ÈÅÌÁÔÁ 2007 ÏÅÖÅ ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ



Σχετικά έγγραφα
ÑÏÕËÁ ÌÁÊÑÇ. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x 1 είναι

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Μαθηµατικά & Στοιχεία Στατιστικης Γενικής Παιδείας Γ Λυκείου 2001 ÈÅÌÅËÉÏ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2012 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

P A B P(A) P(B) P(A. , όπου l 1

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

Θέµατα Μαθηµατικών & Στ. Στατ/κής Γενικής Παιδείας Γ Λυκείου 2000 ÈÅÌÅËÉÏ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÈÅÌÅËÉÏ ÇÑÁÊËÅÉÏ ÊÑÇÔÇÓ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 1 η εκάδα

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Γ ΓΕΝΙΚΗΣ ΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

(f(x) + g(x)) = f (x) + g (x).

Αν Α και Β είναι δύο ενδεχόμενα ενός δειγματικού χώρου να αποδείξετε ότι: Αν Α Β τότε Ρ(Α) Ρ(Β)

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β )

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 04/ 01/ 2010

Μαθηματικός Περιηγητής σχ. έτος

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 22 ΜΑΪΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

(f(x)+g(x)) =f (x)+g (x), x R

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ / ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΑΠΑΝΤΗΣΕΙΣ

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2005

Θέμα Α. Θέμα Β. ~ 1/9 ~ Πέτρος Μάρκου. % σχεδιάζουμε το πολύγωνο αθροιστικών σχετικών συχνοτήτων τοις

Μονάδες 10. x. (μονάδες 2) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 Ο Α1. Απάντηση από το Σχολικό βιβλίο σελίδα 28

1% = 100% 25 = 100. v 400. v = 6v v = 6 40 v = 240. = = 360 v v v + v + v + v = v v = 400

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

1 και Ρ(Β) = τότε η Ρ (Α Β) είναι ίση µε: 2 δ και Ρ(Α Β) = 4

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

Θέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

ΝΟΕΜΒΡΙΟΣ x 2. 6x x. 1B. Α) Να χαρακτηρίσετε ως σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις:

Μαθηµατικά & Στοιχεία Στατιστικής Γενικής Παιδείας Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

Π Α Ν Ε Λ Λ Η Ν Ι Ε Σ Μ Α Θ Η Μ Α Τ Ι Κ Α K A I Σ Τ Ο Ι Χ Ε Ι Α Σ Τ Α Τ Ι Σ Τ Ι Κ Η Σ

( ) 2. χρόνος σε min. 2. xa x. x x v

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2011 ΕΚΦΩΝΗΣΕΙΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Περιοδικό ΕΥΚΛΕΙΔΗΣ Β Ε.Μ.Ε. (τεύχος 56)

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 20 ΜΑΪΟΥ 2013 ΑΠΑΝΤΗΣΕΙΣ. x x x 4

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

P(A ) = 1 P(A). Μονάδες 7

F(x h) F(x) (f(x h) g(x h)) (f(x) g(x)) F(x h) F(x) f(x h) f(x) g(x h) g(x) h h h. lim lim lim f (x) g (x). h h h

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Λύσεις των θεμάτων ΣΑΒΒΑΤΟ 14 MAΪΟΥ 2011 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ευτέρα, 18 Μα ου 2009 Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ

Γ. Ε. ΛΥΚΕΙΟ 2008 ΜΑΘ. ΚΑΙ ΣΤ. ΣΤΑΤ. ΤΑΞΗ Γ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 ΜΑΪΟΥ 2014

ΚΕΦΑΛΑΙΟ. 1. α. Tι ονοµάζεται συνάρτηση από το σύνολο Α στο σύνολο Β; β. Tι ονοµάζεται πραγµατική συνάρτηση πραγµατικής µεταβλητής;

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

(t) x (t) t t t t. ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ. 150 Α 2. Σχολικό βιβλίο σελ. 56 Α 3. Σχολικό βιβλίο σελ. 149 Α 4. i) Λ ii) Σ iii) Λ iv) Λ v) Σ

( ) ( ) ( ) ( ) ( ) Γ' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A ΘΕΜΑ Β

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Μαθηµατικών της Ώθησης

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ Θέματα και Απαντήσεις

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά και Στοιχεία Στατιστικής Γ λυκείου γ ε ν ι κ ή ς π α ι δ ε ί α ς

