1 Michelsonov interferometer

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1 Michelsonov interferometer"

Transcript

1 1 Michelsonov interferometer Dva ˇzarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne kroˇzne lise na sredini zaslona. Če premaknemo eno od zrcal za razdaljo l, se optična pot žarka, ki se odbije na tem zrcalu, spremeni za 2l. Premik zrcala med dvema zaporednima ojačitvama meri 1 2 λ. Ko zrcalo odmikamo, se bodisi pojavljajo bodisi izginjajo svetli in temni kolobarji. Valovno dolˇzino izračunamo iz zveze λ = 2l/N, pri čemer je N število zaporednih ojačitev, ki smo jih našteli med tem, ko smo eno od zrcal premaknili za razdaljo l.. Shema Michelsonovega interferometra ( interferometer fringe formation.svg) Izmerite valovno dolˇzino laserske svetlobe v zraku z Michelsonovim interferometrom. Z mikrometrskim vijakom izmerite premik zrcala l za recimo 100 vznikov ali ponikov (N). Upoštevajte, da je zaradi podaljšane ročice dejanski premik zrcala 10 krat manjši. Izračunajte λ = 2l/10N.

2 A V Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 2 2 Fotoefekt Pri fotoefektu svetloba izbija elektrone iz kovine. Izkaˇze se, da elektrone lahko izbija le svetloba z dovolj majhno valovno dolˇzino (dovolj veliko energijo). Pojav je pojasnil Einstein tako, da je predpostavil, da je svetloba sestavljena iz fotonov; energija fotona je odvisna od njegove frekvence oz. valovne dolžine: E = hν = hc λ, (1) kjer je h Planckova konstanta, ki jo bomo pri vaji izmerili. Največja energija, ki jo elektron v kovini pri obsevanju z enobarvno svetlobo lahko sprejme, je enaka energiji fotona. Energija se porabi za premagovanje potencialne energije, s katero je elektron vezan v kovini (izstopno delo A i ), preostanek pa se manifestira kot kinetična energija elektrona. Za največjo kinetično energijo, ki jo lahko ima izbiti elektron, torej velja: W kin,maks = hν A i. (2) Tok, ki pri fotoefektu steče med anodo in katodo, je odvisen od kinetične energije elektronov. Največjo kinetično energijo izmerimo tako, da med katodo in anodo priključimo napetost v zaporni smeri in poiščemo tisto napetost, U, pri kateri tok preneha teči. Tedaj se največja kinetične energija ravno porabi za premagovanje električnega dela e 0 U in velja W kin,maks = e 0 U = hν A i. (3) Če rišemo maksimalno kinetično energijo izbitih elektronov v odvisnosti od frekvence svetlobe, dobimo premico z naklonskim koeficientom, ki je enak Planckovi konstanti (h), in presečiščem z navpično osjo pri vrednosti izstopnega dela A i. Z merjenjem zaporne napetosti pri osvetljevanju fotocelice z različnimi valovnimi dolˇzinami (barvami svetlobe) določite Planckovo konstanto in izstopno delo. Pri meritvi zaporno napetost počasi povečujemo (začnemo z 0V) in beleˇzimo, kolikšen tok teče skozi fotocelico. Meritev izvajamo toliko časa, dokler tok skozi fotocelico ne pade na 0. Dobljeno odvisnost toka od zaporne napetosti prikaˇzemo s točkami v grafu, skozi katero potegnemo gladko krivuljo, ki se točkam najbolje prilega. Maksimalno kinetično energijo elektronov odčitamo v točki, kjer krivulja seka abscisno os. Celotno meritev ponovimo pri različnih barvah svetlobe (valovnih dolžinah), ki jo sevajo vijolična, modra in zelena LED dioda.

3 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 3 3 Statistika sunkov iz radioaktivnega izvora Jedra radioaktivnih atomov razpadajo povsem slučajno; v vsakem trenutku je enaka verjetnost za razpad. Pri Matematičnih metodah smo v takšnem primeru pokazali, da je število razpadov v izbranem času t porazdeljeno po Poissonovi porazdelitvi: P N N = N N N! e N, (4) pri čemer je N povprečno število razpadov v tem intervalu. Za napako (standardno deviacijo) velja σ = N. (5) Izmerite porazdelitev razpadov v izbranem časovnem intervalu in jo primerjajte s Poissonovo porazdelitvijo z enakim povprečnim številom. Izvir radioaktivnih ˇzarkov (sevalec beta) postavite na primerno razdaljo od števca, tako v da izbranem intervalu dobite pribliˇzno tri sunke. Poskus pri isti razdalji ponovite Z = 100 krat in beleˇzite izide N i, i = 1,... Z. Izračunajte povprečno število N in odstopanje σ N = 1 Z Z i=1 N i, σ 2 = 1 Z Z i=1 (N i N) 2. (6) Narišite histogram, v katerega vnesete število meritev (višina stolpca) kot funkcijo preštetih sunkov. V isti histogram vrišite izmerjeno porazdelitev, tako da preštejete, koliko krat je se je pojavil izid z izbranim N, N = 0, 1, 2, 3,..., in ustrezno Poissonovo porazdelitev (enačba (4)), pomnoˇzeno s celotnim številom poskusov Z. Primerjajte še teoretično vrednost (5) z izmerjeno vrednostjo (6).

4 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 4 4 Spektrometer na uklonsko mreˇzico Pri pravokotnem vpadu enobarvne svetlobe na uklonsko mreˇzico dobimo ojačane curke v smereh, ki zadoščajo enačbi d sin ϑ = Nλ, (7) kjer je d razdalja med zaporednima reˇzama v mreˇzici (mreˇzna konstanta d 1 je običajno definirana kot število reˇz na milimeter), ϑ je kot odklona ˇzarka po prehodu skozi mrežico od prvotne smeri, N je uklonski red. Enačba omogoča računanje mrežne konstante, če poznamo valovno dolžino svetlobe, oziroma valovno dolžino (dolžine) svetlobe, če poznamo mrežno konstanto. Optična mreža torej omogoča analizo spektra, to je izračunavanje valovnih dolžin spektralnih sestavin. Govorimo o spektroskopu na mreˇzico. a) Z lasersko svetlobo znane valovne dolˇzine izmerite mreˇzno konstanto (tj. število reˇz na mm) uklonske mreˇzice, ki jo potrebujete pri spektroskopskem merjenju razˇzarjenih plinov. b) S spektrometrom izmerite valovne dolˇzine vidnega dela vodikovega spektra. Na podoben način izmerite tudi valovne dolˇzine optičnih spektrov neona in helija. Izmerjene vrednosti primerjajte s tabelaričnimi vrednostmi. a) Izmerite razdaljo spektrometra do zaslona l in odmike spektroskopskih črt od pravokotnice na mrežico y N (levo in desno). Izračunajte d kot povprečno vrednost meritev: d = Nλ/ sin θ N, kjer je tan θ N = y N /l. b) Merite l in lego uklonskih maksimumov za prvi red ( y 1 ) značilnih spektralnih črt plinov in izračunajte valovne dolžine teh črt. Značilne črte: vodik: 656 nm rdeča, 486 nm modrozelena, 434 nm modra (modrovijolična) in 410 nm vijolična. helij (v nm, s pomeni močna, m srednjemočna in w šibka): 439 w, 444 w, 447 s, 471 m, 492 m, 502 s, 505 w, 588 s, 668 m. neon (v nm) : 540 zelena, 585 rumena, 588 rumena; oranžne: 603, 607, 616; rdeče: 622, 627, 633, 638, 640, 651, 660, 693, 703.

