Sisteme discrete liniare şi invariante în timp

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Sisteme discrete liniare şi invariante în timp"

Transcript

1 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp Lucrarea 3 (partea a II-a) Sisteme discrete liniare şi invariante în timp. Caracterizarea sistemelor discrete liniare, invariante în timp Caracterizarea sistemelor discrete liniare, invariante în timp se poate face: a) În domeniul timp prin: Ecuaţia cu diferenţe [ ] [ ] + [ ] M y n a y n b x n (3.) 0 Dacă a 0,,,,, sistemul este nerecursiv, în caz contrar este de tip recursiv. Suma de convoluţie, cunoscut fiind răspunsul la impuls al sistemului [ ] [ ]* [ ] [ ] [ ] yn xn hn hxn (3.) b) În domeniul Z prin funcţia de sistem, care este transformata Z a răspunsului la impuls. Y( z) Zhn {[]} Hz (), unde Y( z ) şi X( z ) sunt transformatele Z ale lui X( z) yn, [ ] respectiv x[ n ]. Aplicând transformata Z relaţiei (3.), rezultă funcţia de sistem: unde M bz 0 B( z) A( z) + az M B( z) b z şi 0 A( z) + a z. (3.3) Observaţie:. Condiţia de stabilitate a unui SDLIT cauzal implică condiţia ca polii funcţiei de sistem (adică rădăcinile polinomului în variabila z de la numitorul acesteia) să se afle în interiorul cercului unitate din planul complex Z.. Condiţia de stabilitate a unui SDLIT (cauzal sau necauzal) implică condiţia ca regiunea de convergenţă corespunzătoare funcţiei de sistem să includă cercul unitate din planul complex Z. c) În domeniul frecvenţă prin funcţia de transfer, care este transformata Fourier a răspunsului la impuls, expresie ce se poate obţine prin evaluarea lui H( z ) pe cercul unitate, dacă acesta este inclus în regiunea de convergenţă a lui H( z ): H( ) hn (3.4) jω { [ ]} ω z e 33

2 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp. Răspunsul sistemelor discrete, liniare, invariante în timp (SDLIT) la diferite semnale de intrare.. Răspunsul SDLIT la excitaţii elementare Răspunsul la impuls sau funcţia pondere a sistemului este definită de relaţia: hn [ ] H δ [ n] (3.5) Observaţie: Condiţia de stabilitate a unui SDLIT implică condiţia hn [ ] <, adică răspunsul la impuls al sistemului, hn [ ], este absolut n sumabil. Răspunsul indicial, definit de relaţia: (3.6) g [ n] H u[ n] h[ n ] 0 Răspunsul sistemului la semnal exponenţial complex j 0 n Dacă x[ n] A e ω, atunci răspunsul sistemului la acest semnal este: j 0 n j( 0n arg ( H( 0) )) yn [ ] A H( 0) e ω A H( 0) e ω + ω ω ω (3.7) π Pe cercul unitate, pentru ω 0, 0,, rezultă: π π j n yn [ ] A H e (3.8) Răspunsul sistemului la secvenţe periodice Dacă semnalele de intrare periodice se descompun în secvenţe Fourier de forma 0 π j n xn [ ] xn [ + ] ce [ ], atunci răspunsul sistemului va fi π π j n yn [ ] yn [ + ] c [ ] H e, n 0, 0 (3.9) c [ ] X[ ]/, unde X[ ] este Transformata Fourier Discretă a lui x[ n ]... Răspunsul SDLIT la o secvenţă oarecare [ ] [ ] şi satisface relaţia [ ] [ ] [ ], sau yn H xn y n a y n + bx n 0 relaţia de convoluţie yn [ ] xn [ ]* hn [ ]. Răspunsul sistemului poate fi calculat şi din relaţiile: yn [ ] Z { X( z)} yn [ ] { H( ω) X( ω)} (3.0) 3. Aplicaţii rezolvate 3.. Determinarea ieşirii unui SDLIT Pentru calculul ieşirii unui SDLIT se vor utiliza următoarele noi funcţii Matlab: 34 M

3 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp yfilter(b,a,x,ic); Calculează ieşirea unui filtru cu funcţia de transfer himpz(b,a,l); Bz ( ) Az ( ) + M bz 0 az la vectorul/secvenţa de intrare x.vectorii b şi a conţin coeficienţii b şi a în ordinea crescătoare a puterilor lui z : b [ b0 b... b M ], a [ a0 a... a ]. ic este un vector în care se specifică condiţiile iniţiale ale sistemului: ic [[ y ] y[-]... y[- ]]. Atunci când condiţiile iniţiale sunt nule, ic nu se specifică în funcţia filter. Calculează răspunsul la impuls al unui filtru cu parametrii specificaţi în vectorii a şi b (vezi filter), răspunsul la impuls fiind calculat pentru L eşantioane h [ h0 h... h L -]. Exemplu. Pentru sistemul iniţial relaxat, cu funcţia de sistem: z z (3.) 0.4 z 0.75 z ieşirea sistemului la semnalul de intrare x[ n] cos( π 0. n) 3 cos( π 0.4 n) se determină prin secvenţa de comenzi Matlab: n 0:40; x *cos(*pi*0.*n) - 3*cos(*pi*0.4*n); b [ ]; a [ ]; ic [0 0]; % conditii initiale nule y filter(b,a,x,ic); Arătaţi prin programe similare programelor P3_I_ şi P3_I_ din lucrarea Proprietăţile sistemelor discrete că sistemul cu funcţia de sistem (3.) verifică condiţia din definiția liniarității pentru semnalele x [ n] cos( π 0. n) şi x [ n] cos( π 0.4 n) și constantele a și b 3, respectiv condiţia din definiţia invarianţei în timp pentru semnalul de intrare x n cos π 0. n 3 cos π 0.4 n şi. [ ] ( ) ( ) Stabilitatea SDLIT Exemplul Programul Matlab P3_II_ testează stabilitatea unui sistem discret în funcţie de răspunsul la impuls al acestuia. Variabila parsum din scriptul de mai jos se calculează astfel: P parsum h[ n], (3.) n 0 6 unde P este ales astfel încât hp [ ] < 0. Testul este ilustrativ din punct de vedere didactic, dar din punct de vedere teoretic nu este tocmai corect. De exemplu, pentru 35

