21. Površinska napetost vode

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "21. Površinska napetost vode"

Transcript

1 21. Površinska napetost vode Površinska napetost je koeficient med povečanjem površine neke kapljevine in delom, ki ga moramo za to opraviti: da=γ.ds γ - površinska napetost [N/m] To delo je morala na določeni poti opraviti sila: F= -(da/dx) F= -γ. (ds/dx) Površino lahko izrazimo kot produkt med dolžino in višino dodane površine: S=l.x Tako dobimo: F=-γ.l Ker pa smo v našem primeru dvigovali dve površini, pomnožimo desno stran z 2. F=2.γ.l Dolžino dodane površine izrazimo iz premera zanke, s katero smo površino večali. Tako končno dobimo: F=2.γ.2r.π/2 F=γ.2r.π Od tod izrazimo površinsko napetost: γ=f/(2r.π) smo opravljali s torzijsko tehtnico, ki smo jo umerili tako, da smo namesto zanke za merjenje površinske napetosti na ročico obešali uteži. Po umeritvi torzijske tehtnice lahko izrazimo silo kar s kotom in umeritvenim koeficientom: F=c.ϕ c [N/ ] γ=c.ϕ/(2r.π) Umeritev torzijske tehtnice: m [g] ϕ [ ] 0,250 15,5 0,500 33,3 0,750 51,1 1,000 67,9 1,250 86,3 1, ,2 1, ,9 2, ,1 Meritev premera zanke: 2r=(11.1±0,05) mm {0,005} odklonov torzijske tehtnice: ϕ [ ] 32,1 31,9 31,4 31,8 31,4 31,5 30,9 31,5 31,3 30,1

2 Izračuni: Najprej izračunamo sorazmernostni koeficient med kotom zasuka in silo, ki deluje na koncu ročice: Sorazmernostni koeficient izračunamo po enačbi: c=n/ϕ = m.g/ϕ m [g] ϕ [ ] c [10 4 N/ ] 0,250 15,5 1,58 x 0,500 33,3 1,47 x 0,750 51,1 1,43 1,000 67,9 1,44 1,250 86,3 1,42 1, ,2 1,41 1, ,9 1,41 x 2, ,1 1,40 x Iz preostalih meritev dobimo: c=(1,43±0,02).10-4 N/ {0,01}. ϕ [ ] 32,1 x 31,9 x 31,4 31,8 31,4 31,5 30,9 x 31,5 31,3 30,1 x Iz preostalih meritev dobimo povprečni kot zasuka: ϕ=(31,5±0,3) {0,01} Po enačbi γ=c.ϕ/(2r.π) γ= [(1, N/ ). (31,5 )] / [11, m. π] dobimo, da je površinska napetost vode: γ=0,12 N/m. Natančnost meritve je okrog {0,025}

3 11. Vrtenje togega telesa Vrtenje togega telesa lahko enakomerno pospešujemo, če nanj delujemo s konstantnim navorom. Pri tem velja: M = J.α, Pri čemer je M navor, α kotni pospešek, J pa vztrajnostni moment telesa okrog dane osi. Pri našem poskusu obroč poganja sila teže uteži na koncu vrvice, navite okrog osi obroča in speljane preko škripca. Ker smo biologi, zanemarimo vztrajnostno maso vrvice in vztrajnostni moment škripca, pa tudi dejstvo, da je sila, ki dejansko poganja obroč, zaradi pospešenega gibanja škripca in uteži manjša od sile teže uteži, pustimo vnemar. Tako dobimo: J.α = T.r m.g.r, pri čemer je T sila, ki deluje na sistem obroča, r radij navitja vrvice. Po zgoraj opisanih zanemarjanjih lahko silo T nadomestimo s produktom mase uteži m in težnostnim pospeškom g. Tako končno dobimo: J = m.g.r/α Če gledamo na sistem s stališča ohranjanja energije, velja: Wk = Wp J.ω 2 = m.g.h pri čemer je ω končna kotna hitrost in h razlika med začetno in končno višino uteži. Razne meritve: Masa kompenzacijske uteži m [kg] 0,00200 Premer navitja 2r [m] 0,020 Masa obroča mo [kg] 1,250 Premer obroča 2ro [m] 0,320 Masa prečke mš [kg] 0,010 Dolžina špic dš [m] 0,375 Določitev kompenzacijske uteži: m =2g t [s] t [s] t [s] 10,04 21,83 07,79 20,09 40,00 15,39 30,18 55,93 22,99 40,26 70,35 30,53 50,42 83,82 37,96 60,66 96,40 45,34 Pri tej kompenzacijski uteži je vrtenje obroča skoraj povsem enakomerno, kar se zelo lepo vidi tudi iz grafa t [s] n [ ] (število obratov obroèa)