5 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 5 5 Spektrometer na prizmo Spektralno analizo lahko izvedemo tudi s spektroskopom na prizmo. Vemo, da prizma odkloni svetlobni curek od prvotne smeri. Lomni količnik stekla, iz katerega je prizma, je sorazmeren (vendar ne premo sorazmeren) s frekvenco svetlobe. Pojav imenujemo disperzija svetlobe. Rdeča svetloba se zato v prizmi manj odkloni kot vijolična (obratno kot pri optični mrežici). Ta pojav opazimo tudi pri mavrici ob soncu in dežju. S spektroskopom na prizmo določite valovne dolˇzine značilnih barv bele svetlobe. Predhodno spektroskop umerite s svetlobo z znanim spektrom vodika. a) Sestavite spektroskop na prizmo, umerite ga z vodikovim spektrom in izmerite spekter različnih razˇzarjenih plinov in Hg par. Določite meje spektralnih barv v (zveznem) spektru volframove ˇzarnice. b) Spektre izmerite še s spektroskopom, povezanim z računalnikom. Ničlo skale umerite z vodikovim spektrom. Odčitajte v spektrometru lege treh ali štirih značilnih barv vodikovega spektra in narišite umeritveno krivuljo spektrometra. Nato odčitajte značilne spektralne črte drugih plinov in Hg in jim iz umeritvene krivulje določite valovne dolžine. Vodikov spekter: rdeča 656 nm, modrozelena 486 nm, modrovijolična 434 nm in vijolična 410 nm.

6 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 6 6 Poskusi z mikrovalovi Mikrovalovi so EM valovanje z valovnimi dolˇzinami v centimetrskem območju, zato so zelo primerni za opazovanje valovnih pojavov na makroskopski skali. Za izvir mikrovalov uporabljamo klistrone, v katerih elektroni nihajo v resonančni votlini in pri tem sevajo EM valovanje. Pri prehodu mikrovalov skozi mejo med dvema sredstvoma pride do loma, pri čemer velja lomni zakon: n 1 sin α = n 2 sin β Lomni količnik zraka je približno 1, tako da lahko samo z merjenjem kotov pri lomu določimo tudi lomni količnik izbrane snovi v našem primeru parafina. Z mikrovalovi posvetimo na parafinsko prizmo, na kateri se ˇzarek mikrovalov lomi dvakrat ob vstopu in izstopu (glej sliko). Pri simetričnem prehodu ˇzarka skozi prizmo velja β = γ/2 in θ = 2α γ, če je θ kot med vpadnim in izstopajočim ˇzarkom in γ kot v vrhu prizme (60 ). Lomni količnik sredstva je tedaj n = sin α sin β = sin 1 2 (θ + γ) sin 1 2 γ. Če na prizmo posvetimo pod ustreznim kotom (npr. pravokotno na stranico), pride na spodnji stranici v notranjosti prizme do popolnega odboja (glej sliko). α α Intenziteta valovanja pri tem na drugi strani meje (v zraku) eksponentno pojema. Če ob stranico prizme, na kateri pride do popolnega odboja, prislonimo drugo prizmo, sredstvo ob stranici efektifvno ni prekinjeno, zato do popolnega odboja ne pride, ˇzarek pa nadaljuje pot v drugo prizmo. Zanimivo je, da nekaj valovanja preide v drugo prizmo tudi v primeru, ko je med prizmama majhna zračna špranja. Temu pravimo

7 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 7 tunelski pojav, opišemo pa ga s kvantno mehaniko. Opazujmo pojemanje intenzitete prepuščenega EM valovanja kot funkcijo velikosti špranje d med njima (glej sliko). Ι 0 n 1 n 2 d α α Ι n 2 Pojemanje intenzitete valovanja opisuje enačba I = I 0 e 2κd a) Določite valovno dolˇzino mikrovalovnega valovanja. b) Določite lomni količnik parafina za mikrovalove. c) Opazujte upadanje intenzitete valovanja pri tunelskem pojavu in določite atenuacijski koeficient κ. Merilno diodo, ki je priključena na µa-meter, premikate ob merilu vzdolˇz osi mikrovalovnega izvira tako, da na µa-metru naštejete 10 maksimumov (ali minimumov). Ko je dioda v vozlu valovanja, kaˇze µa-meter minimum, ko pa je dioda v hrbtu valovanja, opazimo maksimum. Pri določitvi valovne dolžine upoštevajte, da je razdalja med dvema hrbtoma enaka polovici valovne dolžine, saj je I (cos ωt kx) 2, pri čemer tako pozitivni kot negativni del amplitude valovanja povzročita hrbet intenzitete. Prizmo iz parafina postavite na vrtljivo mizico. Mikrovalovni oddajnik in sprejemnik naj bosta najprej na isti osi (kot 180 stopinj), osi vzporedna naj bo tudi izmed stranic prizme. Zdaj kot med oddajnikom in sprejemnikom pričnite zmanjševati, pri tem pa za polovični kot hkrati sučete tudi prizmo. Iz kota, pri katerem najdete maksimum lomljenega valovanja, izračunate lomni količnik parafina. Med oddajnik in sprejemnik, ki stojita na isti osi, postavite parafinski prizmi, ki se stikata z eno stranico. Prizmi sta obrnjeni tako, da mikrovalovi vanju vstopajo in izstopajo pod pravim kotom. Razdaljo med prizmama pričnete povečevati in si zapisujete prepuščeno intenziteto. Logaritem prepuščene intenzitete predstavite na grafu kot funkcijo velikosti špranje. Naklon premice je enak 2κ.

8 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 8 7 Braggov uklon na modelu kristala mikrovalovi Opazujemo interferenco valovanja, ki se odbija od vzporednih kristalnih ravnin. Če označimo vpadni kot proti vodoravnici s θ, se odbito valovanje odkloni za kot 2θ glede na prvotno smer (glej sliko). Do ojačanja pride v smereh, za katere je izpolnjen pogoj: 2a sin θ = Nλ, (8) pri čemer je a razdalja med sosednjimi ravninami, λ valovna dolžina (v našem primeru mikrovalov) in N uklonski red. Z merjenjem odklonskega kota, pri katerem nastopi ojačenje, določite razdalje za nekaj značilnih kristalnih ravnin. Rezultat preverite z direktnim merjenjem razdalje. Pred oddajnik in sprejemnik postavite leče in ju namestite tako, kot kaˇze slika. Valovno dolˇzino mikrovalov ste izmerili pri prejšnji nalogi. Sučite kristal in hkrati sprejemnik, tako da je sprejemnik zasukan za dva krat večji kot kot kristal. Izmerite kot, pri katerem nastopi ojačenje na ravnini z oznako (1,0,0) in iz zgornje enačbe izračunajte razdaljo med ravninami. Poskusite najti še naslednji red ojačitve (N = 2). Kristal nato zasukajte, tako da merite uklon na ravnini (1,1,0), ki tvori kot 45 glede na prejšnjo. Razdalja med ravninami je sedaj za faktor 2 manjša. Poskusite poiskati interferenco še na kateri od ravnin.