ΓΕΛ ΜΑΘΗΜΑΤΙΚΑ Γ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ' ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2003

Transcript:

Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ ο Α.Τι λέγεται δειγµατικός χώρος ενός πειράµατος τύχης; Μονάδες. Πώς ορίζεται η διάµεσος ενός δείγµατος ν παρατηρήσεων; (ν θετικός ακέραιος) Μονάδες 4 B. Αν η συνάρτηση f είναι παραγωγίσιµη, να αποδείξετε ότι: ( ) cf (x) ' cf (x), c IR Μονάδες 8 Γ. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν Σωστό (Σ) ή Λάθος (Λ), γράφοντας στο τετράδιο σας την ένδειξη (Σ) ή (Λ) δίπλα στον αριθµό της ερώτησης.. Αν Α είναι το πεδίο ορισµού µιας συνάρτησης f και υπάρχει x0 το οποίο ισχύει x x0 o A για lim f (x) f (x ) τότε η f δεν είναι συνεχής στο Α. Μονάδες. Ένα τοπικό ελάχιστο µιας συνάρτησης µπορεί να είναι µεγαλύτερο από ένα τοπικό της µέγιστο. Μονάδες. Η διάµεσος της κανονικής κατανοµής συµπίπτει µε τη µέση τιµή της. Μονάδες 4. O συντελεστής µεταβολής (CV) είναι µέτρο σχετικής διασποράς. Μονάδες. Η διακύµανση εκφράζεται µε τις µονάδες µε τις οποίες εκφράζονται οι παρατηρήσεις. Μονάδες

ΘΕΜΑ ο ίνεται η συνάρτηση f (x) x + lnx α. Να βρείτε το πεδίο ορισµού της. β. Να υπολογίσετε την παράγωγό της. γ. Να αποδείξετε ότι η συνάρτηση δεν έχει ακρότατα. δ. Να υπολογίσετε το όριο: xf (x) x lim Μονάδες Μονάδες Μονάδες 7 Μονάδες 8 ΘΕΜΑ ο Ο χρόνος εργασίας 80 υπαλλήλων µιας εταιρείας, που εργάζονται από εως 0 χρόνια, έχει ταξινοµηθεί σε ισοπλατείς κλάσεις. Είναι γνωστό ότι το ύψος του ορθογωνίου του ιστογράµµατος συχνοτήτων που αντιστοιχεί στην τέταρτη κλάση είναι 0, η συχνότητα της δεύτερης κλάσης είναι τετραπλάσια από τη συχνότητα της τρίτης κλάσης, η σχετική συχνότητα της πρώτης κλάσης είναι 0% και ο αριθµός των υπαλλήλων που εργάζονται τουλάχιστον χρόνια είναι 40. α. Να παραστήσετε τα παραπάνω δεδοµένα σε έναν πίνακα συχνοτήτων (απολύτων, σχετικών, αθροιστικών και αθροιστικών σχετικών). Μονάδες 8 β. Να κατασκευάσετε το ιστόγραµµα αθροιστικών σχετικών συχνοτήτων και το αντίστοιχο πολύγωνο. Μονάδες 8 γ. Να υπολογίσετε το ποσοστό των υπαλλήλων που εργάζονται λιγότερο από χρόνια. Μονάδες 4

δ. Πόσα το πολύ χρόνια πρέπει να εργάζεται ένας υπάλληλος, ώστε να είναι µεταξύ των 60 υπαλλήλων µε τα λιγότερα χρόνια εργασίας; Μονάδες ΘΕΜΑ 4 ο Για τα ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω, που αποτελείται από ισοπίθανα απλά ενδεχόµενα, είναι Ν(Α) Ν(Β) Ν(Ω) Έστω R το εύρος του δείγµατος των παρατηρήσεων: Α. Να αποδείξετε ότι: α. 0 < R β. R P(A B) + P(Α Β ) Ρ(Α), Ρ(Β), Ρ(Α Β), Ρ(Α Β) Μονάδες 4 Μονάδες 7 P(A)x P(B), αν x Β. Αν η συνάρτηση f (x) είναι συνεχής P(A B)+, αν x στο IR να αποδείξετε ότι: α. Ρ(Β) Ρ(Α Β) + β. R γ. Ρ(Α Β) και Ρ(Α Β) 0 Μονάδες 7 Μονάδες 4 Μονάδες

Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ ο Α.. Βλέπε σχολικό βιβλίο σελίδα 9.. Βλέπε σχολικό βιβλίο σελίδα 87. Β. Βλέπε σχολικό βιβλίο σελίδα 0. Γ. Σ, Σ, Σ, 4 Σ, Λ ΘΕΜΑ ο α. Πρέπει x > 0, οπότε το πεδίο ορισµού είναι το διάστηµα Α ( 0, + ) β. Είναι f (x) (x + lnx) (x ) + (lnx) x + x µε x > 0 γ. Η f είναι παραγωγίσιµη στο διάστηµα Α (0, + ) µε f (x) x + x > 0. Εποµένως η συνάρτηση είναι γνησίως αύξουσα και άρα δεν έχει ακρότατα. δ. Με x είναι x x + xf (x) x x () ()(x + ) (x + ) οπότε xf (x) lim lim (x + ) 4 x x

ΘΕΜΑ ο Το εύρος του δείγµατος είναι R 0 και το πλάτος των κλάσεων είναι R c. κ Έτσι οι κλάσεις είναι: µε κεντρικές τιµές αντίστοιχα: [, 0), [0, ), [, 0), [0, ), [, 0) 7,,,, 7,,,, 7, Από τα υπόλοιπα δεδοµένα προκύπτουν κατά σειρά οι σχέσεις: Ακόµα: Είναι ν 4 0 (), ν 4 ν (), f % 0 () και ν + ν 4 + ν 40 (4) ν + ν + ν + ν 4 + ν ν ν + ν + ν + ν 4 + ν 80 (4) ν + ν 40 () ν ν f % 00 0 00 8 ν 80 ν, και η () δίνει ν. Από την () βρίσκουµε ν 8 και από την (4) ν, έτσι συµπληρώνουµε τη στήλη των ν i : 8,, 8, 0, µε σύνολο 80. Οι σχετικές συχνότητες f i % προσδιορίζονται από τον τύπο f i % ν ν i 00, i,,, 4, και είναι κατά σειρά: 0, 40, 0, 7,,, µε σύνολο 00. Οι αθροιστικές συχνότητες Ν i προσδιορίζονται από τις σχέσεις: Ν ν, Ν i Ν i + ν i, i,, 4, και είναι κατά σειρά: 8, 40, 48, 78, 80. Πάλι, οι αθροιστικές σχετικές συχνότητες είναι: F % f %, F i % F i % + f i %, i,, 4, και βρίσκουµε κατά σειρά: 0, 0, 60, 97,, 00. Στη συνέχεια συµπληρώνουµε τον πίνακα συχνοτήτων: Κλάσεις [ -, - ) Κεντρικές Τιµές x i Πίνακας συχνοτήτων Συχνότητες ν i Σχετικές συχνότητες f i % Αθροιστικές συχνότητες N i Αθροιστικές σχετικές συχνότητες F i % [, 0 ) 7, 8 0 8 0 [0, ), 40 40 0 [, 0) 7, 8 0 48 60 [0, ), 0 7, 78 97, [, 0) 7,, 80 00 ΣΥΝΟΛΟ 80 00

β. Το ιστόγραµµα αθροιστικών σχετικών συχνοτήτων µε το αντίστοιχο πολύγωνο φαίνονται στο σχήµα: F i % 00 97, Ποσοστό (Fi%) υπαλλήλων 8, Γ 7 60 0 0 O γ. ος τρόπος. Το ζητούµενο ποσοστό βρίσκεται από το πολύγωνο συχνοτήτων από τη διαδροµή ΑΒΓ. Ξεκινώντας από το σηµείο Α(, 0) πηγαίνουµε κάθετα στον άξονα Ox µέχρι το αθροιστικό διάγραµµα και µετά παράλληλα στον άξονα Ox µέχρι το σηµείο Γ(0, 8,). H τεταγµένη 8, του Γ είναι το ζητούµενο ποσοστό. ος τρόπος. Το πλάτος του διαστήµατος [0, ) είναι τα του πλάτους της κλάσης [0, ), εποµένως το ποσοστό των υπαλλήλων που αντιστοιχεί στο διάστηµα [0, ) είναι τα του f 4%, δηλαδή, 7,, Έτσι το ζητούµενο ποσοστό είναι f % + f % + f % +,% 8,% δ. ος τρόπος. Επειδή 60 ν + ν + ν +, οι 60 υπάλληλοι µε τα λιγότερα χρόνια εργασίας είναι αυτοί που ανήκουν στις τρεις πρώτες κλάσεις και οι πρώτοι της τέταρτης κλάσης οι οποίοι καλύπτουν διάστηµα πλάτους. Εποµένως τα 0 ζητούµενα χρόνια είναι 0+. ος τρόπος. Στο ίδιο συµπέρασµα καταλήγουµε µε την παρατήρηση ότι οι 60 υπάλληλοι είναι το 7% του συνόλου, και εργαστούµε µε το αθροιστικό διάγραµµα (µπλε διαδροµή στο σχήµα), όπως υποδεικνύει το σχολικό βιβλίο στην εφαρµογή της σελίδας 77 Α 0 0 0 x i Χρόνος εργασίας Β