4 časov t [s] ob celih obhodih obroča: m [g]: ,46 12,94 14,15 12,98 18,69 18, ,37 18,67 20,01 18,71 26,10 25, ,96 25,12 24,47 23,19 31,95 31, ,76 26,86 28,29 26,93 36,04 36,76 m = 19 g t [s] t 2 [s 2 ] m = 11 g t [s] t 2 [s 2 ] N: 1 13,38 179,1 N: 1 18,48 341,5 2 19,19 368,3 2 26,02 677,0 3 24,19 584,9 3 31, ,46 754,1 4 36, t.t [s.s] N [ ] (število obratov) m = 19 g m = 11 g Graf prikazuje sorazmernost med številom obratov in kvadratom časa. Izračunamo še kotne pospeške: ϕ = 2π. N = (α. t2 ) / 2 α = 2π.N.2 / t 2 = 4π.N / t 2 [rad/s 2 ] m [g] N α [10-2 rad/s 2 ] α [10-2 rad/s 2 ] 1 7,02 3,68 2 6,82 3,71 3 6,45 3,72 4 6,67 3,79 povprečje 6,74 3,73 Po v teoriji izpeljani enačbi J = m.g.r/α in s podatki za 11-gramsko in 19-gramsko utež zračunamo vztrajnostni moment: Najprej za 19-gramsko utež: J = ( 0,019 kg. 9,8 m/s 2. (0,020 m/2) ) / ( 6, rad/s 2 ) = 2, kg.m 2 In še za 11-gramsko utež: J = ( 0,011 kg. 9,8 m/s 2. (0,020 m/2) ) / ( rad/s 2 ) = 2, kg.m 2 Skupni vztrajnostni moment obroča, prečk in vrvice je torej okrog Jskupni = (2.8 0,1) kg.m 2 Poglejmo še, kako je s sistemom z vidika energij (gledali bomo po štirih celotnih obratih za 11-gramsko utež): J.ω 2 /2= m.g.h J.(α.t) 2 /2 = m.g.n.2.π.r J.(α.t) 2 /2 = N.π.m.g.2r Wk: (2, kg.m 2 /rad). (3, rad/s 2. 36,40 s) 2 / 2= 0,026 J Wp: 4. π. 0,011 kg. 9,8 m/s 2. 0,020 m = 0,027 J Vidimo torej, da sta energiji res enaki. Poglejmo še, kako se izmerjeni vztrajnostni moment ujema z izračunanim. Zanemarimo vse razen obroča, tudi prečke (zaradi preprostosti izračuna in majhnega vpliva - masa treh prečk je le 2,5% mase obroča) J = Jobroča = m.robroča 2 = 1,250 kg. (0,32 m/2) 2 = 3, kg.m 2. Imamo torej 10-odstotno napako.

5 64. Spektroskop na prizmo Spektroskop na prizmo je sestavljen iz prizme, daljnogleda, cevi z režp in cevi s skalo. Vzporeden snop svetlobe se v prizmi zaradi disperzije (različne hitrosti svetlobe v mediju pri različnih valovnih dolžinah - posledica tvorjenja dipolov v snovi) lomi pod različnimi koti. Skozi daljnogled vidimo sliko reže na več mestih; vsaka slika ustreza eni vaovni dolžini vpadle svetlobe. Skozi okular obenem vidimo tudi skalo, s katero kvantiziramo lome. S primerno umeritveno krivuljo lahko tako ugotovimo spektralne črte neznane svetilke Umeritev skale z živosrebrno svetilko Barva Valovna dolžina λ [nm] Vrednost na skali rumena 576,9 4,1 579,0 4,1 zelena 546,1 4,8 491,6 6,2 491,6 6,3 modra 435,8 8,5 vijolična 410,3 10,1 407,5 10,2 404,7 10,3 Meritev spektralnih črt natrijeve svetilke: Barva Vrednost na skali rdeča 3,2 rumena 4,0 4,2 zelena 5,5 5,8 modra 6,5 6,8 7,0 Meritev zveznega spektra: Barva Minimum Maksimum rdeča 2,9 3,6 oranžna 3,6 3,8 rumena 3,8 4,1 zelena 4,1 5,8 modra 5,8 6,5 vijolična 6,5 9,0 spekter 2,9 9,0