4 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp hn [ ] / n, sistemul nu este stabil, însă există un număr întreg P, pentru care 6 hp [ ] < 0. % Program P3_II_ % Stabilitatea sistemului bazata pe sumarea absoluta a % raspunsului la impuls clear; clc; b [ -0.8]; a [.5 0.9]; 300; %se calculeaza raspunsul la impuls vezi help impz h impz(b,a,+); parsum 0; for :+; %help for parsum parsum + abs(h()); if abs(h()) < 0^(-6), brea, end end % se reprezinta grafic raspunsul la impuls n 0:; figure() stem(n,h); grid on; title('raspunsul la impuls') ylabel('amplitudine'); % se afiseaza la consola abs(h()) disp('value ');disp(abs(h())); % se afiseaza la consola Suma valorilor absolute ale lui h[n] disp('suma ');disp(parsum); Arătaţi printr-un program similar programului P3_I_3 din lucrarea Proprietăţile sistemelor discrete că sistemul considerat în programul de mai sus (P3_II_) verifică condiţia din definiția stabilității pentru semnalul x n cos π 0. n 3 cos π 0.4 n. [ ] ( ) ( ) 3.. Caracterizarea SDLIT Se vor utiliza următoarele noi funcţii Matlab: zplane(b,a) Reprezintă într-o fereastră grafică localizarea zplane(z,p) zerourilor şi polilor în planul Z pentru un sistem care are coeficienţii b şi a în vectorii linie b şi a, sau zerourile şi polii sistemului în vectorii coloană T T z [ z z... z M ] şi p [ p p... p ]. freqz(b,a,); Reprezintă într-o fereastră grafică răspunsul în [H,w]freqz(b,a,); frecvenţă (de modul şi fază) al sistemului descris de coeficienţii din vectorii b şi a. umărul de puncte în care se calculează H ( ω ) este. A doua comandă returnează în vectorul H răspunsul sistemului la pulsaţiile discrete specificate în vectorul w fără a mai face reprezentarea grafică. 36

5 PS Lucrarea 3 (partea a II-a) bpoly(z); zroots(b); Sisteme discrete şi invariante în timp Returnează în vectorul b coeficienţii unui polinom ce are ca radăcini elementele din vectorul z. Returnează în vectorul z rădăcinile unui polinom ce are coeficienţii precizaţi în vectorul b. [r,p,]residuez(b,a); Realizează descompunerea lui H( z ) în forma de mai jos: Bz ( ) r() r ( ) Az ( ) p() z p ( ) z ( M ) + () + () z ( M + ) z Vectorii r, p, sunt: r [ r(), r(),..., r( )], p [ p(), p(),..., p( )], [ (), (),..., ( M + )] Exemplul Fie un sistem discret caracterizat în domeniul timp de ecuaţia cu diferenţe: yn [ ] yn [ ] 0.3 xn [ ] xn [ ] xn [ ]. (3.3) În Matlab ecuaţia cu diferenţe este reprezentată de doi vectori: unul conţine coeficienţii intrării b ai termenilor x[ n ] şi celălalt conţine coeficienţii de reacţie ai ieşirii a ai termenilor yn [ ], scriși în membrul stâng al ecuației cu diferențe. De obicei a 0. În caz contrar, programul normează coeficienţii, astfel încât coeficientul lui yn [ ] să fie egal cu. Sistemul de mai sus este caracterizat de funcţia de transfer: Y( z) z + 0.3z (3.4) X( z) + 0.9z Funcţia MATLAB filter determină secvenţa de ieşire yn [ ] a unui SDLIT caracterizat de o ecuaţie cu diferenţe sau de funcţia de sistem H( z ), la o secvenţă x[ n ] aplicată la intrarea sistemului. Datorită modului de indexare a vectorilor în MATLAB, coeficienţii funcţiei de transfer sunt notaţi astfel: M b() + b() z b( M + ) z (3.5) a() + a() z a( + ) z Următorul program MATLAB (P3_II_) realizează afişarea poziţiei polilor şi zerourilor lui H( z ) şi a caracteristicii de frecvenţă a SDLIT. Folosiţi comanda help pentru a vă familiariza cu funcţiile zplane.m şi freqz.m. %Program P3_II_ clear; clc; %descrierea sistemului prin coeficientii b si a b[0.3, 0.6, 0.3]; a[, 0, 0.9]; figure() zplane(b,a);%reprezentarea polilor si zerourilor in planul Z grid on; title('distributia poli-zerouri'); [H,W]freqz(b,a,5); 37

6 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp figure() subplot(,,); %reprezentarea modulului raspunsului in frecventa plot(w,abs(h)); grid on; ylabel('magnitudune'); title('raspunsul filtrului in modul'); subplot(,,); plot(w,angle(h)); %reprezentarea raspunsului de faza grid on; title('raspunsul de faza al filtrului '); ylabel('faza');xlabel('w'); Exemplul 3. Se calculează şi se afişează răspunsul în frecvenţă a unui sistem pentru care se specifică zerourile şi polii. %Program P3_II_3 clear; clc; z[exp(j*pi/5);exp(-j*pi/5)]; % zerourile functiei de transfer p0.9*z; % polii functiei de transfer %atunci coeficientii functiei de transfer sunt bpoly(z) apoly(p) %iar caracteristica de frecventa a acestui sistem se obtine % astfel: [H,W]freqz(b,a,5); figure() plot(w/pi,abs(h)); grid on; title('modulul raspunsului in frecventa al filtrului'); Ce tip de sistem reprezintă această caracteristică? Să se studieze funcţia zptf.m, care realizează trecerea din zerourile şi polii funcţiei de transfer în coeficienţii acesteia cu ajutorul comenzii help zptf. Exemplul 4. Cu ajutorul funcţiei residuez.m se pot calcula reziduurile şi polii funcţiei de transfer, conform relaţiei: Bz ( ) r() r ( ) ( M ) () + () z ( M + ) z Az ( ) p() z p ( ) z (3.6) Se analizează pentru sistemul considerat la Exemplul 3 efectul comenzii: [r,p,]residuez(b,a). Cu ajutorul descompunerii în fracţii simple se poate calcula răspunsul la impuls: n n hn [ ] rp + rp + δ[ n] (3.7) Analiza comparativă a răspunsurilor la impuls obţinute prin cele două funcţii (residuez şi impz) se realizează cu programul P3_II_4. 38

7 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp %Program P3_II_4 clear; clc; z[exp(j*pi/5) exp(-j*pi/5)]; p0.9*z; bpoly(z); apoly(p); [r,p,]residuez(b,a); n(0:9)'; hr()*p().^n+r()*p().^n; h()h()+; himpz(b,a,30); figure() subplot() stem(n,h); grid on; title('raspunsul la impuls obtinut utilizand functia residuez'); subplot(); stem(n,h); grid on; title('raspunsul la impuls obtinut cu ajutorul functiei impz'); Exemplul 5. Se analizează răspunsul unui sistem liniar invariant în timp la un semnal de tip sinusoidă, x[ n] A sin( π f n+ ϕ), n 0,, în două moduri: - cu ajutorul funcţiei filter.m; - cu ajutorul relaţiei: yn [ ] A H( π f) sin(π f n+ ϕ + arg( H( π f))) (3.8) Se va utiliza funcţia Matlab: spolyval(b,x); Returnează valoarea unui polinom cu coeficienţii specificaţi în vectorul b, calculat în valoarea x: sx ( ) b() x bx ( ) + b ( + ) %Program P3_II_5 clear; clc; b[0., 0., 0.]; a[, 0, 0.9]; 99; n0:; f/8;a; xa*sin(*pi*f*n+pi/7); yfilter(b,a,x); Hwpolyval(b,exp(*j*pi*f))/polyval(a,exp(*j*pi*f)); ysa*abs(hw)*sin((*pi*f*n)+pi/7+angle(hw)); figure() 39

