n, označimo ih s A = (a, a,, a n i B = (b, b,, b n Svaki vektor v R n ima medusobno različite koordinatne zapise u bazama A i B Zapis

Διαβάστε περισσότερα

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med =

100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 100g maslaca: 751kcal = 20g : E maslac E maslac = (751 x 20)/100 E maslac = 150,2kcal 100g med: 320kcal = 30g : E med E med = (320 x 30)/100 E med = 96kcal 100g mleko: 49kcal = 250g : E mleko E mleko =

Διαβάστε περισσότερα

Funkcije dviju varjabli (zadaci za vježbu)

Funkcije dviju varjabli (zadaci za vježbu) Funkcije dviju varjabli (zadaci za vježbu) Vidosava Šimić 22. prosinca 2009. Domena funkcije dvije varijable Ako je zadano pridruživanje (x, y) z = f(x, y), onda se skup D = {(x, y) ; f(x, y) R} R 2 naziva

Διαβάστε περισσότερα

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4

( ) ( ) 2 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET. Zadaci za pripremu polaganja kvalifikacionog ispita iz Matematike. 1. Riješiti jednačine: 4 UNIVERZITET U ZENICI POLITEHNIČKI FAKULTET Riješiti jednačine: a) 5 = b) ( ) 3 = c) + 3+ = 7 log3 č) = 8 + 5 ć) sin cos = d) 5cos 6cos + 3 = dž) = đ) + = 3 e) 6 log + log + log = 7 f) ( ) ( ) g) ( ) log

Διαβάστε περισσότερα

Kloroplasti. Fotosinteza Mitohondriji Stanično disanje

Kloroplasti. Fotosinteza Mitohondriji Stanično disanje Kloroplasti Fotosinteza Mitohondriji Stanično disanje http://en.wikipedia.org/wiki/plas tid PLASTIDI Organeli biljnih stanica i stanica algi Proizvodnja i pohranjivanje šećera i drugih molekula Pigmenti

Διαβάστε περισσότερα

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika

NOMENKLATURA ORGANSKIH SPOJEVA. Imenovanje aromatskih ugljikovodika NOMENKLATURA ORGANSKIH SPOJEVA Imenovanje aromatskih ugljikovodika benzen metilbenzen (toluen) 1,2-dimetilbenzen (o-ksilen) 1,3-dimetilbenzen (m-ksilen) 1,4-dimetilbenzen (p-ksilen) fenilna grupa 2-fenilheptan

Διαβάστε περισσότερα

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI)

IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) IZRAČUNAVANJE POKAZATELJA NAČINA RADA NAČINA RADA (ISKORIŠĆENOSTI KAPACITETA, STEPENA OTVORENOSTI RADNIH MESTA I NIVOA ORGANIZOVANOSTI) Izračunavanje pokazatelja načina rada OTVORENOG RM RASPOLOŽIVO RADNO

Διαβάστε περισσότερα

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE)

PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) (Enegane) List: PARNA POSTROJENJA ZA KOMBINIRANU PROIZVODNJU ELEKTRIČNE I TOPLINSKE ENERGIJE (ENERGANE) Na mjestima gdje se istovremeno troši električna i toplinska energija, ekonomičan način opskrbe energijom

Διαβάστε περισσότερα

Matematika 1 - vježbe. 11. prosinca 2015.

Matematika 1 - vježbe. 11. prosinca 2015. Matematika - vježbe. prosinca 5. Stupnjevi i radijani Ako je kut φ jednak i rad, tada je veza između i 6 = Zadatak.. Izrazite u stupnjevima: a) 5 b) 7 9 c). d) 7. a) 5 9 b) 7 6 6 = = 5 c). 6 8.5 d) 7.

Διαβάστε περισσότερα

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju

Osnovni primer. (Z, +,,, 0, 1) je komutativan prsten sa jedinicom: množenje je distributivno prema sabiranju RAČUN OSTATAKA 1 1 Prsten celih brojeva Z := N + {} N + = {, 3, 2, 1,, 1, 2, 3,...} Osnovni primer. (Z, +,,,, 1) je komutativan prsten sa jedinicom: sabiranje (S1) asocijativnost x + (y + z) = (x + y)

Διαβάστε περισσότερα

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka.