6 Nato narišemo graf, ki povezuje prebrano vrednost na skali in valovno dolžino. Iz grafa preberemo 10 valovne dolžine spektralnih črt natrijeve 9 svetilke: Rdeča 3,2: 630 nm Rumena: 4,0: 580 nm 8 Rumena 4,2:570 nm Zelena 5,5:520 nm 7 Zelena 5,8:510 nm Modra 6,5:490 nm 6 Modra 6,8:480 nm Modra 7,0:470 nm Vrednost na skali Valovna dolina Meje zaznave barv (pri navadni žarnici) pa so naslednje: Rdeča: nm Oranžna: nm Rumena: nm Zelena: nm Modra: nm Vijolična: nm

7 48. Osciloskop Osciloskop je inštrument, s katerim neposredno merimo električno napetost, posredno pa pravzaprav vse vrste električnih pojavov, ki so prehitri, da bi jih običajni inštrumenti zaznali. Njegovo delovanje je v grobem podobno televiziji, le da se namesto periodičnega spreminjanja vodoravnega in navpičnega odklona in od vhoda odvisne jakosti curka elektronov tu periodično spreminja horizontalni odklon (ponavadi odklon krmilimo z žagasto napetostjo, jakost curka je stalna, vertikalni odklon pa je odvisen od vhoda. Če pa ima osciloskop dva vhoda, lahko z drugim krmilimo vertikalni odklon. Če sta frekvenci napetosti na vhodih v celoštevilskem razmerju, dobimo na ekranu Lissajouseve krivulje: Do spreminjanja oblike pride zaradi malenkostne razlike v frekvenci in posledičnega zamika Figura elipse: ν=0,71 khz faze. Ideja: kvaliteto sterea se ugotavlja tako, da se na vhod ojačevalnika pripelje sinusni signal. Če je stereo pravilno izveden, mora fazo enega kanala zamakniti za četrt nihaja. Če je to res in sta tudi obe jakosti enaki, dobimo na zaslonu osciloskopa pravilen krog. ν=1,42 (=2 0,71) khz ν=2,13 (=3 0,71) khz ν=0,355 (=0,71/2) khz ν=0,177 (=0,71/4) khz Amplituda merjene napetosti je bila 7,5 V, frekvenca pa 0,71 khz.

8 50. Polprevodniška dioda Dioda je v splošnem elektronski element, ki tok prevaja pretežno samo v eno smer, v drugo pa praktično ne. Prve diode so bile elektronke (anoda je bila žarilna nitka, katoda ploščica), danes pa uporabljamo predvsem polprevodniške diode. Karakteristiko diode prikažemo z grafom tok skozi diodo v odvisnosti od napetosti. V našem primeru smo merili tako, da smo zaporedno z diodo vezali znan upor. Z osciloskopom smo merili generatorsko napetost in napetos na upormiku. Tok skozi diodo je seveda enak toku skozi upornik, ta pa je sorazmeren z napetostjo na njem. (Koeficient sorazmerja je - po Ohmovem zakonu - prevodnost upora). Tako dobimo: I = 1/R. Ur Napetost na diodi je razlika generatorske in uporniške napetosti Ud = Ug - Ur Ug (V) 0,08 0,44 0,48 0,52 0,56 0,7 0,9 1,0 1,1 1,5 2,0 2,5 3,0 3,5 4,0 5,0 6,0 7,0 8,0 Ur (V) 0 0 0,01 0,02 0,03 0,1 0,2 0,32 0,4 0,76 1,25 1,8 2,3 2,7 3,2 4,0 5,0 6,0 7,0 Upornost upornika: 100 Ω Izračuni Ug (V) 0,08 0,44 0,48 0,52 0,56 0,7 0,9 1,0 1,1 1,5 2,0 2,5 3,0 3,5 4,0 5,0 6,0 7,0 8,0 Ur (V) 0 0 0,01 0,02 0,03 0,1 0,2 0,35 0,4 0,75 1,25 1,8 2,3 2,7 3,2 4,0 5,0 6,0 7,0 Ud (V) 0,08 0,44 0,47 0,50 0,53 0,6 0,7 0,65 0,7 0,75 0,75 0,7 0,7 0,8 0,8 1,0 1,0 1,0 1,0 I (ma) 0 0 0,1 0,2 0, ,5 4 7,5 10, Karakteristika diode 1,2 1 0,8 U (V) 0,6 0,4 0, I (ma)