8 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp subplot(4); stem(n,x); grid on; ylabel('intrarea x[n]'); subplot(4); stem(n,y); grid on; axis([0 -A A]); ylabel('y[n] calculat cu filter '); subplot(43); stem(n,ys); grid on; ylabel('ys[n] calculat cu relatia (3.0)') axis([0 -A A]); subplot(44); stem(n,y-ys); grid on; ylabel('diferenta y[n]-ys[n]') axis([0 -A A]); Ce observaţi? Secvenţa yn [ ] este un semnal de tip sinusoidă sau nu? De ce? 4. Aplicaţii propuse. Un SDLIT este caracterizat de ecuaţia cu diferenţe yn [ ].8cos( π /6) yn [ ] yn [ ] xn [ ] xn [ ] a) Să se determine polii funcţiei de transfer corespunzători sistemului, care sunt rădăcinile p ale polinomului A( z) + az, folosind comanda MATLAB roots.m. Dacă aceste rădăcini sunt complex conjugate, răspunsul sistemului va fi armonic. Să se reprezinte partea reală şi imaginară a secvenţelor complexe n de forma ( p ) un [ ], n 0,30, iar p sunt polii sistemului. b) Din ecuaţia cu diferenţe rezultă că răspunsul la impuls al sistemului va fi de forma: n n hn [ ] a p + a p un [ ] (3.0) ( ( ) ( ) ) Să se determine constantele a şi a din expresia lui hn [ ]. Calculaţi răspunsul la impuls cu ajutorul funcţiei MATLAB impz.m şi cu ajutorul relaţiei (3.6) (a se vedea Exemplul 4). c) Să se determine răspunsul de regim permanent al sistemului la semnalul de j( π /4) n intrare exponenţial complex xn [ ] e, n 0,30, folosind atât funcţia filter.m, cât şi cu ajutorul relaţiei (3.7) sau (3.8) (a se vedea Exemplul 5). j ( π f n+ arg( H( π f ))) yn [ ] H( π f) e (3.). Să se analizeze efectul polilor şi zerourilor unei funcţii de sistem H( z ) asupra răspunsului în frecvenţă H ( ω ) pentru următoarele sisteme: 40

9 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp a) ( z z )( z z ), unde: z, ; π 4 z, e ; π z, e ; 3π 4 z, e ; z, ; Să se analizeze cum se modifică H( ω ) odată cu modificarea poziţiei zerourilor funcţiei de transfer şi să se reprezinte zerourile în planul Z. Ce observaţi? Comentaţi. 0., unde: ( pz )( pz ) p, 0.9; b) π 4 p, 0.9 e ; π p e, 0.9 ; 3π 4 p, 0.9 e ; p, 0.9; Să se analizeze cum se modifică H ( ω ) odată cu modificarea polilor funcţiei de transfer şi să se reprezinte polii în planul Z. Ce observaţi? Comentaţi. 3. Se dau următoarele funcţii de transfer ale unor sisteme discrete liniare invariante în timp H ( z) z z + H ( z) z z + + H ( z) z 0,5z 3 + ( z ) ( + z ) H4( z) H 5( z) H z + 6( z) 0,5z z + 0,5z z + 0,5z a) Utilizând funcţia zplane.m, să se reprezinte în planul Z diagramele poli - zerouri pentru funcţiile Hi( z ), i,, 6. b) Utilizând funcţia freqz.m să se reprezinte caracteristicile de frecvenţă ale acestor funcţii de transfer. Să se precizeze ce tip de sistem reprezintă fiecare. c) Să se calculeze şi să se reprezinte grafic răspunsul sistemului H ( ) 5 z la impulsul unitate şi treapta unitate Un SDLIT este caracterizat de funcţia de sistem: ( z+ 0,5)( z + 4) ( z 0,8)( z z+ 0,64) a) Să se calculeze în planul Z poziţiile polilor şi zerourilor. b) Să se calculeze şi reprezinte grafic caracteristica de fază corespunzătoare acestei funcţii de transfer. Corespunde aceasta unui sistem de fază liniară?

10 PS Lucrarea 3 (partea a II-a) Sisteme discrete şi invariante în timp 5. Care din următoarele sisteme cauzale cu funcţiile de transfer de mai jos sunt stabile? De ce? z +.0z +.54z z z +.5z 0.98z z z +.5z 0.98z z H( z) z +.0z +.54z z z + 5z 4.3z + 3.7z H3( z) z + 0.8z 0.4z + 0.5z z +.64z 0.8z +.0z H4( z) 3 4.7z +.5z +.5z +.36z 4

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate.

Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Curs 10 Funcţii reale de mai multe variabile reale. Limite şi continuitate. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie p, q N. Fie funcţia f : D R p R q. Avem următoarele

Διαβάστε περισσότερα

Metode iterative pentru probleme neliniare - contractii

Metode iterative pentru probleme neliniare - contractii Metode iterative pentru probleme neliniare - contractii Problemele neliniare sunt in general rezolvate prin metode iterative si analiza convergentei acestor metode este o problema importanta. 1 Contractii

Διαβάστε περισσότερα

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a.

(a) se numeşte derivata parţială a funcţiei f în raport cu variabila x i în punctul a. Definiţie Spunem că: i) funcţia f are derivată parţială în punctul a în raport cu variabila i dacă funcţia de o variabilă ( ) are derivată în punctul a în sens obişnuit (ca funcţie reală de o variabilă

Διαβάστε περισσότερα

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi"

Curs 14 Funcţii implicite. Facultatea de Hidrotehnică Universitatea Tehnică Gh. Asachi Curs 14 Funcţii implicite Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Fie F : D R 2 R o funcţie de două variabile şi fie ecuaţia F (x, y) = 0. (1) Problemă În ce condiţii ecuaţia

Διαβάστε περισσότερα

Seminar 5 Analiza stabilității sistemelor liniare

Seminar 5 Analiza stabilității sistemelor liniare Seminar 5 Analiza stabilității sistemelor liniare Noțiuni teoretice Criteriul Hurwitz de analiză a stabilității sistemelor liniare În cazul sistemelor liniare, stabilitatea este o condiție de localizare

Διαβάστε περισσότερα

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE.

5. FUNCŢII IMPLICITE. EXTREME CONDIŢIONATE. 5 Eerciţii reolvate 5 UNCŢII IMPLICITE EXTREME CONDIŢIONATE Eerciţiul 5 Să se determine şi dacă () este o funcţie definită implicit de ecuaţia ( + ) ( + ) + Soluţie ie ( ) ( + ) ( + ) + ( )R Evident este

Διαβάστε περισσότερα

LUCRAREA 2 SEMNALE ŞI SISTEME ÎN TIMP DISCRET

LUCRAREA 2 SEMNALE ŞI SISTEME ÎN TIMP DISCRET . SEMALE ŞI SISTEME Î TIMP DISCRET. SEMALE ŞI SISTEME Î TIMP DISCRET Deoarece în MATLAB nu putem defini secvenţe de lungime infinită trebuie precizat domeniul de valori pentru n. Pentru a facilita definirea

Διαβάστε περισσότερα

Sisteme diferenţiale liniare de ordinul 1

Sisteme diferenţiale liniare de ordinul 1 1 Metoda eliminării 2 Cazul valorilor proprii reale Cazul valorilor proprii nereale 3 Catedra de Matematică 2011 Forma generală a unui sistem liniar Considerăm sistemul y 1 (x) = a 11y 1 (x) + a 12 y 2