Neka je a 3 x 3 + a 2 x 2 + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. Neka je a 3 x 3 + a x + a 1 x + a 0 = 0 algebarska jednadžba trećeg stupnja. Rješavanje ove jednadžbe sastoji se od nekoliko koraka. 1 Normiranje jednadžbe. Jednadžbu podijelimo s a 3 i dobivamo x 3 +

Διαβάστε περισσότερα

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D}

radni nerecenzirani materijal za predavanja R(f) = {f(x) x D} Matematika 1 Funkcije radni nerecenzirani materijal za predavanja Definicija 1. Neka su D i K bilo koja dva neprazna skupa. Postupak f koji svakom elementu x D pridružuje točno jedan element y K zovemo funkcija

Διαβάστε περισσότερα

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa?

I.13. Koliki je napon između neke tačke A čiji je potencijal 5 V i referentne tačke u odnosu na koju se taj potencijal računa? TET I.1. Šta je Kulonova sila? elektrostatička sila magnetna sila c) gravitaciona sila I.. Šta je elektrostatička sila? sila kojom međusobno eluju naelektrisanja u mirovanju sila kojom eluju naelektrisanja

Διαβάστε περισσότερα

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti).

PRAVA. Prava je u prostoru određena jednom svojom tačkom i vektorom paralelnim sa tom pravom ( vektor paralelnosti). PRAVA Prava je kao i ravan osnovni geometrijski ojam i ne definiše se. Prava je u rostoru određena jednom svojom tačkom i vektorom aralelnim sa tom ravom ( vektor aralelnosti). M ( x, y, z ) 3 Posmatrajmo

Διαβάστε περισσότερα

SISTEMI NELINEARNIH JEDNAČINA

SISTEMI NELINEARNIH JEDNAČINA SISTEMI NELINEARNIH JEDNAČINA April, 2013 Razni zapisi sistema Skalarni oblik: Vektorski oblik: F = f 1 f n f 1 (x 1,, x n ) = 0 f n (x 1,, x n ) = 0, x = (1) F(x) = 0, (2) x 1 0, 0 = x n 0 Definicije

Διαβάστε περισσότερα

Kaskadna kompenzacija SAU

Kaskadna kompenzacija SAU Kaskadna kompenzacija SAU U inženjerskoj praksi, naročito u sistemima regulacije elektromotornih pogona i tehnoloških procesa, veoma često se primenjuje metoda kaskadne kompenzacije, u čijoj osnovi su

Διαβάστε περισσότερα

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA

POVRŠINA TANGENCIJALNO-TETIVNOG ČETVEROKUTA POVRŠIN TNGENIJLNO-TETIVNOG ČETVEROKUT MLEN HLP, JELOVR U mnoštvu mnogokuta zanimljiva je formula za površinu četverokuta kojemu se istoobno može upisati i opisati kružnica: gje su a, b, c, uljine stranica

Διαβάστε περισσότερα

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo

Elektrotehnički fakultet univerziteta u Beogradu 17.maj Odsek za Softversko inžinjerstvo Elektrotehnički fakultet univerziteta u Beogradu 7.maj 009. Odsek za Softversko inžinjerstvo Performanse računarskih sistema Drugi kolokvijum Predmetni nastavnik: dr Jelica Protić (35) a) (0) Posmatra

Διαβάστε περισσότερα

PRIMJER 3. MATLAB filtdemo

PRIMJER 3. MATLAB filtdemo PRIMJER 3. MATLAB filtdemo Prijenosna funkcija (IIR) Hz () =, 6 +, 3 z +, 78 z +, 3 z +, 53 z +, 3 z +, 78 z +, 3 z +, 6 z, 95 z +, 74 z +, z +, 9 z +, 4 z +, 5 z +, 3 z +, 4 z 3 4 5 6 7 8 3 4 5 6 7 8

Διαβάστε περισσότερα

IZVODI ZADACI (I deo)

IZVODI ZADACI (I deo) IZVODI ZADACI (I deo) Najpre da se podsetimo tablice i osnovnih pravila:. C`=0. `=. ( )`= 4. ( n )`=n n-. (a )`=a lna 6. (e )`=e 7. (log a )`= 8. (ln)`= ` ln a (>0) 9. = ( 0) 0. `= (>0) (ovde je >0 i a

Διαβάστε περισσότερα

7 Algebarske jednadžbe

7 Algebarske jednadžbe 7 Algebarske jednadžbe 7.1 Nultočke polinoma Skup svih polinoma nad skupom kompleksnih brojeva označavamo sa C[x]. Definicija. Nultočka polinoma f C[x] je svaki kompleksni broj α takav da je f(α) = 0.