9 65. Michelsonov interferometer Michelsonov interferometer je naprava, ki izkorišča pojav interference za merjenje zelo majhnih razlik v razdalji. Polpropustna ploščica razdeli vpadli curek enobarvne svetlobe na dva med seboj pravokotna curka. Curek, ki se je od polprepustnega zrcala odbil, potuje do enega zrcala in potem nazaj skozi polprepustno zrcalo, curek, ki pa je šel skozi polprepustno zrcalo, se odbije od drugega zrcala in potem še od polprepustnega zrcala. Obe valovanji sta tako prepotovali različno dolgi poti. Interferenca je posledica tega, da se obe elektromagnetni valovanji srečata v različnih fazah. Če sta obe poti natanko enaki ali je razlika poti sodi večkratnik polovice valovne dolžine svetlobe, se fazi seštejeta, če pa je razlika ravno lihi večkratnik, se fazi odštejeta. Tako dobimo v sredini ali svetlo ali temno področje. Okrog sredinske točke so kolobarji, ker pot curka v splošnem ni povsod enaka. Nov kolobar nastane, če se pot enega curka spremeni za valovno dolžino svetlobe λ. To pomeni premik zrcala d za λ/2, ker se pri premiku d optična pot spremeni za 2d. Z ugotavljanjem razmerja med premikom zrcala in številom novonastalih (ali izginulih) interferenčnih kolobarjev lahko ugotovimo valovno dolžino svetlobe. Merili smo premik zrcala, ki je bil potreben, da je nastalo 40 krogov. Tako določimo: N=40. Premiki mikrometrskega vijaka so bili naslednji: d [mm] 0,12 0,13 0,12 0,12 0,12 0,12 0,15 0,16 0,13 Statistično povprečje: d=0,13±0,01 mm, to je d=1, m. Pri izračunu pa moramo še upoštevati vzvod v razmerju 1:10, preko katerega se premika zrcalo. Koeficient k, s katerim množimo premike vijaka, je tako k=1/10. Po enačbi λ=2.k.d/n λ=[2. (1/10). (0, m)] / 40 dobimo, da je valovna dolžina svetlobe natrijeve svetilke λ=650 nm. Svetloba, ki smo jo opazovali, ima tako valovno dolžino 650 nm, kar res ustreza področju rumene svetlobe.

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Slika 5: Sile na svetilko, ki je obešena na žici.

Slika 5: Sile na svetilko, ki je obešena na žici. 4. poglavje: Sile 5. Cestna svetilka visi na sredi 10 m dolge žice, ki je napeta čez cesto. Zaradi teže svetilke (30 N) se žica za toliko povesi, da pride sredina za 30 cm niže kot oba konca. Kako močno

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

VEKTORJI. Operacije z vektorji

VEKTORJI. Operacije z vektorji VEKTORJI Vektorji so matematični objekti, s katerimi opisujemo določene fizikalne količine. V tisku jih označujemo s krepko natisnjenimi črkami (npr. a), pri pisanju pa s puščico ( a). Fizikalne količine,

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL

POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL POROČILO 3.VAJA DOLOČANJE REZULTANTE SIL Izdba aje: Ljubjana, 11. 1. 007, 10.00 Jan OMAHNE, 1.M Namen: 1.Preeri paraeogramsko praio za doočanje rezutante nezporedni si s skupnim prijemaiščem (grafično)..dooči

Διαβάστε περισσότερα

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2.