9 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 9 8 Stefanov zakon: ohlajanje črne, bele in kovinske pločevinke Segreto telo, ki ga obdaja zrak, se ohlaja s konvekcijo in sevanjem. Pri konvekciji je toplotni tok, ki s segretega telesa prehaja v zrak, je odvisen od površine telesa S in temperaturne razlike: P = Λ k S(T T 0 ). (9) Pri tem je T temperatura telesa, T 0 temperatura okoliškega zraka na dovolj veliki oddaljenosti od telesa, Λ k pa je koeficient prehajanja toplote pri konvekciji in je odvisen od oblike segretega telesa. Ko obravnavamo ohlajanje telesa zaradi sevanja, moramo upoštevati, da poleg toka, ki ga telo oddaja v okolico, telo zaradi sevanja okolice tudi prejema energijski tok. Prejeti tok je sorazmeren s četrto potenco temperature okolice T 0. Razlika med oddanim in prejetim tokom je enaka P = (1 a)sσ(t 4 T 0 4 ), (10) pri čemer je a albedo telesa, tj. razmerje med odbitim in vpadnim energijskim tokom in σ Stefanova konstanta 5, W/m 2 K 4. Če razlika med temperaturama ni prevelika, lahko zapišemo 1 : P 4(1 a)σs T 3 (T T 0 ), (11) pri čemer smo vpeljali povprečno temperaturo med temperaturo telesa in temperaturo okolice: T = T + T 0. (12) 2 Energijski tok, ki ga posoda oddaja, izračunamo iz hitrosti ohlajanja: P = mc p T t kjer je m kar masa vode v posodi in c 0 specifična toplota vode c p = 4200 K/kg, saj lahko toplotno kapaciteto posode in termometra zanemarimo; T je sprememba temperature v časovnem intervalu t. Primerjajte ohlajanje različno obarvanih teles. (13) 1 Iz osnov matematike vemo a 4 b 4 = (a 2 b 2 )(a 2 + b 2 ) = (a b)(a + b)(a 2 + b 2 )

10 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 10 Za izvedbo vaje potrebujete tri termometre, posodo vrele vode, lij, belo, kovinsko in črno pločevinko z zamaški, merilni valj, štoparico, izolacijsko podlago (stiropor), merilo. Vsako od pločevink postavite na podstavek iz stiropora. Postavite jih vsaj 10 cm vsaksebi. S pomočjo lija v vsako nalijte vrele vode povsem do vrha. Hitro vstavite zamašek in skozenj potisnite sondo termometra tako, da se le-ta ne dotika sten ali dna pločevinke. Morebitno polito vodo obrišite z brisačo; zunanjost pločevinke mora biti med poskusom povsem suha. Sproˇzite štoparico in merite ter beleˇzite temperaturo vode v pločevinkah na desetinko stopinje natančno vsake 5 min. Izmerke beleˇzite v posebno tabelo, ki vas čaka na delovnem mestu (tabela 1). Za laˇzje delo si meritve in beleženje razporedite tako, da boste temperaturo odčitavali vsako minuto v drugi pločevinki. Meritev naj traja 45 min. Ob začetku in koncu merjenja v tabelo 2 zabeležite še temperaturo okoliškega zraka s pripravljenim termometrom. Če na delovnem mestu niste prvi, meritev nadaljujte za svojimi predhodniki in merite ter beleˇzite temperaturo vode v vseh treh posodah na 5 min, 45 minut. Povsem na koncu (po pribliˇzno 200 min), izmerite in zabeleˇzite še prostornino vode v vsaki od pločevink. Ne ustavljajte štoparice, ne prestavljajte pločevink in ne menjavajte vode v njih. Za velikost površine S, na kateri pločevinka seva, vzemite 190 cm 2 (to je površina pločevinke brez dna), T temperatura pločevinke in T 0 trenutna temperatura okolice. Rezultate vpisujte v tabelo 1. Narišite graf, ki prikazuje odvisnost celotnega toplotnega toka P (glej (13)) v odvisnosti od T T 0. Grafe za vse tri pločevinke narišite v isti koordinatni sistem z različnimi barvami. Pripišite legendo. V isti koordinatni sistem z drugo barvo narišite še izsevani toplotni tok črne pločevinke P sč (enačbo (10), v katero vstavite a = 0).

11 Eksperimenti iz moderne fizike 1. sklop (IZP 2012/13) 11 t [min] Tčrna T bela T kov T

1 Michelsonov interferometer

1 Michelsonov interferometer 1 Michelsonov interferometer Dva žarka laserske svetlobe, ki ju ustvarimo s polprepustno stekleno ploščo, po odboju od zrcal interferirata, kar opazimo kot svetle ali temne krožne lise na sredini zaslona.

Διαβάστε περισσότερα

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci

Diferencialna enačba, v kateri nastopata neznana funkcija in njen odvod v prvi potenci Linearna diferencialna enačba reda Diferencialna enačba v kateri nastopata neznana funkcija in njen odvod v prvi potenci d f + p= se imenuje linearna diferencialna enačba V primeru ko je f 0 se zgornja

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 5. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 5. december 2013 Primer Odvajajmo funkcijo f(x) = x x. Diferencial funkcije Spomnimo se, da je funkcija f odvedljiva v točki

Διαβάστε περισσότερα

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1

Odvod. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 10. december Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 10. december 2013 Izrek (Rolleov izrek) Naj bo f : [a,b] R odvedljiva funkcija in naj bo f(a) = f(b). Potem obstaja vsaj ena

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * FIZIKA NAVODILA ZA OCENJEVANJE. Petek, 10. junij 2016 SPLOŠNA MATURA Državni izpitni center *M16141113* SPOMLADANSKI IZPITNI ROK FIZIKA NAVODILA ZA OCENJEVANJE Petek, 1. junij 16 SPLOŠNA MATURA RIC 16 M161-411-3 M161-411-3 3 IZPITNA POLA 1 Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 14. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 14. november 2013 Kvadratni koren polinoma Funkcijo oblike f(x) = p(x), kjer je p polinom, imenujemo kvadratni koren polinoma

Διαβάστε περισσότερα

PONOVITEV SNOVI ZA 4. TEST

PONOVITEV SNOVI ZA 4. TEST PONOVITEV SNOVI ZA 4. TEST 1. * 2. *Galvanski člen z napetostjo 1,5 V požene naboj 40 As. Koliko električnega dela opravi? 3. ** Na uporniku je padec napetosti 25 V. Upornik prejme 750 J dela v 5 minutah.

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 22. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 22. oktober 2013 Kdaj je zaporedje {a n } konvergentno, smo definirali s pomočjo limite zaporedja. Večkrat pa je dobro vedeti,

Διαβάστε περισσότερα

Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru.

Vaje: Barve. 1. Fotoefekt. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Vse vaje izvajamo v zatemnjenem prostoru. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Barve Vse vaje izvajamo v zatemnjenem prostoru. 1. Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe. Za izvedbo

Διαβάστε περισσότερα

Tretja vaja iz matematike 1

Tretja vaja iz matematike 1 Tretja vaja iz matematike Andrej Perne Ljubljana, 00/07 kompleksna števila Polarni zapis kompleksnega števila z = x + iy): z = rcos ϕ + i sin ϕ) = re iϕ Opomba: Velja Eulerjeva formula: e iϕ = cos ϕ +

Διαβάστε περισσότερα

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe!