Διαβάστε περισσότερα

Transformata Laplace

Transformata Laplace Tranformata Laplace Tranformata Laplace generalizează ideea tranformatei Fourier in tot planul complex Pt un emnal x(t) pectrul au tranformata Fourier ete t ( ω) X = xte dt Pt acelaşi emnal x(t) e poate

Διαβάστε περισσότερα

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile

V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Metode de Optimizare Curs V.7. Condiţii necesare de optimalitate cazul funcţiilor diferenţiabile Propoziţie 7. (Fritz-John). Fie X o submulţime deschisă a lui R n, f:x R o funcţie de clasă C şi ϕ = (ϕ,ϕ

Διαβάστε περισσότερα

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor

Seminariile Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reziduurilor Facultatea de Matematică Calcul Integral şi Elemente de Analiă Complexă, Semestrul I Lector dr. Lucian MATICIUC Seminariile 9 20 Capitolul X. Integrale Curbilinii: Serii Laurent şi Teorema Reiduurilor.

Διαβάστε περισσότερα

Integrala nedefinită (primitive)

Integrala nedefinită (primitive) nedefinita nedefinită (primitive) nedefinita 2 nedefinita februarie 20 nedefinita.tabelul primitivelor Definiţia Fie f : J R, J R un interval. Funcţia F : J R se numeşte primitivă sau antiderivată a funcţiei

Διαβάστε περισσότερα

Metode de interpolare bazate pe diferenţe divizate

Metode de interpolare bazate pe diferenţe divizate Metode de interpolare bazate pe diferenţe divizate Radu Trîmbiţaş 4 octombrie 2005 1 Forma Newton a polinomului de interpolare Lagrange Algoritmul nostru se bazează pe forma Newton a polinomului de interpolare

Διαβάστε περισσότερα

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare

Planul determinat de normală şi un punct Ecuaţia generală Plane paralele Unghi diedru Planul determinat de 3 puncte necoliniare 1 Planul în spaţiu Ecuaţia generală Plane paralele Unghi diedru 2 Ecuaţia generală Plane paralele Unghi diedru Fie reperul R(O, i, j, k ) în spaţiu. Numim normala a unui plan, un vector perpendicular pe

Διαβάστε περισσότερα

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă.

III. Serii absolut convergente. Serii semiconvergente. ii) semiconvergentă dacă este convergentă iar seria modulelor divergentă. III. Serii absolut convergente. Serii semiconvergente. Definiţie. O serie a n se numeşte: i) absolut convergentă dacă seria modulelor a n este convergentă; ii) semiconvergentă dacă este convergentă iar

Διαβάστε περισσότερα

Curs 4 Serii de numere reale

Curs 4 Serii de numere reale Curs 4 Serii de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Criteriul rădăcinii sau Criteriul lui Cauchy Teoremă (Criteriul rădăcinii) Fie x n o serie cu termeni

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor X) functia f 1 Functii definitie proprietati grafic functii elementare A. Definitii proprietatile functiilor. Fiind date doua multimi X si Y spunem ca am definit o functie (aplicatie) pe X cu valori in Y daca fiecarui

Διαβάστε περισσότερα

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor

Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor Functii definitie, proprietati, grafic, functii elementare A. Definitii, proprietatile functiilor. Fiind date doua multimi si spunem ca am definit o functie (aplicatie) pe cu valori in daca fiecarui element

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departmentul de Automatică Str. Dorobantilor 71-73, sala C21, tel: 0264-401267 Str. Baritiu 26-28, sala C14, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea

a n (ζ z 0 ) n. n=1 se numeste partea principala iar seria a n (z z 0 ) n se numeste partea Serii Laurent Definitie. Se numeste serie Laurent o serie de forma Seria n= (z z 0 ) n regulata (tayloriana) = (z z n= 0 ) + n se numeste partea principala iar seria se numeste partea Sa presupunem ca,

Διαβάστε περισσότερα

Analiza sistemelor liniare şi continue

Analiza sistemelor liniare şi continue Paula Raica Departamentul de Automatică Str. Dorobanţilor 7, sala C2, tel: 0264-40267 Str. Bariţiu 26, sala C4, tel: 0264-202368 email: Paula.Raica@aut.utcluj.ro http://rocon.utcluj.ro/ts Universitatea

Διαβάστε περισσότερα

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca

Conice. Lect. dr. Constantin-Cosmin Todea. U.T. Cluj-Napoca Conice Lect. dr. Constantin-Cosmin Todea U.T. Cluj-Napoca Definiţie: Se numeşte curbă algebrică plană mulţimea punctelor din plan de ecuaţie implicită de forma (C) : F (x, y) = 0 în care funcţia F este

Διαβάστε περισσότερα

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I.

Toate subiectele sunt obligatorii. Timpul de lucru efectiv este de 3 ore. Se acordă din oficiu 10 puncte. SUBIECTUL I. Modelul 4 Se acordă din oficiu puncte.. Fie numărul complex z = i. Calculaţi (z ) 25. 2. Dacă x şi x 2 sunt rădăcinile ecuaţiei x 2 9x+8 =, atunci să se calculeze x2 +x2 2 x x 2. 3. Rezolvaţi în mulţimea

Διαβάστε περισσότερα

z a + c 0 + c 1 (z a)

z a + c 0 + c 1 (z a) 1 Serii Laurent (continuare) Teorema 1.1 Fie D C un domeniu, a D şi f : D \ {a} C o funcţie olomorfă. Punctul a este pol multiplu de ordin p al lui f dacă şi numai dacă dezvoltarea în serie Laurent a funcţiei

Διαβάστε περισσότερα

4. CIRCUITE LOGICE ELEMENTRE 4.. CIRCUITE LOGICE CU COMPONENTE DISCRETE 4.. PORŢI LOGICE ELEMENTRE CU COMPONENTE PSIVE Componente electronice pasive sunt componente care nu au capacitatea de a amplifica

Διαβάστε περισσότερα

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE

5.5. REZOLVAREA CIRCUITELOR CU TRANZISTOARE BIPOLARE 5.5. A CIRCUITELOR CU TRANZISTOARE BIPOLARE PROBLEMA 1. În circuitul din figura 5.54 se cunosc valorile: μa a. Valoarea intensității curentului de colector I C. b. Valoarea tensiunii bază-emitor U BE.