ENOTE IN MERJENJA. Izpeljana enota je na primer enota za silo, newton (N), ki je z osnovnimi enotami podana kot: 1 N = 1kgms -2. ENOTE IN MERJENJA Fizika temelji na merjenjih Vsa važnejša fizikalna dognanja in zakoni temeljijo na ustreznem razumevanju in interpretaciji meritev Tudi vsako novo dognanje je treba preveriti z meritvami

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9

MERITVE LABORATORIJSKE VAJE. Študij. leto: 2011/2012 UNIVERZA V MARIBORU. Skupina: 9 .cwww.grgor nik ol i c NVERZA V MARBOR FAKTETA ZA EEKTROTEHNKO, RAČNANŠTVO N NFORMATKO 2000 Maribor, Smtanova ul. 17 Študij. lto: 2011/2012 Skupina: 9 MERTVE ABORATORJSKE VAJE Vaja št.: 4.1 Določanj induktivnosti

Διαβάστε περισσότερα

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost

Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Vzporedne, zaporedne, kombinirane in kompleksne vezave led diod in njihova zanesljivost Led dioda LED dioda je sestavljena iz LED čipa, ki ga povezujejo priključne nogice ter ohišja led diode. Glavno,

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

Fizikalni praktikum I Vaje iz Fizike I za študente Biologije

Fizikalni praktikum I Vaje iz Fizike I za študente Biologije Dr. Janez Stepišnik Fizikalni praktikum I Vaje iz Fizike I za študente Biologije 11. VRTENJE TOGEGA TELESA Togo telo, ki je vrtljivo okoli nepremične osi, se vrti enakomerno pospešeno, če deluje nanj konstanten

Διαβάστε περισσότερα

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik

Podobnost matrik. Matematika II (FKKT Kemijsko inženirstvo) Diagonalizacija matrik Podobnost matrik Matematika II (FKKT Kemijsko inženirstvo) Matjaž Željko FKKT Kemijsko inženirstvo 14 teden (Zadnja sprememba: 23 maj 213) Matrika A R n n je podobna matriki B R n n, če obstaja obrnljiva

Διαβάστε περισσότερα

MERITVE LABORATORIJSKE VAJE

MERITVE LABORATORIJSKE VAJE UNIVERZA V MARIBORU FAKULTETA ZA ELEKTROTEHNIKO, RAČUNALNIŠTVO IN INFORMATIKO 000 Maribor, Smetanova ul. 17 Študijsko leto: 011/01 Skupina: 9. MERITVE LABORATORIJSKE VAJE Vaja št.: 10.1 Merjenje z digitalnim

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

UPOR NA PADANJE SONDE V ZRAKU

UPOR NA PADANJE SONDE V ZRAKU UPOR NA PADANJE SONDE V ZRAKU 1. Hitrost in opravljena pot sonde pri padanju v zraku Za padanje v zraku je odgovorna sila teže. Poleg sile teže na padajoče telo deluje tudi sila vzgona, ki je enaka teži

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

1 Michelsonov interferometer

1 Michelsonov interferometer 1 Michelsonov interferometer Dva žarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne krožne lise na sredini zaslona.

Διαβάστε περισσότερα

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok.

Naloge iz vaj: Sistem togih teles C 2 C 1 F A 1 B 1. Slika 1: Sile na levi in desni lok. 1 Rešene naloge Naloge iz vaj: Sistem togih teles 1. Tročleni lok s polmerom R sestavljen iz lokov in je obremenjen tako kot kaže skica. Določi sile podpor. Rešitev: Lok razdelimo na dva loka, glej skico.

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

FIZIKALNI PRAKTIKUM. France Sevšek

FIZIKALNI PRAKTIKUM. France Sevšek FIZIKALNI PRAKTIKUM France Sevšek Univerza v Ljubljani Visoka šola za zdravstvo Ljubljana, 2008 NASLOV: FIZIKALNI PRAKTIKUM 6. dopolnjena izdaja AVTOR: dr. France Sevšek STROKOVNI PREGLED: dr. Klemen Bohinc

Διαβάστε περισσότερα

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000,

Pošto pretvaramo iz veće u manju mjernu jedinicu broj 2.5 množimo s 1000, PRERAČUNAVANJE MJERNIH JEDINICA PRIMJERI, OSNOVNE PRETVORBE, POTENCIJE I ZNANSTVENI ZAPIS, PREFIKSKI, ZADACI S RJEŠENJIMA Primjeri: 1. 2.5 m = mm Pretvaramo iz veće u manju mjernu jedinicu. 1 m ima dm,