1. vaja: Fotoefekt. Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! 1. vaja: Fotoefekt Naloga: Ocenite energije fotonov rdeče, zelene in modre svetlobe! Fotocelica, svetilka, ampermeter, voltmeter, izvir napetosti, rdeč, zelen in moder filter. Navodilo: Vstavite med svetilko

Διαβάστε περισσότερα

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2

Funkcijske vrste. Matematika 2. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 2. april Gregor Dolinar Matematika 2 Matematika 2 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 2. april 2014 Funkcijske vrste Spomnimo se, kaj je to številska vrsta. Dano imamo neko zaporedje realnih števil a 1, a 2, a

Διαβάστε περισσότερα

1. Trikotniki hitrosti

1. Trikotniki hitrosti . Trikotniki hitrosti. Z radialno črpalko želimo črpati vodo pri pogojih okolice z nazivnim pretokom 0 m 3 /h. Notranji premer rotorja je 4 cm, zunanji premer 8 cm, širina rotorja pa je,5 cm. Frekvenca

Διαβάστε περισσότερα

Kotne in krožne funkcije

Kotne in krožne funkcije Kotne in krožne funkcije Kotne funkcije v pravokotnem trikotniku Avtor: Rok Kralj, 4.a Gimnazija Vič, 009/10 β a c γ b α sin = a c cos= b c tan = a b cot = b a Sinus kota je razmerje kotu nasprotne katete

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 21. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 21. november 2013 Hiperbolične funkcije Hiperbolični sinus sinhx = ex e x 2 20 10 3 2 1 1 2 3 10 20 hiperbolični kosinus coshx

Διαβάστε περισσότερα

Osnove elektrotehnike uvod

Osnove elektrotehnike uvod Osnove elektrotehnike uvod Uvod V nadaljevanju navedena vprašanja so prevod testnih vprašanj, ki sem jih našel na omenjeni spletni strani. Vprašanja zajemajo temeljna znanja opredeljenega strokovnega področja.

Διαβάστε περισσότερα

Delovna točka in napajalna vezja bipolarnih tranzistorjev

Delovna točka in napajalna vezja bipolarnih tranzistorjev KOM L: - Komnikacijska elektronika Delovna točka in napajalna vezja bipolarnih tranzistorjev. Določite izraz za kolektorski tok in napetost napajalnega vezja z enim virom in napetostnim delilnikom na vhod.

Διαβάστε περισσότερα

IZPIT IZ ANALIZE II Maribor,

IZPIT IZ ANALIZE II Maribor, Maribor, 05. 02. 200. (a) Naj bo f : [0, 2] R odvedljiva funkcija z lastnostjo f() = f(2). Dokaži, da obstaja tak c (0, ), da je f (c) = 2f (2c). (b) Naj bo f(x) = 3x 3 4x 2 + 2x +. Poišči tak c (0, ),

Διαβάστε περισσότερα

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja

1. Definicijsko območje, zaloga vrednosti. 2. Naraščanje in padanje, ekstremi. 3. Ukrivljenost. 4. Trend na robu definicijskega območja ZNAČILNOSTI FUNKCIJ ZNAČILNOSTI FUNKCIJE, KI SO RAZVIDNE IZ GRAFA. Deinicijsko območje, zaloga vrednosti. Naraščanje in padanje, ekstremi 3. Ukrivljenost 4. Trend na robu deinicijskega območja 5. Periodičnost

Διαβάστε περισσότερα

Kvantni delec na potencialnem skoku

Kvantni delec na potencialnem skoku Kvantni delec na potencialnem skoku Delec, ki se giblje premo enakomerno, pride na mejo, kjer potencial naraste s potenciala 0 na potencial. Takšno potencialno funkcijo zapišemo kot 0, 0 0,0. Slika 1:

Διαβάστε περισσότερα

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK

KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK 1 / 24 KODE ZA ODKRIVANJE IN ODPRAVLJANJE NAPAK Štefko Miklavič Univerza na Primorskem MARS, Avgust 2008 Phoenix 2 / 24 Phoenix 3 / 24 Phoenix 4 / 24 Črtna koda 5 / 24 Črtna koda - kontrolni bit 6 / 24

Διαβάστε περισσότερα

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1

Funkcije. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 12. november Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 12. november 2013 Graf funkcije f : D R, D R, je množica Γ(f) = {(x,f(x)) : x D} R R, torej podmnožica ravnine R 2. Grafi funkcij,

Διαβάστε περισσότερα

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12

Na pregledni skici napišite/označite ustrezne točke in paraboli. A) 12 B) 8 C) 4 D) 4 E) 8 F) 12 Predizpit, Proseminar A, 15.10.2015 1. Točki A(1, 2) in B(2, b) ležita na paraboli y = ax 2. Točka H leži na y osi in BH je pravokotna na y os. Točka C H leži na nosilki BH tako, da je HB = BC. Parabola

Διαβάστε περισσότερα

Vaje: Električni tokovi

Vaje: Električni tokovi Barbara Rovšek, Bojan Golli, Ana Gostinčar Blagotinšek Vaje: Električni tokovi 1 Merjenje toka in napetosti Naloga: Izmerite tok, ki teče skozi žarnico, ter napetost na žarnici Za izvedbo vaje potrebujete

Διαβάστε περισσότερα

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d)

Integralni račun. Nedoločeni integral in integracijske metrode. 1. Izračunaj naslednje nedoločene integrale: (a) dx. (b) x 3 +3+x 2 dx, (c) (d) Integralni račun Nedoločeni integral in integracijske metrode. Izračunaj naslednje nedoločene integrale: d 3 +3+ 2 d, (f) (g) (h) (i) (j) (k) (l) + 3 4d, 3 +e +3d, 2 +4+4 d, 3 2 2 + 4 d, d, 6 2 +4 d, 2

Διαβάστε περισσότερα

Kotni funkciji sinus in kosinus

Kotni funkciji sinus in kosinus Kotni funkciji sinus in kosinus Oznake: sinus kota x označujemo z oznako sin x, kosinus kota x označujemo z oznako cos x, DEFINICIJA V PRAVOKOTNEM TRIKOTNIKU: Kotna funkcija sinus je definirana kot razmerje

Διαβάστε περισσότερα

Tokovi v naravoslovju za 6. razred

Tokovi v naravoslovju za 6. razred Tokovi v naravoslovju za 6. razred Bojan Golli in Nada Razpet PeF Ljubljana 7. december 2007 Kazalo 1 Fizikalne osnove 2 1.1 Energija in informacija............................... 3 2 Projekti iz fizike

Διαβάστε περισσότερα

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE

NEPARAMETRIČNI TESTI. pregledovanje tabel hi-kvadrat test. as. dr. Nino RODE NEPARAMETRIČNI TESTI pregledovanje tabel hi-kvadrat test as. dr. Nino RODE Parametrični in neparametrični testi S pomočjo z-testa in t-testa preizkušamo domneve o parametrih na vzorcih izračunamo statistike,

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine in izmeri gostoto

Διαβάστε περισσότερα

KVANTNA FIZIKA. Svetloba valovanje ali delci?

KVANTNA FIZIKA. Svetloba valovanje ali delci? KVANTNA FIZIKA Proti koncu 19. stoletja je vrsta poskusov kazala še druga neskladja s predvidevanji klasične fizike, poleg tistih, ki so vodila k posebni teoriji relativnosti. Ti pojavi so povezani z obnašanjem

Διαβάστε περισσότερα

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu.