Διαβάστε περισσότερα

Capitolul 2: Sisteme

Capitolul 2: Sisteme Prelucrarea semnalelor Capitolul 2: Sisteme Bogdan Dumitrescu Facultatea de Automatică şi Calculatoare Universitatea Politehnica Bucureşti PS cap. 2: Sisteme p. 1/64 Sisteme discrete Sistem discret: transformă

Διαβάστε περισσότερα

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE

DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE DISTANŢA DINTRE DOUĂ DREPTE NECOPLANARE ABSTRACT. Materialul prezintă o modalitate de a afla distanţa dintre două drepte necoplanare folosind volumul tetraedrului. Lecţia se adresează clasei a VIII-a Data:

Διαβάστε περισσότερα

Subiecte Clasa a VIII-a

Subiecte Clasa a VIII-a Subiecte lasa a VIII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate pe foaia de raspuns in dreptul

Διαβάστε περισσότερα

Tratarea numerică a semnalelor

Tratarea numerică a semnalelor LUCRAREA 5 Tratarea numerică a semnalelor Filtre numerice cu răspuns finit la impuls (filtre RFI) Filtrele numerice sunt sisteme discrete liniare invariante în timp care au rolul de a modifica spectrul

Διαβάστε περισσότερα

Curs 1 Şiruri de numere reale

Curs 1 Şiruri de numere reale Bibliografie G. Chiorescu, Analiză matematică. Teorie şi probleme. Calcul diferenţial, Editura PIM, Iaşi, 2006. R. Luca-Tudorache, Analiză matematică, Editura Tehnopress, Iaşi, 2005. M. Nicolescu, N. Roşculeţ,

Διαβάστε περισσότερα

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme

SEMINAR TRANSFORMAREA FOURIER. 1. Probleme SEMINAR TRANSFORMAREA FOURIER. Probleme. Să se precizeze dacă funcţiile de mai jos sunt absolut integrabile pe R şi, în caz afirmativ să se calculeze { transformata Fourier., t a. σ(t), t < ; b. f(t) σ(t)

Διαβάστε περισσότερα

Aplicaţii ale principiului I al termodinamicii la gazul ideal

Aplicaţii ale principiului I al termodinamicii la gazul ideal Aplicaţii ale principiului I al termodinamicii la gazul ideal Principiul I al termodinamicii exprimă legea conservării şi energiei dintr-o formă în alta şi se exprimă prin relaţia: ΔUQ-L, unde: ΔU-variaţia

Διαβάστε περισσότερα

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0

SEMINAR 14. Funcţii de mai multe variabile (continuare) ( = 1 z(x,y) x = 0. x = f. x + f. y = f. = x. = 1 y. y = x ( y = = 0 Facultatea de Hidrotehnică, Geodezie şi Ingineria Mediului Matematici Superioare, Semestrul I, Lector dr. Lucian MATICIUC SEMINAR 4 Funcţii de mai multe variabile continuare). Să se arate că funcţia z,

Διαβάστε περισσότερα

Functii Breviar teoretic 8 ianuarie ianuarie 2011

Functii Breviar teoretic 8 ianuarie ianuarie 2011 Functii Breviar teoretic 8 ianuarie 011 15 ianuarie 011 I Fie I, interval si f : I 1) a) functia f este (strict) crescatoare pe I daca x, y I, x< y ( f( x) < f( y)), f( x) f( y) b) functia f este (strict)

Διαβάστε περισσότερα

Esalonul Redus pe Linii (ERL). Subspatii.

Esalonul Redus pe Linii (ERL). Subspatii. Seminarul 1 Esalonul Redus pe Linii (ERL). Subspatii. 1.1 Breviar teoretic 1.1.1 Esalonul Redus pe Linii (ERL) Definitia 1. O matrice A L R mxn este in forma de Esalon Redus pe Linii (ERL), daca indeplineste

Διαβάστε περισσότερα

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4

3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...4 SEMINAR 3 MMENTUL FRŢEI ÎN RAPRT CU UN PUNCT CUPRINS 3. Momentul forţei în raport cu un punct...1 Cuprins...1 Introducere...1 3.1. Aspecte teoretice...2 3.2. Aplicaţii rezolvate...4 3. Momentul forţei

Διαβάστε περισσότερα

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice

Definiţia generală Cazul 1. Elipsa şi hiperbola Cercul Cazul 2. Parabola Reprezentari parametrice ale conicelor Tangente la conice 1 Conice pe ecuaţii reduse 2 Conice pe ecuaţii reduse Definiţie Numim conica locul geometric al punctelor din plan pentru care raportul distantelor la un punct fix F şi la o dreaptă fixă (D) este o constantă

Διαβάστε περισσότερα

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice

Teme de implementare in Matlab pentru Laboratorul de Metode Numerice Teme de implementare in Matlab pentru Laboratorul de Metode Numerice As. Ruxandra Barbulescu Septembrie 2017 Orice nelamurire asupra enunturilor/implementarilor se rezolva in cadrul laboratorului de MN,

Διαβάστε περισσότερα

5.4. MULTIPLEXOARE A 0 A 1 A 2

5.4. MULTIPLEXOARE A 0 A 1 A 2 5.4. MULTIPLEXOARE Multiplexoarele (MUX) sunt circuite logice combinaţionale cu m intrări şi o singură ieşire, care permit transferul datelor de la una din intrări spre ieşirea unică. Selecţia intrării

Διαβάστε περισσότερα

MARCAREA REZISTOARELOR

MARCAREA REZISTOARELOR 1.2. MARCAREA REZISTOARELOR 1.2.1 MARCARE DIRECTĂ PRIN COD ALFANUMERIC. Acest cod este format din una sau mai multe cifre şi o literă. Litera poate fi plasată după grupul de cifre (situaţie în care valoarea

Διαβάστε περισσότερα

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3

2. Sisteme de forţe concurente...1 Cuprins...1 Introducere Aspecte teoretice Aplicaţii rezolvate...3 SEMINAR 2 SISTEME DE FRŢE CNCURENTE CUPRINS 2. Sisteme de forţe concurente...1 Cuprins...1 Introducere...1 2.1. Aspecte teoretice...2 2.2. Aplicaţii rezolvate...3 2. Sisteme de forţe concurente În acest

Διαβάστε περισσότερα

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale.

R R, f ( x) = x 7x+ 6. Determinați distanța dintre punctele de. B=, unde x și y sunt numere reale. 5p Determinați primul termen al progresiei geometrice ( b n ) n, știind că b 5 = 48 și b 8 = 84 5p Se consideră funcția f : intersecție a graficului funcției f cu aa O R R, f ( ) = 7+ 6 Determinați distanța

Διαβάστε περισσότερα

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro

Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM 1 electronica.geniu.ro Analiza în curent continuu a schemelor electronice Eugenie Posdărăscu - DCE SEM Seminar S ANALA ÎN CUENT CONTNUU A SCHEMELO ELECTONCE S. ntroducere Pentru a analiza în curent continuu o schemă electronică,

Διαβάστε περισσότερα

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera.

Ecuaţia generală Probleme de tangenţă Sfera prin 4 puncte necoplanare. Elipsoidul Hiperboloizi Paraboloizi Conul Cilindrul. 1 Sfera. pe ecuaţii generale 1 Sfera Ecuaţia generală Probleme de tangenţă 2 pe ecuaţii generale Sfera pe ecuaţii generale Ecuaţia generală Probleme de tangenţă Numim sferă locul geometric al punctelor din spaţiu

Διαβάστε περισσότερα

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0

SERII NUMERICE. Definiţia 3.1. Fie (a n ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 SERII NUMERICE Definiţia 3.1. Fie ( ) n n0 (n 0 IN) un şir de numere reale şi (s n ) n n0 şirul definit prin: s n0 = 0, s n0 +1 = 0 + 0 +1, s n0 +2 = 0 + 0 +1 + 0 +2,.......................................