Διαβάστε περισσότερα

numeričkih deskriptivnih mera.

numeričkih deskriptivnih mera. DESKRIPTIVNA STATISTIKA Numeričku seriju podataka opisujemo pomoću Numeričku seriju podataka opisujemo pomoću numeričkih deskriptivnih mera. Pokazatelji centralne tendencije Aritmetička sredina, Medijana,

Διαβάστε περισσότερα

Dvanaesti praktikum iz Analize 1

Dvanaesti praktikum iz Analize 1 Dvaaesti praktikum iz Aalize Zlatko Lazovi 20. decembar 206.. Dokazati da fukcija f = 5 l tg + 5 ima bar jedu realu ulu. Ree e. Oblast defiisaosti fukcije je D f = k Z da postoji ula fukcije a 0, π 2.

Διαβάστε περισσότερα

SEKUNDARNE VEZE međumolekulske veze

SEKUNDARNE VEZE međumolekulske veze PRIMARNE VEZE hemijske veze među atomima SEKUNDARNE VEZE međumolekulske veze - Slabije od primarnih - Elektrostatičkog karaktera - Imaju veliki uticaj na svojstva supstanci: - agregatno stanje - temperatura

Διαβάστε περισσότερα

1.4 Tangenta i normala

1.4 Tangenta i normala 28 1 DERIVACIJA 1.4 Tangenta i normala Ako funkcija f ima derivaciju u točki x 0, onda jednadžbe tangente i normale na graf funkcije f u točki (x 0 y 0 ) = (x 0 f(x 0 )) glase: t......... y y 0 = f (x

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, 1 2 3 4 5 Σ jmbag smjer studija Linearna algebra 2 prvi kolokvij, 7. 11. 2012. 1. (10 bodova) Neka je dano preslikavanje s : R 2 R 2 R, s (x, y) = (Ax y), pri čemu je A: R 2 R 2 linearan operator oblika

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A

Osnove elektrotehnike I popravni parcijalni ispit VARIJANTA A Osnove elektrotehnike I popravni parcijalni ispit 1..014. VARIJANTA A Prezime i ime: Broj indeksa: Profesorov prvi postulat: Što se ne može pročitati, ne može se ni ocijeniti. A C 1.1. Tri naelektrisanja

Διαβάστε περισσότερα

Kako učiti za ispit iz. biologije. na državnoj maturi

Kako učiti za ispit iz. biologije. na državnoj maturi Kako učiti za ispit iz biologije na državnoj maturi 11.11.2011 10:24:19 Kako učiti za ispit iz Biologije na državnoj maturi Izdavač Nacionalni centar za vanjsko vrednovanje obrazovanja Za izdavača Goran

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. Matematika

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. Matematika Ispitni katalog za državnu maturu u školskoj godini 2013./2014. 1 Matematika 3 Sadržaj Uvod...5 1. Područja ispitivanja...5 2. Obrazovni ishodi...6 2.1. Obrazovni ishodi za osnovnu razinu ispita...7 2.2.

Διαβάστε περισσότερα

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f

IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f IspitivaƬe funkcija: 1. Oblast definisanosti funkcije (ili domen funkcije) D f 2. Nule i znak funkcije; presek sa y-osom IspitivaƬe

Διαβάστε περισσότερα

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama.

Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. Apsolutno neprekidne raspodele Raspodele apsolutno neprekidnih sluqajnih promenljivih nazivaju se apsolutno neprekidnim raspodelama. a b Verovatno a da sluqajna promenljiva X uzima vrednost iz intervala

Διαβάστε περισσότερα

Linearna algebra 2 prvi kolokvij,

Linearna algebra 2 prvi kolokvij, Linearna algebra 2 prvi kolokvij, 27.. 20.. Za koji cijeli broj t je funkcija f : R 4 R 4 R definirana s f(x, y) = x y (t + )x 2 y 2 + x y (t 2 + t)x 4 y 4, x = (x, x 2, x, x 4 ), y = (y, y 2, y, y 4 )

Διαβάστε περισσότερα

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO

HEMIJA. eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole. školska 2012/2013. godina UPUTSTVO HEMIJA eksterna provjera znanja učenika na kraju iii ciklusa osnovne škole školska 2012/2013. godina UPUTSTVO Ne otvarajte test dok vam test-administrator ne kaže da možete početi sa radom. Dozvoljen pribor:

Διαβάστε περισσότερα

SOCIOLOGIJA. Rezultati probne državne mature

SOCIOLOGIJA. Rezultati probne državne mature SOCIOLOGIJA Rezultati probne državne mature Deskriptivna statistika ukupnog rezultata N 1411 k 56 M 28,8 St. pogreška mjerenja 3,78 Medijan 28 Mod 23 St. devijacija 8,95 Raspon 61 Minimum 0 Maksimum 61

Διαβάστε περισσότερα

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2

MATEMATIKA Pokažite da za konjugiranje (a + bi = a bi) vrijedi. a) z=z b) z 1 z 2 = z 1 z 2 c) z 1 ± z 2 = z 1 ± z 2 d) z z= z 2 (kompleksna analiza, vježbe ). Izračunajte a) (+i) ( i)= b) (i+) = c) i + i 4 = d) i+i + i 3 + i 4 = e) (a+bi)(a bi)= f) (+i)(i )= Skicirajte rješenja u kompleksnoj ravnini.. Pokažite da za konjugiranje

Διαβάστε περισσότερα

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. kemija

Ispitni katalog za državnu maturu u školskoj godini 2013./2014. kemija Ispitni katalog za državnu maturu u školskoj godini 2013./2014. kemija Sadržaj Uvod... 5 1. Područja ispitivanja... 5 2. Obrazovni ishodi... 6 1. Tvari, agregacijska stanja i fizikalna svojstva tvari,

Διαβάστε περισσότερα

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A.

a M a A. Može se pokazati da je supremum (ako postoji) jedinstven pa uvodimo oznaku sup A. 3 Infimum i supremum Definicija. Neka je A R. Kažemo da je M R supremum skupa A ako je (i) M gornja meda skupa A, tj. a M a A. (ii) M najmanja gornja meda skupa A, tj. ( ε > 0)( a A) takav da je a > M

Διαβάστε περισσότερα

Riješeni zadaci: Limes funkcije. Neprekidnost

Riješeni zadaci: Limes funkcije. Neprekidnost Riješeni zadaci: Limes funkcije. Neprekidnost Limes funkcije Neka je 0 [a, b] i f : D R, gdje je D = [a, b] ili D = [a, b] \ { 0 }. Kažemo da je es funkcije f u točki 0 jednak L i pišemo f ) = L, ako za

Διαβάστε περισσότερα

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla

XI dvoqas veжbi dr Vladimir Balti. 4. Stabla XI dvoqas veжbi dr Vladimir Balti 4. Stabla Teorijski uvod Teorijski uvod Definicija 5.7.1. Stablo je povezan graf bez kontura. Definicija 5.7.1. Stablo je povezan graf bez kontura. Primer 5.7.1. Sva stabla

Διαβάστε περισσότερα

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno.

VJEŽBE 3 BIPOLARNI TRANZISTORI. Slika 1. Postoje npn i pnp bipolarni tranziostori i njihovi simboli su dati na slici 2 i to npn lijevo i pnp desno. JŽ 3 POLAN TANZSTO ipolarni tranzistor se sastoji od dva pn spoja kod kojih je jedna oblast zajednička za oba i naziva se baza, slika 1 Slika 1 ipolarni tranzistor ima 3 izvoda: emitor (), kolektor (K)

Διαβάστε περισσότερα