Kontrolne karte uporabljamo za sprotno spremljanje kakovosti izdelka, ki ga izdelujemo v proizvodnem procesu. Kontrolne karte KONTROLNE KARTE Kontrolne karte uporablamo za sprotno spremlane kakovosti izdelka, ki ga izdeluemo v proizvodnem procesu. Izvaamo stalno vzorčene izdelkov, npr. vsako uro, vsake 4 ure.

Διαβάστε περισσότερα

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled

Univerza v Novi Gorici Fakulteta za znanosti o okolju Okolje (I. stopnja) Meteorologija 2013/2014. Energijska bilanca pregled Univerza v Novi Gorici Fakulteta za znanosti o okolu Okole (I. stopna) Meteorologia 013/014 Energiska bilanca pregled 1 Osnovni pomi energiski tok: P [W = J/s] gostota energiskega toka: [W/m ] toplota:q

Διαβάστε περισσότερα

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA

VALOVANJE UVOD POLARIZACIJA STOJEČE VALOVANJE ODBOJ, LOM IN UKLON INTERFERENCA VALOVANJE 10.1. UVOD 10.2. POLARIZACIJA 10.3. STOJEČE VALOVANJE 10.4. ODBOJ, LOM IN UKLON 10.5. INTERFERENCA 10.6. MATEMATIČNA OBDELAVA INTERFERENCE IN STOJEČEGA VALOVANJA 10.1. UVOD Valovanje je širjenje

Διαβάστε περισσότερα

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih.

cot x ni def. 3 1 KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA (A) Merske enote stopinja [ ] radian [rad] 1. Izrazi kot v radianih. TRIGONOMETRIJA (A) Merske enote KOTNE FUNKCIJE POLJUBNO VELIKEGA KOTA stopinja [ ] radian [rad] 80 80 0. Izrazi kot v radianih. 0 90 5 0 0 70. Izrazi kot v stopinjah. 5 8 5 (B) Definicija kotnih funkcij

Διαβάστε περισσότερα

8. Diskretni LTI sistemi

8. Diskretni LTI sistemi 8. Diskreti LI sistemi. Naloga Določite odziv diskretega LI sistema s podaim odzivom a eoti impulz, a podai vhodi sigal. h[] x[] - - 5 6 7 - - 5 6 7 LI sistem se a vsak eoti impulz δ[] a vhodu odzove z

Διαβάστε περισσότερα

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA

Državni izpitni center SPOMLADANSKI IZPITNI ROK *M * NAVODILA ZA OCENJEVANJE. Petek, 12. junij 2015 SPLOŠNA MATURA Državni izpitni center *M543* SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Petek,. junij 05 SPLOŠNA MATURA RIC 05 M543 M543 3 IZPITNA POLA Naloga Odgovor Naloga Odgovor Naloga Odgovor Naloga Odgovor

Διαβάστε περισσότερα

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM

Poglavje 7. Poglavje 7. Poglavje 7. Regulacijski sistemi. Regulacijski sistemi. Slika 7. 1: Normirana blokovna shema regulacije EM Slika 7. 1: Normirana blokovna shema regulacije EM Fakulteta za elektrotehniko 1 Slika 7. 2: Principielna shema regulacije AM v KSP Fakulteta za elektrotehniko 2 Slika 7. 3: Merjenje komponent fluksa s

Διαβάστε περισσότερα

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek.

Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni izrek. DN#3 (januar 2018) 3A Teme, ki jih preverja domača naloga: Kotne funkcije poljubnega kota. Osnovne zveze med funkcijamo istega kota. Uporaba kotnih funkcij v poljubnem trikotniku. Kosinusni in sinusni

Διαβάστε περισσότερα

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1

Zaporedja. Matematika 1. Gregor Dolinar. Fakulteta za elektrotehniko Univerza v Ljubljani. 15. oktober Gregor Dolinar Matematika 1 Matematika 1 Gregor Dolinar Fakulteta za elektrotehniko Univerza v Ljubljani 15. oktober 2013 Oglejmo si, kako množimo dve kompleksni števili, dani v polarni obliki. Naj bo z 1 = r 1 (cosϕ 1 +isinϕ 1 )

Διαβάστε περισσότερα

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič

Frekvenčna analiza neperiodičnih signalov. Analiza signalov prof. France Mihelič Frekvenčna analiza neperiodičnih signalov Analiza signalov prof. France Mihelič Vpliv postopka daljšanja periode na spekter periodičnega signala Opazujmo družino sodih periodičnih pravokotnih impulzov

Διαβάστε περισσότερα

TRDNOST (VSŠ) - 1. KOLOKVIJ ( )

TRDNOST (VSŠ) - 1. KOLOKVIJ ( ) TRDNOST (VSŠ) - 1. KOLOKVIJ (17. 12. 03) Pazljivo preberite besedilo vsake naloge! Naloge so točkovane enakovredno (vsaka 25%)! Pišite čitljivo! Uspešno reševanje! 1. Deformiranje telesa je podano s poljem

Διαβάστε περισσότερα

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4)

SLIKA 1: KRIVULJA BARVNE OBČUTLJIVOSTI OČESA (Rudolf Kladnik: Osnove fizike-2.del,..stran 126, slika 18.4) Naše oko zaznava svetlobo na intervalu valovnih dolžin približno od 400 do 800 nm. Odvisnost očesne občutljivosti od valovne dolžine je različna od človeka do človeka ter se spreminja s starostjo. Največja

Διαβάστε περισσότερα

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune

11. Valovanje Valovanje. = λν λ [m] - Valovna dolžina. hitrost valovanja na napeti vrvi. frekvence lastnega nihanja strune 11. Valovanje Frekvenca ν = 1 t 0 hitrost valovanja c = λ t 0 = λν λ [m] - Valovna dolžina hitrost valovanja na napeti vrvi frekvence lastnega nihanja strune interferenca valovanj iz dveh enako oddaljenih

Διαβάστε περισσότερα

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija

Energijska bilanca. E=E i +E p +E k +E lh. energija zaradi sproščanja latentne toplote. notranja energija potencialna energija. kinetična energija Energijska bilanca E=E i +E p +E k +E lh notranja energija potencialna energija kinetična energija energija zaradi sproščanja latentne toplote Skupna energija klimatskega sistema (atmosfera, oceani, tla)

Διαβάστε περισσότερα

7 Lastnosti in merjenje svetlobe

7 Lastnosti in merjenje svetlobe 7 Lastnosti in merjenje svetlobe Pri tej vaji se bomo seznanili z valovno in delčno naravo svetlobe ter s pojmi spekter, uklon in interferenca. Spoznali bomo, kako se določi valovne dolžine, katere valovne

Διαβάστε περισσότερα

Booleova algebra. Izjave in Booleove spremenljivke

Booleova algebra. Izjave in Booleove spremenljivke Izjave in Booleove spremenljivke vsako izjavo obravnavamo kot spremenljivko če je izjava resnična (pravilna), ima ta spremenljivka vrednost 1, če je neresnična (nepravilna), pa vrednost 0 pravimo, da gre

Διαβάστε περισσότερα

Toplotni tokovi. 1. Energijski zakon Temperatura

Toplotni tokovi. 1. Energijski zakon Temperatura Toplotni tokovi 1. Energijski zakon Med količinami, ki se ohranjajo, smo poleg mase in naboja omenili tudi energijo. V okviru modula o snovnih tokovih smo vpeljali kinetično, potencialno, prožnostno in