Διαβάστε περισσότερα

VAJA 1: Merjenje premera in gostote kovinskih kroglic

VAJA 1: Merjenje premera in gostote kovinskih kroglic VAJA 1: Merjenje premera in gostote kovinskih kroglic Naloga: V tej vaji bomo s pomočjo premera in mase dveh kovinskih kroglic določili nujno gostoto. Pripomočki: kovinske kroglice različnih premerov precizijska

Διαβάστε περισσότερα

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka

UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET SIGNALI I SISTEMI. Zbirka zadataka UNIVERZITET U NIŠU ELEKTRONSKI FAKULTET Goran Stančić SIGNALI I SISTEMI Zbirka zadataka NIŠ, 014. Sadržaj 1 Konvolucija Literatura 11 Indeks pojmova 11 3 4 Sadržaj 1 Konvolucija Zadatak 1. Odrediti konvoluciju

Διαβάστε περισσότερα

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom

Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom VSŠ Velenje ELEKTRIČNE MERITVE Laboratorijske vaje Zajemanje merilnih vrednosti z vf digitalnim spominskim osciloskopom Vaja št.2 M. D. Skupina A PREGLEDAL:. OCENA:.. Velenje, 22.12.2006 1. Besedilo naloge

Διαβάστε περισσότερα

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70

+105 C (plošče in trakovi +85 C) -50 C ( C)* * Za temperature pod C se posvetujte z našo tehnično službo. ϑ m *20 *40 +70 KAIFLEX ST Tehnični podatki Material Izjemno fleksibilna zaprtocelična izolacija, fleksibilna elastomerna pena (FEF) Opis Uporaba Temperaturno območje Toplotna prevodnost W/(m K ) pri različnih srednjih

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

Tema 1 Osnove navadnih diferencialnih enačb (NDE)

Tema 1 Osnove navadnih diferencialnih enačb (NDE) Matematične metode v fiziki II 2013/14 Tema 1 Osnove navadnih diferencialnih enačb (NDE Diferencialne enačbe v fiziki Večina osnovnih enačb v fiziki je zapisana v obliki diferencialne enačbe. Za primer

Διαβάστε περισσότερα

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1

Matematika 1. Gregor Dolinar. 2. januar Fakulteta za elektrotehniko Univerza v Ljubljani. Gregor Dolinar Matematika 1 Mtemtik 1 Gregor Dolinr Fkultet z elektrotehniko Univerz v Ljubljni 2. jnur 2014 Gregor Dolinr Mtemtik 1 Izrek (Izrek o povprečni vrednosti) Nj bo m ntnčn spodnj mej in M ntnčn zgornj mej integrbilne funkcije

Διαβάστε περισσότερα

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo

IZVODI ZADACI ( IV deo) Rešenje: Najpre ćemo logaritmovati ovu jednakost sa ln ( to beše prirodni logaritam za osnovu e) a zatim ćemo IZVODI ZADACI ( IV deo) LOGARITAMSKI IZVOD Logariamskim izvodom funkcije f(), gde je >0 i, nazivamo izvod logarima e funkcije, o jes: (ln ) f ( ) f ( ) Primer. Nadji izvod funkcije Najpre ćemo logarimovai

Διαβάστε περισσότερα

Michelsonov interferometer

Michelsonov interferometer Michelsonov interferometer Namen vaje: Spoznavanje valovnih značilnosti laserske svetlobe Spoznavanje načela delovanja interferometra Brezdotično merjenje kratkih pomikov Eksperimentalne naloge 1. Sestaviti

Διαβάστε περισσότερα

Molekularna spektrometrija

Molekularna spektrometrija Molekularna spektrometrija Absorpcija Fluorescenca Pojavi v snovi (posledica interakcije EM valovanje- snov): Elektronski prehodi Vibracije Rotacije Spekter Izvor svetlobe prizma Spekter Material, ki deloma

Διαβάστε περισσότερα

Michelsonov interferometer

Michelsonov interferometer Michelsonov interferometer Uvod Michelsonov interferometer [1] je sestavljen iz treh osnovnih elementov: dveh ravnih zrcal ter polprepustnega zrcala. Shema interferometra je prikazana na sliki 1. Interferenčno

Διαβάστε περισσότερα

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:...