Διαβάστε περισσότερα

VII.2. PROBLEME REZOLVATE

VII.2. PROBLEME REZOLVATE Teoria Circuitelor Electrice Aplicaţii V PROBEME REOVATE R7 În circuitul din fiura 7R se cunosc: R e t 0 sint [V] C C t 0 sint [A] Se cer: a rezolvarea circuitului cu metoda teoremelor Kirchhoff; rezolvarea

Διαβάστε περισσότερα

Profesor Blaga Mirela-Gabriela DREAPTA

Profesor Blaga Mirela-Gabriela DREAPTA DREAPTA Fie punctele A ( xa, ya ), B ( xb, yb ), C ( xc, yc ) şi D ( xd, yd ) în planul xoy. 1)Distanţa AB = (x x ) + (y y ) Ex. Fie punctele A( 1, -3) şi B( -2, 5). Calculaţi distanţa AB. AB = ( 2 1)

Διαβάστε περισσότερα

Laborator 11. Mulţimi Julia. Temă

Laborator 11. Mulţimi Julia. Temă Laborator 11 Mulţimi Julia. Temă 1. Clasa JuliaGreen. Să considerăm clasa JuliaGreen dată de exemplu la curs pentru metoda locului final şi să schimbăm numărul de iteraţii nriter = 100 în nriter = 101.

Διαβάστε περισσότερα

1. PROPRIETĂȚILE FLUIDELOR

1. PROPRIETĂȚILE FLUIDELOR 1. PROPRIETĂȚILE FLUIDELOR a) Să se exprime densitatea apei ρ = 1000 kg/m 3 în g/cm 3. g/cm 3. b) tiind că densitatea glicerinei la 20 C este 1258 kg/m 3 să se exprime în c) Să se exprime în kg/m 3 densitatea

Διαβάστε περισσότερα

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI)

( ) () t = intrarea, uout. Seminar 5: Sisteme Analogice Liniare şi Invariante (SALI) Seminar 5: Sieme Analogice iniare şi Invariane (SAI) SAI po fi caracerizae prin: - ecuaţia diferenţială - funcţia de iem (fd) H() - funcţia pondere h - răpunul indicial a - răpunul la frecvenţă H(j) ăpunul

Διαβάστε περισσότερα

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ

Concurs MATE-INFO UBB, 1 aprilie 2017 Proba scrisă la MATEMATICĂ UNIVERSITATEA BABEŞ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ŞI INFORMATICĂ Concurs MATE-INFO UBB, aprilie 7 Proba scrisă la MATEMATICĂ SUBIECTUL I (3 puncte) ) (5 puncte) Fie matricele A = 3 4 9 8

Διαβάστε περισσότερα

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1

* K. toate K. circuitului. portile. Considerând această sumă pentru toate rezistoarele 2. = sl I K I K. toate rez. Pentru o bobină: U * toate I K K 1 FNCȚ DE ENERGE Fie un n-port care conține numai elemente paive de circuit: rezitoare dipolare, condenatoare dipolare și bobine cuplate. Conform teoremei lui Tellegen n * = * toate toate laturile portile

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent

Componente şi Circuite Electronice Pasive. Laborator 3. Divizorul de tensiune. Divizorul de curent Laborator 3 Divizorul de tensiune. Divizorul de curent Obiective: o Conexiuni serie şi paralel, o Legea lui Ohm, o Divizorul de tensiune, o Divizorul de curent, o Implementarea experimentală a divizorului

Διαβάστε περισσότερα

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005.

COLEGIUL NATIONAL CONSTANTIN CARABELLA TARGOVISTE. CONCURSUL JUDETEAN DE MATEMATICA CEZAR IVANESCU Editia a VI-a 26 februarie 2005. SUBIECTUL Editia a VI-a 6 februarie 005 CLASA a V-a Fie A = x N 005 x 007 si B = y N y 003 005 3 3 a) Specificati cel mai mic element al multimii A si cel mai mare element al multimii B. b)stabiliti care

Διαβάστε περισσότερα

INTERPOLARE. y i L i (x). L(x) = i=0

INTERPOLARE. y i L i (x). L(x) = i=0 INTERPOLARE Se dau punctele P 0, P 1,..., P n in plan sau in spatiu, numite noduri si avand vectorii de pozitie r 0, r 1,..., r n. Problemă. Să se găsească o curbă (dintr-o anumită familie) care să treacă

Διαβάστε περισσότερα

Ecuatii trigonometrice

Ecuatii trigonometrice Ecuatii trigonometrice Ecuatiile ce contin necunoscute sub semnul functiilor trigonometrice se numesc ecuatii trigonometrice. Cele mai simple ecuatii trigonometrice sunt ecuatiile de tipul sin x = a, cos

Διαβάστε περισσότερα

Circuite electrice in regim permanent

Circuite electrice in regim permanent Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, Electronică - Probleme apitolul. ircuite electrice in regim permanent. În fig. este prezentată diagrama fazorială a unui circuit serie. a) e fenomen este

Διαβάστε περισσότερα

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență.

Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. Laborator 3 I.S.A. Stabilitatea sistemelor liniare şi răspunsul în frecvență. 1. Introducere...1 2. Stabilitatea sistemelor liniare...1 2.1 Stabilitatea internă...2 2.2 Stabilitatea externă...3 2.3. Exemple...4

Διαβάστε περισσότερα

2 Transformări liniare între spaţii finit dimensionale

2 Transformări liniare între spaţii finit dimensionale Transformări 1 Noţiunea de transformare liniară Proprietăţi. Operaţii Nucleul şi imagine Rangul şi defectul unei transformări 2 Matricea unei transformări Relaţia dintre rang şi defect Schimbarea matricei

Διαβάστε περισσότερα

Platforma 2 - Discretizarea sistemelor continue

Platforma 2 - Discretizarea sistemelor continue Platforma 2 - Discretiarea sistemelor continue 1. Sisteme de reglare continuale Sistemele automate moderne combină în bucla de reglare dispoitive pur numerice (calculatorul de proces, microcontrollerul)

Διαβάστε περισσότερα

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă

EDITURA PARALELA 45 MATEMATICĂ DE EXCELENŢĂ. Clasa a X-a Ediţia a II-a, revizuită. pentru concursuri, olimpiade şi centre de excelenţă Coordonatori DANA HEUBERGER NICOLAE MUŞUROIA Nicolae Muşuroia Gheorghe Boroica Vasile Pop Dana Heuberger Florin Bojor MATEMATICĂ DE EXCELENŢĂ pentru concursuri, olimpiade şi centre de excelenţă Clasa a

Διαβάστε περισσότερα

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită.