Διαβάστε περισσότερα

Polarizacija laserske svetlobe

Polarizacija laserske svetlobe Polarizacija laserske svetlobe Optični izolator izvedba z uporabo λ/4 retardacijske ploščice Odboj polarizirane svetlobe na meji zrak-steklo; Brewster-ov kot Definicija naloge predstavitev teoretičnega

Διαβάστε περισσότερα

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij):

matrike A = [a ij ] m,n αa 11 αa 12 αa 1n αa 21 αa 22 αa 2n αa m1 αa m2 αa mn se števanje po komponentah (matriki morata biti enakih dimenzij): 4 vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 matrike Matrika dimenzije m n je pravokotna tabela m n števil, ki ima m vrstic in n stolpcev: a 11 a 12 a 1n a 21 a 22 a 2n

Διαβάστε περισσότερα

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje

Vaja: Odbojnostni senzor z optičnimi vlakni. Namen vaje Namen vaje Spoznavanje osnovnih fiber-optičnih in optomehanskih komponent Spoznavanje načela delovanja in praktične uporabe odbojnostnega senzorja z optičnimi vlakni, Delo z merilnimi instrumenti (signal-generator,

Διαβάστε περισσότερα

Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode.

Vaje: Slike. 1. Lomni količnik. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc. Naloga: Določite lomna količnika pleksi stekla in vode. Barbara Rovšek, Ana Gostinčar Blagotinšek, Toma d Kranjc Vaje: Slike. Lomni količnik Naloga: Določite lomna količnika pleksi stekla in vode. Za izvedbo vaje potrebujete optično klop, svetilo z ozko režo,

Διαβάστε περισσότερα

CO2 + H2O sladkor + O2

CO2 + H2O sladkor + O2 VAJA 5 FOTOSINTEZA CO2 + H2O sladkor + O2 Meritve fotosinteze CO 2 + H 2 O sladkor + O 2 Fiziologija rastlin laboratorijske vaje SVETLOBNE REAKCIJE (tilakoidna membrana) TEMOTNE REAKCIJE (stroma kloroplasta)

Διαβάστε περισσότερα

Numerično reševanje. diferencialnih enačb II

Numerično reševanje. diferencialnih enačb II Numerčno reševanje dferencaln enačb I Dferencalne enačbe al ssteme dferencaln enačb rešujemo numerčno z več razlogov:. Ne znamo j rešt analtčno.. Posamezn del dferencalne enačbe podan tabelarčno. 3. Podatke

Διαβάστε περισσότερα

p 1 ENTROPIJSKI ZAKON

p 1 ENTROPIJSKI ZAKON ENROPIJSKI ZAKON REERZIBILNA srememba: moža je obrjea srememba reko eakih vmesih staj kot rvota srememba. Po obeh sremembah e sme biti obeih trajih srememb v bližji i dalji okolici. IREERZIBILNA srememba:

Διαβάστε περισσότερα

Michelsonov interferometer

Michelsonov interferometer Michelsonov interferometer Namen vaje: Spoznavanje valovnih značilnosti laserske svetlobe Spoznavanje načela delovanja interferometra Brezdotično merjenje kratkih pomikov Eksperimentalne naloge 1. Sestaviti

Διαβάστε περισσότερα

Gimnazija Krˇsko. vektorji - naloge

Gimnazija Krˇsko. vektorji - naloge Vektorji Naloge 1. V koordinatnem sistemu so podane točke A(3, 4), B(0, 2), C( 3, 2). a) Izračunaj dolžino krajevnega vektorja točke A. (2) b) Izračunaj kot med vektorjema r A in r C. (4) c) Izrazi vektor

Διαβάστε περισσότερα

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1

5 Modeli atoma. 5.1 Thomsonov model. B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 2014, 1 B. Golli, Izbrana poglavja iz Osnov moderne fizike 5 december 204, 5 Modeli atoma V nasprotju s teorijo relativnosti, ki jo je formuliral Albert Einstein v koncizni matematični obliki in so jo kasneje

Διαβάστε περισσότερα

1 Lastna nihanja molekul CO in CO 2 : model na zračni

1 Lastna nihanja molekul CO in CO 2 : model na zračni 1 Lastna nihanja molekul CO in CO 2 : model na zračni drči Pri vaji opazujemo lastna nihanja molekul CO in CO 2 na preprostem modelu na zračni drči. Pri molekuli CO 2 se omejimo na lastna nihanja, pri

Διαβάστε περισσότερα

Energijska bilanca Zemlje. Osnove meteorologije november 2017

Energijska bilanca Zemlje. Osnove meteorologije november 2017 Energijska bilanca Zemlje Osnove meteorologije november 2017 Spekter elektromagnetnega sevanja Sevanje Osnovne spremenljivke za opis prenosa energije sevanjem: valovna dolžina - λ (m) frekvenca - ν (s

Διαβάστε περισσότερα

Matematika. Funkcije in enačbe

Matematika. Funkcije in enačbe Matematika Funkcije in enačbe (1) Nariši grafe naslednjih funkcij: (a) f() = 1, (b) f() = 3, (c) f() = 3. Rešitev: (a) Linearna funkcija f() = 1 ima začetno vrednost f(0) = 1 in ničlo = 1/. Definirana

Διαβάστε περισσότερα

SPEKTRI ELEKTROMAGNETNEGA VALOVANJA

SPEKTRI ELEKTROMAGNETNEGA VALOVANJA SPEKTRI ELEKTROMAGNETNEGA VALOVANJA - Načini pridobivanja posameznih vrst spektrov - Izvori sevanja - Ločevanje valovanj z različnimi λ - Naprave za selekcijo el.mag.valovanja za različne λ. 1. Načini

Διαβάστε περισσότερα

Slika 1: Piezoelektrični vžigalnik za plin in visokonapetostni piezoelement (levo); piezozvočnik/piezomikrofon

Slika 1: Piezoelektrični vžigalnik za plin in visokonapetostni piezoelement (levo); piezozvočnik/piezomikrofon 4 Piezoelektričnost Pri nekaterih snoveh pride ob njihovi deformaciji zaradi stiska ali natega do kopičenja naboja nasprotnih predznakov na nasproti ležečih stranicah. Ta pojav, pri katerem se spremeni

Διαβάστε περισσότερα

Izpit iz predmeta Fizika 2 (UNI)

Izpit iz predmeta Fizika 2 (UNI) 0 0 0 4 1 4 3 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: Izpit iz predmeta Fizika 2 (UI) 26.1.2012 1. Svetloba z valovno dolžino 470 nm pada

Διαβάστε περισσότερα

Matematika 2. Diferencialne enačbe drugega reda

Matematika 2. Diferencialne enačbe drugega reda Matematika 2 Diferencialne enačbe drugega reda (1) Reši homogene diferencialne enačbe drugega reda s konstantnimi koeficienti: (a) y 6y + 8y = 0, (b) y 2y + y = 0, (c) y + y = 0, (d) y + 2y + 2y = 0. Rešitev:

Διαβάστε περισσότερα

13. poglavje: Energija

13. poglavje: Energija 13. poglavje: Energija 1. (Naloga 3) Koliko kilovatna je peč za hišno centralno kurjavo, ki daje 126 MJ toplote na uro? Podatki: Q = 126 MJ, t = 3600 s; P =? Če peč z močjo P enakomerno oddaja toploto,