4 ΘΕΜΑ 4 ο Ν( Α) Ν( Β) Η ισότητα Ν(Α) Ν(Β) Ν(Ω) δίνει Ν( Ω) Ν( Ω) Ρ(Α) Ρ(Β) + ή Ρ(Α) Ρ(Β) () ή Έτσι, Ρ(Β) < Ρ(Α). Επειδή έχουµε Εποµένως οπότε Α Β Β και Α Α Β Ρ(Α Β) Ρ(Β) και Ρ(Α) Ρ(Α Β) Ρ(Α Β) Ρ(Β) < Ρ(Α) Ρ(Α Β) () R Ρ(Α Β) Ρ(Α Β) () α. Από την () είναι: Ρ(Α Β) < Ρ(Α Β) 0 < Ρ(Α Β) Ρ(Α Β) 0 < R Ακόµα Ρ(Α Β) και Ρ(Α Β) 0, οπότε Ρ(Α Β) Ρ(Α Β) R Άρα 0 < R β. Έχουµε κατά σειρά: R Ρ(Α Β) Ρ(Α Β) [ Ρ(Α) + Ρ(Β) Ρ(Α Β) ] Ρ(Α Β) [ Ρ(Α) Ρ(Α Β) ] + [ Ρ(Β) Ρ(Α Β ] Ρ(Α Β) + Ρ(Β Α) Ρ(Α Β) + Ρ(Β Α ) [ τύπος: Β Α Β Α ] Ρ(Α Β) + Ρ(Α Β) Ρ(Α Β) + Ρ(Α (Β ) ) Ρ(Α Β) + Ρ(Α Β ) ος τρόπος. Από διάγραµµα Venn παρατηρούµε ότι Α Β ( Α Β) Ω Α Β Α Β ( Α Β) Είναι: Ρ(Α Β) + Ρ(Α Β ) Ρ(Α Β) + Ρ(Α ) Ρ(Α Β ) [Ρ(Α) Ρ(Α Β)] + [ Ρ(Α)] [ Ρ(Α Β)] Ρ(Α) Ρ(Α Β) + Ρ(Α) + Ρ(Α Β)] Ρ(Α Β) Ρ(Α Β) R 4

Β α. Η f (x) είναι συνεχής στο IR, οπότε lim f (x) f () ή x lim f (x) P(A B) + x Με x έχουµε: (4) Άρα, P(B) + x P(B) () P(A)x P(B) P(B)x + x P(B) P(B)() + ()[P(B) + ] P(B) + P(A)x P(B) lim f (x) lim lim[p(b) + ] P(B) + x x x και η (4) δίνει, τελικά, το ζητούµενο: Ρ(Β) + Ρ(Α Β) + ή β. Η () λόγω της () δίνει: Ρ(Β) Ρ(Α Β) + Ρ(Α) Ρ(Α Β) + Από την () προκύπτει: R Ρ(Α Β) Ρ(Α Β) [ Ρ(Α) + Ρ(Β) Ρ(Α Β)] Ρ(Α Β) () Ρ(Α) + Ρ(Β) Ρ(Α Β) Ρ(Α Β) + + Ρ(Α Β) + Ρ(Α Β) γ. Αν υποθέσουµε ότι Ρ(Α Β) <, τότε θα είναι R Ρ(Α Β) Ρ(Α Β) <, άτοπο, από το Ββ, και επειδή Ρ(Α Β) αποµένει: Ρ(Α Β). Τέλος R Ρ(Α Β) Ρ(Α Β) Ρ(Α Β) 0.