T R A I A N ( ) Trigonometrie. \ kπ; k. este periodică (perioada principală T * =π ), impară, nemărginită. Trignmetrie Funcţia sinus sin : [, ] este peridică (periada principală T * = ), impară, mărginită. Funcţia arcsinus arcsin : [, ], este impară, mărginită, bijectivă. Funcţia csinus cs : [, ] este peridică

Διαβάστε περισσότερα

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice

Componente şi Circuite Electronice Pasive. Laborator 4. Măsurarea parametrilor mărimilor electrice Laborator 4 Măsurarea parametrilor mărimilor electrice Obiective: o Semnalul sinusoidal, o Semnalul dreptunghiular, o Semnalul triunghiular, o Generarea diferitelor semnale folosind placa multifuncţională

Διαβάστε περισσότερα

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:,

RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii transversale, scrisă faţă de una dintre axele de inerţie principale:, REZISTENTA MATERIALELOR 1. Ce este modulul de rezistenţă? Exemplificaţi pentru o secţiune dreptunghiulară, respectiv dublu T. RĂSPUNS Modulul de rezistenţă este o caracteristică geometrică a secţiunii

Διαβάστε περισσότερα

Proiectarea filtrelor IIR prin metode de transformare

Proiectarea filtrelor IIR prin metode de transformare Laboratorul 6 Proiectarea filtrelor IIR prin metode de transformare 6. Tema Proiectarea filtrelor IIR utilizând prototipuri analogice şi transformarea biliniară. Utilizarea rutinelor Matlab pentru proiectarea

Διαβάστε περισσότερα

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite

Capitolul 4. Integrale improprii Integrale cu limite de integrare infinite Capitolul 4 Integrale improprii 7-8 În cadrul studiului integrabilităţii iemann a unei funcţii s-au evidenţiat douăcondiţii esenţiale:. funcţia :[ ] este definită peintervalînchis şi mărginit (interval

Διαβάστε περισσότερα

Laborator 6. Integrarea ecuaţiilor diferenţiale

Laborator 6. Integrarea ecuaţiilor diferenţiale Laborator 6 Integrarea ecuaţiilor diferenţiale Responsabili: 1. Surdu Cristina(anacristinasurdu@gmail.com) 2. Ştirbăţ Bogdan(bogdanstirbat@yahoo.com) Obiective În urma parcurgerii acestui laborator elevul

Διαβάστε περισσότερα

Examen AG. Student:... Grupa: ianuarie 2016

Examen AG. Student:... Grupa: ianuarie 2016 16-17 ianuarie 2016 Problema 1. Se consideră graful G = pk n (p, n N, p 2, n 3). Unul din vârfurile lui G se uneşte cu câte un vârf din fiecare graf complet care nu-l conţine, obţinându-se un graf conex

Διαβάστε περισσότερα

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2

2.1 Sfera. (EGS) ecuaţie care poartă denumirea de ecuaţia generală asferei. (EGS) reprezintă osferă cu centrul în punctul. 2 + p 2 .1 Sfera Definitia 1.1 Se numeşte sferă mulţimea tuturor punctelor din spaţiu pentru care distanţa la u punct fi numit centrul sferei este egalăcuunnumăr numit raza sferei. Fie centrul sferei C (a, b,

Διαβάστε περισσότερα

1.3 Baza a unui spaţiu vectorial. Dimensiune

1.3 Baza a unui spaţiu vectorial. Dimensiune .3 Baza a unui spaţiu vectorial. Dimensiune Definiţia.3. Se numeşte bază a spaţiului vectorial V o familie de vectori B care îndeplineşte condiţiile de mai jos: a) B este liniar independentă; b) B este

Διαβάστε περισσότερα

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1)

Ecuatii exponentiale. Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. a x = b, (1) Ecuatii exponentiale Ecuatia ce contine variabila necunoscuta la exponentul puterii se numeste ecuatie exponentiala. Cea mai simpla ecuatie exponentiala este de forma a x = b, () unde a >, a. Afirmatia.

Διαβάστε περισσότερα

Proiectarea filtrelor prin metoda pierderilor de inserţie

Proiectarea filtrelor prin metoda pierderilor de inserţie FITRE DE MIROUNDE Proiectarea filtrelor prin metoda pierderilor de inserţie P R Puterea disponibila de la sursa Puterea livrata sarcinii P inc P Γ ( ) Γ I lo P R ( ) ( ) M ( ) ( ) M N P R M N ( ) ( ) Tipuri

Διαβάστε περισσότερα

Progresii aritmetice si geometrice. Progresia aritmetica.

Progresii aritmetice si geometrice. Progresia aritmetica. Progresii aritmetice si geometrice Progresia aritmetica. Definitia 1. Sirul numeric (a n ) n N se numeste progresie aritmetica, daca exista un numar real d, numit ratia progresia, astfel incat a n+1 a

Διαβάστε περισσότερα

Subiecte Clasa a VII-a

Subiecte Clasa a VII-a lasa a VII Lumina Math Intrebari Subiecte lasa a VII-a (40 de intrebari) Puteti folosi spatiile goale ca ciorna. Nu este de ajuns sa alegeti raspunsul corect pe brosura de subiecte, ele trebuie completate

Διαβάστε περισσότερα

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36].

Fig Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Componente şi circuite pasive Fig.3.85. Impedanţa condensatoarelor electrolitice SMD cu Al cu electrolit semiuscat în funcţie de frecvenţă [36]. Fig.3.86. Rezistenţa serie echivalentă pierderilor în funcţie

Διαβάστε περισσότερα

Curs 2 Şiruri de numere reale

Curs 2 Şiruri de numere reale Curs 2 Şiruri de numere reale Facultatea de Hidrotehnică Universitatea Tehnică "Gh. Asachi" Iaşi 2014 Convergenţă şi mărginire Teoremă Orice şir convergent este mărginit. Demonstraţie Fie (x n ) n 0 un

Διαβάστε περισσότερα

Problema a II - a (10 puncte) Diferite circuite electrice

Problema a II - a (10 puncte) Diferite circuite electrice Olimpiada de Fizică - Etapa pe judeţ 15 ianuarie 211 XI Problema a II - a (1 puncte) Diferite circuite electrice A. Un elev utilizează o sursă de tensiune (1), o cutie cu rezistenţe (2), un întrerupător

Διαβάστε περισσότερα

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane

Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Subspatii ane Lectia VI Structura de spatiu an E 3. Dreapta si planul ca subspatii ane Oana Constantinescu Oana Constantinescu Lectia VI Subspatii ane Table of Contents 1 Structura de spatiu an E 3 2 Subspatii

Διαβάστε περισσότερα

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier

Capitolul 3. Serii Fourier. a unei funcţii periodice de perioadă Dezvoltarea în serie Fourier Capitolul Serii Fourier 7-8. Dezvoltarea în serie Fourier a unei funcţii periodice de perioadă Pornind de la discuţia asupra coardei vibrante începută în anii 75 între Euler şi d Alembert, se ajunge la

Διαβάστε περισσότερα

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2.