Διαβάστε περισσότερα

21. Površinska napetost vode

21. Površinska napetost vode 21. Površinska napetost vode Površinska napetost je koeficient med povečanjem površine neke kapljevine in delom, ki ga moramo za to opraviti: da=γ.ds γ - površinska napetost [N/m] To delo je morala na

Διαβάστε περισσότερα

13. Jacobijeva metoda za računanje singularnega razcepa

13. Jacobijeva metoda za računanje singularnega razcepa 13. Jacobijeva metoda za računanje singularnega razcepa Bor Plestenjak NLA 25. maj 2010 Bor Plestenjak (NLA) 13. Jacobijeva metoda za računanje singularnega razcepa 25. maj 2010 1 / 12 Enostranska Jacobijeva

Διαβάστε περισσότερα

ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI

ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI ODBOJNOSTNI SENZOR Z OPTIČNIMI VLAKNI Spoznavanje osnovnih vlakensko-optičnih (fiber-optičnih) komponent, Vodenje svetlobe po optičnem vlaknu, Spoznavanje načela delovanja in praktične uporabe odbojnostnega

Διαβάστε περισσότερα

Transformator. Delovanje transformatorja I. Delovanje transformatorja II

Transformator. Delovanje transformatorja I. Delovanje transformatorja II Transformator Transformator je naprava, ki v osnovi pretvarja napetost iz enega nivoja v drugega. Poznamo vrsto različnih izvedb transformatorjev, glede na njihovo specifičnost uporabe:. Energetski transformator.

Διαβάστε περισσότερα

vezani ekstremi funkcij

vezani ekstremi funkcij 11. vaja iz Matematike 2 (UNI) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 ekstremi funkcij več spremenljivk nadaljevanje vezani ekstremi funkcij Dana je funkcija f(x, y). Zanimajo nas ekstremi nad

Διαβάστε περισσότερα

Osnove matematične analize 2016/17

Osnove matematične analize 2016/17 Osnove matematične analize 216/17 Neža Mramor Kosta Fakulteta za računalništvo in informatiko Univerza v Ljubljani Kaj je funkcija? Funkcija je predpis, ki vsakemu elementu x iz definicijskega območja

Διαβάστε περισσότερα

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK

SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK SKUPNE PORAZDELITVE SKUPNE PORAZDELITVE VEČ SLUČAJNIH SPREMENLJIVK Kovaec vržemo trikrat. Z ozačimo število grbov ri rvem metu ( ali ), z Y a skuo število grbov (,, ali 3). Kako sta sremelivki i Y odvisi

Διαβάστε περισσότερα

KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?...

KAZALO 1 UVOD KAJ JE SVETLOBA Sonce kot izvor naravne svetlobe Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?... SVETLOBA IN BARVE KAZALO 1 UVOD... 1 2 KAJ JE SVETLOBA... 1 3 Sonce kot izvor naravne svetlobe... 2 4 Kako zaznamo svetlobo? Kaj so barve in kako jih zaznamo?... 4 5 Barvni prostori... 6 5.1 CIE 1931 XYZ

Διαβάστε περισσότερα

Eksperimenti iz Atomov, molekul in jeder

Eksperimenti iz Atomov, molekul in jeder Eksperimenti iz Atomov, molekul in jeder Gregor Bavdek, Bojan Golli, Matjaž Koželj Pedagoška fakulteta UL Ljubljana 2017 Kazalo 1 Franck-Hertzov poskus 2 2 Lastna nihanja molekul CO in CO 2 : model na

Διαβάστε περισσότερα

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:...

Gradniki elektronskih sistemov laboratorijske vaje. Vaja 1 Lastnosti diode. Ime in priimek: Smer:.. Datum:... Pregledal:... Gradniki elektronskih sistemov laboratorijske vaje Vaja 1 Lastnosti diode Ime in priimek:. Smer:.. Datum:... Pregledal:... Naloga: Izmerite karakteristiko silicijeve diode v prevodni smeri in jo vrišite

Διαβάστε περισσότερα

5 Merjenje toplote in specifična toplota snovi

5 Merjenje toplote in specifična toplota snovi 5 Merjenje toplote in specifična toplota snovi Pri tej vaji se bomo seznanili z merjenjem temperature s termočlenom, z merjenjem toplote in s kalorimetričnim določanjem specifične toplote. Snov lahko segrejemo

Διαβάστε περισσότερα

diferencialne enačbe - nadaljevanje

diferencialne enačbe - nadaljevanje 12. vaja iz Matematike 2 (VSŠ) avtorica: Melita Hajdinjak datum: Ljubljana, 2009 diferencialne enačbe - nadaljevanje Ortogonalne trajektorije Dana je 1-parametrična družina krivulj F(x, y, C) = 0. Ortogonalne

Διαβάστε περισσότερα

Pisni izpit iz predmeta Fizika 2 (UNI)

Pisni izpit iz predmeta Fizika 2 (UNI) 0 0 0 0 3 4 0 0 0 0 0 0 5 Pisni izpit iz predmeta Fizika (UNI) 301009 1 V fotocelici je električni tok posledica elektronov, ki jih svetloba izbija iz negativne elektrode (katode) a) Kolikšen električni

Διαβάστε περισσότερα

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center

*M * Osnovna in višja raven MATEMATIKA NAVODILA ZA OCENJEVANJE. Sobota, 4. junij 2011 SPOMLADANSKI IZPITNI ROK. Državni izpitni center Državni izpitni center *M40* Osnovna in višja raven MATEMATIKA SPOMLADANSKI IZPITNI ROK NAVODILA ZA OCENJEVANJE Sobota, 4. junij 0 SPLOŠNA MATURA RIC 0 M-40-- IZPITNA POLA OSNOVNA IN VIŠJA RAVEN 0. Skupaj:

Διαβάστε περισσότερα

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1

Definicija. definiramo skalarni produkt. x i y i. in razdaljo. d(x, y) = x y = < x y, x y > = n (x i y i ) 2. i=1. i=1 Funkcije več realnih spremenljivk Osnovne definicije Limita in zveznost funkcije več spremenljivk Parcialni odvodi funkcije več spremenljivk Gradient in odvod funkcije več spremenljivk v dani smeri Parcialni

Διαβάστε περισσότερα

EMV in optika, zbirka nalog

EMV in optika, zbirka nalog Barbara Rovšek EMV in optika, zbirka nalog z rešitvami 1 Električni nihajni krogi in EMV 1.1 Električni nihajni krogi, lastno nihanje 1. Električni nihajni krog z lastno frekvenco 10 5 s 1 je sestavljen

Διαβάστε περισσότερα

Funkcije več spremenljivk

Funkcije več spremenljivk DODATEK C Funkcije več spremenljivk C.1. Osnovni pojmi Funkcija n spremenljivk je predpis: f : D f R, (x 1, x 2,..., x n ) u = f (x 1, x 2,..., x n ) kjer D f R n imenujemo definicijsko območje funkcije

Διαβάστε περισσότερα

5 Merjenje toplote in specifična toplota snovi

5 Merjenje toplote in specifična toplota snovi 5 Merjenje toplote in specifična toplota snovi Pri tej vaji se bomo seznanili z merjenjem izmenjane toplote, s kalorimetričnim določanjem specifične toplote, z merjenjem temperature s termočlenom ter z

Διαβάστε περισσότερα

0,00275 cm3 = = 0,35 cm = 3,5 mm.