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:... Gradniki elektronskih sistemov laboratorijske vaje Vaja 1 Lastnosti diode Ime in priimek:. Smer:.. Datum:... Pregledal:... Naloga: Izmerite karakteristiko silicijeve diode v prevodni smeri in jo vrišite

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

Zaporedna in vzporedna feroresonanca

Zaporedna in vzporedna feroresonanca Visokonapetostna tehnika Zaporedna in vzporedna feroresonanca delovanje regulacijskega stikala T3 174 kv Vaja 9 1 Osnovni pogoji za nastanek feroresonance L C U U L () U C () U L = U L () U C = ωc V vezju

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

1. Newtonovi zakoni in aksiomi o silah:

1. Newtonovi zakoni in aksiomi o silah: 1. Newtonovi zakoni in aksiomi o silah: A) Telo miruje ali se giblje enakomerno, če je vsota vseh zunanjih sil, ki delujejo na telo enaka nič. B) Če rezultanta vseh zunanjih sil, ki delujejo na telo ni

Διαβάστε περισσότερα

Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta

Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta Laboratorijske vaje pri predmetu Mehanika, termodinamika in elektromagnetno polje pri poučevanju za doizobraževanje tretjega premeta B Golli, A Kregar, PeF 1 marec 2012 Kazalo 1 Napake izmerjenih količin

Διαβάστε περισσότερα

1 Michelsonov interferometer

1 Michelsonov interferometer 1 Michelsonov interferometer Dva ˇzarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne kroˇzne lise na sredini zaslona.

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

Reševanje sistema linearnih

Reševanje sistema linearnih Poglavje III Reševanje sistema linearnih enačb V tem kratkem poglavju bomo obravnavali zelo uporabno in zato pomembno temo linearne algebre eševanje sistemov linearnih enačb. Spoznali bomo Gaussovo (natančneje

Διαβάστε περισσότερα

11. Vaja: BODEJEV DIAGRAM

11. Vaja: BODEJEV DIAGRAM . Vaja: BODEJEV DIAGRAM. Bodejev diagram sestavljata dva grafa: a) amplitudno frekvenčni diagram in b) fazno frekvenčni diagram Decibel je enota za razmerje dveh veličin. Definicija: B B 0log0 A A db Bodejeve

Διαβάστε περισσότερα

Dinamika kapilarnega pomika

Dinamika kapilarnega pomika UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO ODDELEK ZA FIZIKO Goran Bezjak SEMINARSKA NALOGA Dinamika kapilarnega pomika Mentor: izr. prof. dr. Gorazd Planinšič Ljubljana, december 2007 1 Povzetek

Διαβάστε περισσότερα

Fazni diagram binarne tekočine

Fazni diagram binarne tekočine Fazni diagram binarne tekočine Žiga Kos 5. junij 203 Binarno tekočino predstavljajo delci A in B. Ti se med seboj lahko mešajo v različnih razmerjih. V nalogi želimo izračunati fazni diagram take tekočine,

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike 1 Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 in 2005/06 Avtorji: S. Fratina, A. Gomboc in J. Kotar Verzija: 6. februar 2007 Prosim, da kakršnekoli

Διαβάστε περισσότερα

Regijsko tekmovanje srednješolcev iz fizike v letu 2004

Regijsko tekmovanje srednješolcev iz fizike v letu 2004 Regijsko tekmovanje srednješolcev iz fizike v letu 004 c Tekmovalna komisija pri DMFA 7. marec 004 Kazalo Skupina I Skupina II 4 Skupina III 6 Skupina I rešitve 8 Skupina II rešitve 11 Skupina III rešitve

Διαβάστε περισσότερα

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe!