10/31/2014. În evoluţia sistemelor dinamice unele semnale apar cu o anumită întârziere faţă de un anumit moment convenţional ales ca t = 0. (2. Transformata F(s) definită de (.37) este univocă şi se numeşte transformata Laplace directă.. Transformata Laplace inversă este univocă numai în cazul funcţiilor f(t) continue şi se defineşte prin relaţia

Διαβάστε περισσότερα

prin egalizarea histogramei

prin egalizarea histogramei Lucrarea 4 Îmbunătăţirea imaginilor prin egalizarea histogramei BREVIAR TEORETIC Tehnicile de îmbunătăţire a imaginilor bazate pe calculul histogramei modifică histograma astfel încât aceasta să aibă o

Διαβάστε περισσότερα

Electronică anul II PROBLEME

Electronică anul II PROBLEME Electronică anul II PROBLEME 1. Găsiți expresiile analitice ale funcției de transfer şi defazajului dintre tensiunea de ieşire şi tensiunea de intrare pentru cuadrupolii din figurile de mai jos și reprezentați-le

Διαβάστε περισσότερα

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER

2. Circuite logice 2.4. Decodoare. Multiplexoare. Copyright Paul GASNER 2. Circuite logice 2.4. Decodoare. Multiplexoare Copyright Paul GASNER Definiţii Un decodor pe n bits are n intrări şi 2 n ieşiri; cele n intrări reprezintă un număr binar care determină în mod unic care

Διαβάστε περισσότερα

Stabilitatea sistemelor liniare si invariante in timp

Stabilitatea sistemelor liniare si invariante in timp Stabilitatea sistemelor liniare si invariante in timp In continuare ne vom referi la sisteme liniare si invariante in timp cauzale. http://shannon.etc.upt.ro/teaching/ps/cap4_stabilitate.pdf Analiza stabilitatii

Διαβάστε περισσότερα

Asupra unei inegalităţi date la barajul OBMJ 2006

Asupra unei inegalităţi date la barajul OBMJ 2006 Asupra unei inegalităţi date la barajul OBMJ 006 Mircea Lascu şi Cezar Lupu La cel de-al cincilea baraj de Juniori din data de 0 mai 006 a fost dată următoarea inegalitate: Fie x, y, z trei numere reale

Διαβάστε περισσότερα

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l +

f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl, x U 0 D\{x 0 }. < f(x) < l + Semnul local al unei funcţii care are limită. Propoziţie. Fie f : D (, d) R, x 0 D. Presupunem că lim x x 0 f(x) = l 0. Atunci f are local semnul lui l, adică, U 0 V(x 0 ) astfel încât sgnf(x) = sgnl,

Διαβάστε περισσότερα

Transformări de frecvenţă

Transformări de frecvenţă Lucrarea 22 Tranformări de frecvenţă Scopul lucrării: prezentarea metodei de inteză bazate pe utilizarea tranformărilor de frecvenţă şi exemplificarea aceteia cu ajutorul unui filtru trece-jo de tip Sallen-Key.

Διαβάστε περισσότερα

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx +

avem V ç,, unde D = b 4ac este discriminantul ecuaţiei de gradul al doilea ax 2 + bx + Corina şi Cătălin Minescu 1 Determinarea funcţiei de gradul al doilea când se cunosc puncte de pe grafic, coordonatele vârfului, intersecţii cu axele de coordonate, puncte de extrem, etc. Probleme de arii.

Διαβάστε περισσότερα

Circuit rezonant LC paralel

Circuit rezonant LC paralel Circuit rezonant LC paralel Scopul lucrarii...1 Descrierea circuitului...1 Ecuatii de stare...1 Ecuatii TTN...2 Calculul functiei de transfer H(s)...2 Metoda I: divizor de tensiune...2 Metoda II: ecuatii

Διαβάστε περισσότερα

Algebra si Geometrie Seminar 9

Algebra si Geometrie Seminar 9 Algebra si Geometrie Seminar 9 Decembrie 017 ii Equations are just the boring part of mathematics. I attempt to see things in terms of geometry. Stephen Hawking 9 Dreapta si planul in spatiu 1 Notiuni

Διαβάστε περισσότερα

Conice - Câteva proprietǎţi elementare

Conice - Câteva proprietǎţi elementare Conice - Câteva proprietǎţi elementare lect.dr. Mihai Chiş Facultatea de Matematicǎ şi Informaticǎ Universitatea de Vest din Timişoara Viitori Olimpici ediţia a 5-a, etapa I, clasa a XII-a 1 Definiţii

Διαβάστε περισσότερα

1.4 Schimbarea bazei unui spaţiu vectorial

1.4 Schimbarea bazei unui spaţiu vectorial Algebră liniară, geometrie analitică şi diferenţială. Schimbarea bazei unui spaţiu vectorial După cum s-a văzut deja, într-un spaţiu vectorial V avem mai multe baze, iar un vector x V va avea câte un sistem

Διαβάστε περισσότερα

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu,

Ovidiu Gabriel Avădănei, Florin Mihai Tufescu, vidiu Gabriel Avădănei, Florin Mihai Tufescu, Capitolul 6 Amplificatoare operaţionale 58. Să se calculeze coeficientul de amplificare în tensiune pentru amplficatorul inversor din fig.58, pentru care se

Διαβάστε περισσότερα

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1

Aparate de măsurat. Măsurări electronice Rezumatul cursului 2. MEE - prof. dr. ing. Ioan D. Oltean 1 Aparate de măsurat Măsurări electronice Rezumatul cursului 2 MEE - prof. dr. ing. Ioan D. Oltean 1 1. Aparate cu instrument magnetoelectric 2. Ampermetre şi voltmetre 3. Ohmetre cu instrument magnetoelectric

Διαβάστε περισσότερα

a. 11 % b. 12 % c. 13 % d. 14 %

a. 11 % b. 12 % c. 13 % d. 14 % 1. Un motor termic funcţionează după ciclul termodinamic reprezentat în sistemul de coordonate V-T în figura alăturată. Motorul termic utilizează ca substanţă de lucru un mol de gaz ideal având exponentul

Διαβάστε περισσότερα

A1. Valori standardizate de rezistenţe

A1. Valori standardizate de rezistenţe 30 Anexa A. Valori standardizate de rezistenţe Intr-o decadă (valori de la la 0) numărul de valori standardizate de rezistenţe depinde de clasa de toleranţă din care fac parte rezistoarele. Prin adăugarea

Διαβάστε περισσότερα

Examen AG. Student:... Grupa:... ianuarie 2011

Examen AG. Student:... Grupa:... ianuarie 2011 Problema 1. Pentru ce valori ale lui n,m N (n,m 1) graful K n,m este eulerian? Problema 2. Să se construiască o funcţie care să recunoască un graf P 3 -free. La intrare aceasta va primi un graf G = ({1,...,n},E)

Διαβάστε περισσότερα

Stabilitatea circuitelor cu reacţie

Stabilitatea circuitelor cu reacţie Lucrarea 21 Stabilitatea circuitelor cu reacţie Scopul lucrării: prezentarea schemei bloc, a terminologiei şi a criteriilor de stabilitate specifice circuitelor cu reacţie, exemplificarea acestora folosind

Διαβάστε περισσότερα

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi

CURS XI XII SINTEZĂ. 1 Algebra vectorială a vectorilor liberi Lect. dr. Facultatea de Electronică, Telecomunicaţii şi Tehnologia Informaţiei Algebră, Semestrul I, Lector dr. Lucian MATICIUC http://math.etti.tuiasi.ro/maticiuc/ CURS XI XII SINTEZĂ 1 Algebra vectorială

Διαβάστε περισσότερα