0,00275 cm3 = = 0,35 cm = 3,5 mm. 1. Za koliko se bo dvignil alkohol v cevki termometra s premerom 1 mm, če se segreje za 5 stopinj? Prostorninski temperaturni razteznostni koeficient alkohola je 11 10 4 K 1. Volumen alkohola v termometru

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 2. Vektorji

Vaje iz MATEMATIKE 2. Vektorji Študij AHITEKTURE IN URBANIZMA, šol. l. 06/7 Vaje iz MATEMATIKE. Vektorji Vektorji: Definicija: Vektor je usmerjena daljica. Oznake: AB, a,... Enakost vektorjev: AB = CD: če lahko vektor AB vzporedno premaknemo

Διαβάστε περισσότερα

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2):

Če je električni tok konstanten (se ne spreminja s časom), poenostavimo enačbo (1) in dobimo enačbo (2): ELEKTRIČNI TOK TEOR IJA 1. Definicija enote električnega toka Električni tok je gibanje električno nabitih delcev v trdnih snoveh (kovine, polprevodniki), tekočinah ali plinih. V kovinah se gibljejo prosti

Διαβάστε περισσότερα

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU

NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU NAVOR NA (TOKO)VODNIK V MAGNETNEM POLJU Equatio n Section 6Vsebina poglavja: Navor kot vektorski produkt ročice in sile, magnetni moment, navor na magnetni moment, d'arsonvalov ampermeter/galvanometer.

Διαβάστε περισσότερα

50 odtenkov svetlobe

50 odtenkov svetlobe 50 odtenkov svetlobe Evgenija Burger, Katharina Pavlin, Tamara Pogačar, Mentor: Žiga Krajnik Povzetek Za vsakim dežjem posije sonce. Je pojav mavrice res tako preprost kot ta rek? Kakšna fizikalno-matematična

Διαβάστε περισσότερα

2. Uklon rentgenskih žarkov na kristalih

2. Uklon rentgenskih žarkov na kristalih Kristalne ravnine in indeksi Kristalne (mrežne) ravnine = geometrični koncept za prikaz pojava difrakcije na kristalnih strukturah 2. Uklon rentgenskih žarkov na kristalih Indeksi h k l (Miller-jevi indeksi)

Διαβάστε περισσότερα

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot

v = x t = x i+1 x i t i+1 t i v(t i ) = x t = x i+1 x i 1 t i+1 t i 1 Pospešek je definiran kot 1 Kinematika 11 Premo gibanje Merjenje hitrosti Merimo lego telesa x kot funkcijo časa t Hitrost telesa je definirana kot odvod lege po času v(t) = dx(t) (1) dt Ker merimo lege le ob določenih časih, t

Διαβάστε περισσότερα

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA

2.1. MOLEKULARNA ABSORPCIJSKA SPEKTROMETRIJA 2.1. MOLEKULARNA ABSORPCJSKA SPEKTROMETRJA Molekularna absorpcijska spektrometrija (kolorimetrija, fotometrija, spektrofotometrija) temelji na merjenju absorpcije svetlobe, ki prehaja skozi preiskovano

Διαβάστε περισσότερα

Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke

Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke Teoretične osnove za poučevanja naravoslovja za 6. in 7. razred devetletke T. Kranjc, PeF 6. marca 2009 Kazalo 1 Modul 7: Svetloba in slike 1 1.1 Uvod................................ 1 2 Odboj svetlobe

Διαβάστε περισσότερα

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti

Kvadratne forme. Poglavje XI. 1 Definicija in osnovne lastnosti Poglavje XI Kvadratne forme V zadnjem poglavju si bomo ogledali še eno vrsto preslikav, ki jih tudi lahko podamo z matrikami. To so tako imenovane kvadratne forme, ki niso več linearne preslikave. Kvadratne

Διαβάστε περισσότερα

e 2 4πε 0 r i r j Ze 2 4πε 0 r i j<i

e 2 4πε 0 r i r j Ze 2 4πε 0 r i j<i Poglavje 9 Atomi z več elektroni Za atom z enim elektronom smo lahko dobili analitične rešitve za lastne vrednosti in lastne funkcije energije. Pri atomih z več elektroni to ni mogoče in se moramo zadovoljiti

Διαβάστε περισσότερα

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim

Vaje iz MATEMATIKE 8. Odvod funkcije., pravimo, da je funkcija f odvedljiva v točki x 0 z odvodom. f (x f(x 0 + h) f(x 0 ) 0 ) := lim Študij AHITEKTURE IN URBANIZMA, šol l 06/7 Vaje iz MATEMATIKE 8 Odvod funkcije f( Definicija: Naj bo f definirana na neki okolici točke 0 Če obstaja lim 0 +h f( 0 h 0 h, pravimo, da je funkcija f odvedljiva

Διαβάστε περισσότερα

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič.

VAJE IZ NIHANJA. 3. Pospešek nihala na vijačno vzmet je: a. stalen, b. največji v skrajni legi, c. največji v ravnovesni legi, d. nič. VAJE IZ NIHANJA Izberi pravilen odgovor in fizikalno smiselno utemelji svojo odločitev. I. OPIS NIHANJA 1. Slika kaže nitno nihalo v ravnovesni legi in skrajnih legah. Amplituda je razdalja: a. Od 1 do

Διαβάστε περισσότερα

1.3 Vsota diskretnih slučajnih spremenljivk

1.3 Vsota diskretnih slučajnih spremenljivk .3 Vsota diskretnih slučajnih spremenljivk Naj bosta X in Y neodvisni Bernoullijevo porazdeljeni spremenljivki, B(p). Kako je porazdeljena njuna vsota? Označimo Z = X + Y. Verjetnost, da je P (Z = z) za

Διαβάστε περισσότερα

6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa.

6 NIHANJE 105. (c) graf pospe²ka v odvisnosti od asa. Slika 32: Graf hitrosti, odmika in pospe²ka v odvisnosti od asa. 6 NIHANJE 105 6 nihanje 6.1 mehanska 1. Hitrost nekega nihala se spreminja po ena bi: v(t) = 5 cm/s cos(1, 5s 1 t). Nari²i in ozna i kako se spreminjajo odmik hitrost in pospe²ek v odvisnosti od asa! Rp:

Διαβάστε περισσότερα

izr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan

izr. prof. dr. Ciril Arkar, asis. dr. Tomaž Šuklje, asis mag. Suzana Domjan Gradbena fizika 2016/2017 Predavanja: Vaje vodijo: prof. dr. Sašo Medved Univerza v Ljubljani, Fakulteta za strojništvo Aškerčeva 6; dvoriščna stavba DS N3 saso.medved@fs.uni-lj.si izr. prof. dr. Ciril

Διαβάστε περισσότερα

1. kolokvij iz predmeta Fizika 2 (VSŠ)

1. kolokvij iz predmeta Fizika 2 (VSŠ) 0 0 0 4 2 5 9 0 0 0 0 0 2 ime in priimek: vpisna št.: Fakulteta za elektrotehniko, Univerza v Ljubljani primeri števk: 1. kolokvij iz predmeta Fizika 2 (VSŠ) 4.4.2013 1. Kolikšen je napetost med poljubno

Διαβάστε περισσότερα