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! 1. vaja: Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! Fotocelica, svetilka, ampermeter, voltmeter, izvir napetosti, rdeč, zelen in moder filter. Navodilo: Vstavite med svetilko

Διαβάστε περισσότερα

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t)

Jan Kogoj. . Ko vstavimo podano odvisnost pospeška od hitrosti, moramo najprej ločiti spremenljivke - na eno stran denemo v, na drugo pa v(t) Naloge - Živilstvo 2013-2014 Jan Kogoj 18. 4. 2014 1. Plavamo čez 5 m široko reko, ki teče s hitrostjo 2 m/s. Hitrost našega plavanja je 1 m/s. (a) Pod katerim kotom glede na tok reke moramo plavati, da

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov

SATCITANANDA. F = e E sila na naboj. = ΔW e. Rudolf Kladnik: Fizika za srednješolce 3. Svet elektronov in atomov Ruolf Klnik: Fizik z srenješolce Set elektrono in too Električno olje (11), gibnje elce električne olju Strn 55, nlog 1 Kolikšno netost or releteti elektron, se njego kinetičn energij oeč z 1 kev? Δ W

Διαβάστε περισσότερα

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović

DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović DISKRETNA MATEMATIKA - PREDAVANJE 7 - Jovanka Pantović Novi Sad April 17, 2018 1 / 22 Teorija grafova April 17, 2018 2 / 22 Definicija Graf je ure dena trojka G = (V, G, ψ), gde je (i) V konačan skup čvorova,

Διαβάστε περισσότερα

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje)

Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) Poglavja: Navor (5. poglavje), Tlak (6. poglavje), Vrtilna količina (10. poglavje), Gibanje tekočin (12. poglavje) V./4. Deska, ki je dolga 4 m, je podprta na sredi. Na koncu deske stoji mož s težo 700

Διαβάστε περισσότερα

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot 1 Kinematika 11 Premo gibanje Merjenje hitrosti Merimo lego telesa x kot funkcijo časa t Hitrost telesa je definirana kot odvod lege po času v(t) = dx(t) (1) dt Ker merimo lege le ob določenih časih, t

Διαβάστε περισσότερα

FIZIKA NAVODILA ZA OCENJEVANJE

FIZIKA NAVODILA ZA OCENJEVANJE Dr`avni izpitni center *M0441113* JESENSKI ROK FIZIKA NAVODILA ZA OCENJEVANJE Torek, 31. avgust 004 SPLO[NA MATURA C RIC 004 M04-411-1-3 Rešitve: POLA 1 VPRAŠANJA IZBIRNEGA TIPA REŠITVE 1. C 1. D. B. A

Διαβάστε περισσότερα

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI),

F A B. 24 o. Prvi pisni test (kolokvij) iz Fizike I (UNI), Prvi pisni test (kolokvij) iz Fizike I (UNI), 5. 12. 2003 1. Dve kladi A in B, ki sta povezani z zelo lahko, neraztegljivo vrvico, vlečemo navzgor po klancu z nagibom 24 o s konstantno silo 170 N tako,

Διαβάστε περισσότερα

Matej Komelj. Ljubljana, september 2013

Matej Komelj. Ljubljana, september 2013 VAJE IZ FIZIKE ZA ŠTUDENTE FARMACIJE Matej Komelj Ljubljana, september 2013 Kazalo 1 Uvod 2 2 Kinematika v eni razsežnosti, enakomerno kroženje 3 3 Kinematika v dveh razsežnostih, statika, dinamika 5 4

Διαβάστε περισσότερα

ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA

ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA ODGOVORI NA VPRAŠANJA ZA USTNI DEL IZPITA IZ PREDMETA FIZIKA 1. Pod pojmom telo razumemo snov z dano velikostjo in obliko. Sistem točkastih teles so vsa tista telesa, ki so v naši okolici in katerih gibanje

Διαβάστε περισσότερα

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J.

Zbirka rešenih nalog s kolokvijev in izpitov iz fizike. Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Zbirka rešenih nalog s kolokvijev in izpitov iz fizike Naravoslovnotehniška fakulteta, šolsko leto 2004/05 Avtorja: S. Fratina in J. Kotar Prosim, da kakršnekoli vsebinske ali pravopisne napake sporočite

Διαβάστε περισσότερα

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar

Stikalni pretvorniki. Seminar: Načrtovanje elektronike za EMC Boštjan Glažar Stikalni pretvorniki Seminar: Načrtovanje elektronike za EMC 9. 3. 2016 Boštjan Glažar niverza v Ljubljani Fakulteta za elektrotehniko Tržaška cesta 25, SI-1000 Ljubljana Vsebina Prednosti stikalnih pretvornikov

Διαβάστε περισσότερα