Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý



Σχετικά έγγραφα
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

arxiv: v1 [math.dg] 3 Sep 2007

v w = v = pr w v = v cos(v,w) = v w

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ανώτερα Μαθηματικά ΙI

plants d perennials_flowers

p din,j = p tot,j p stat = ρ 2 v2 j,

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 9: Υβριδισμός. Τόλης Ευάγγελος

Γιατί ο σχηματισμός του CΗ 4 δεν μπορεί να ερμηνευθεί βάσει της διεγερμένης κατάστασης του ατόμου C;

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

1.15 Ο δεσμός στο μεθάνιο και ο υβριδισμός τροχιακού

S i L L I OUT. i IN =i S. i C. i D + V V OUT

È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Μοριακά Πρότυπα (Μοντέλα)

Γεωμετρία Μορίων Θεωρία VSEPR

Στοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου

x E[x] x xµº λx. E[x] λx. x 2 3x +2

tan(2α) = 2tanα 1 tan 2 α

Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

Γραφικάμετηνχρήσ η ÛØ

Εφαρμοσμένα Μαθηματικά

Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

arxiv:quant-ph/ v1 28 Nov 2002

Reserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload

Μάθημα 21 ο. Το σχήμα των μορίων. Θεωρία VSEPR. Θεωρία Δεσμού Σθένους- Υβριδισμός

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

+ m ev 2 e 2. 4πε 0 r.

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

ΧΗΜΙΚΟΣ ΕΣΜΟΣ ΙΙ : ΚΒΑΝΤΟΜΗΧΑΝΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΕΣΜΟΥ

Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

ΥΒΡΙ ΙΣΜΟΣ υβριδισµός

N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1

Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια

c = a+b AC = AB + BC k res = k 1 +k 2

Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale

Δυαδικά Συστήματα. URL:

Ομοιοπολικός εσμός Θεωρία Lewis

5. Χημικός εσμός ΙI: Κβαντομηχανική Θεώρηση


Z

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

Προσομοίωση Δημιουργία τυχαίων αριθμών

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος

7 ο Κεφάλαιο Οργανική Χημεία. Δ. Παπαδόπουλος, χημικός

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ø ÓÙØ Û ÓÑ Ø ÔÖÓ Ø ÛÓÙÐ Ò Ú Ö ÓÑÔÐ Ø

Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ ΘΕΩΡΙΑ ΤΟΥ ΔΕΣΜΟΥ ΣΘΕΝΟΥΣ - ΥΒΡΙΔΙΣΜΟΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΩΤΗΣΕΩΝ

f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº

ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος

Ανώτερα Μαθηματικά ΙI

¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ

Θεωρία του δεσμού σθένους

Πρότυπα. ΙωάννηςΓºΤσ ούλος

Ανώτερα Μαθηματικά ΙI

Δυναμικοί τύποι δεδομένων

7 ο Κεφάλαιο Οργανική Χημεία. Δ. Παπαδόπουλος, χημικός

Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις

Εφαρμοσμένα Μαθηματικά

ΙΟΝΤΙΚΟΣ ΔΕΣΜΟΣ ΠΑΡΑΔΕΙΓΜΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας


ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας

Ανώτερα Μαθηματικά ΙI

Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.

a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.

Ομοιοπολικός Δεσμός. Ασκήσεις

ΘΕΩΡΙΑ ΔΕΣΜΟΥ ΣΘΕΝΟΥΣ ΘΕΩΡΙΑ ΜΟΡΙΑΚΩΝ ΤΡΟΧΙΑΚΩΝ

2 SFI

arxiv: v3 [math.ap] 25 Nov 2009

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ασκήσεις. Γράψτε μια δομή Lewis για καθένα από τα παρακάτω μόρια και βρείτε τα τυπικά φορτία των ατόμων. (α) CΟ (β) ΗΝO 3 (γ) ClΟ 3 (δ) ΡΟCl 3

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

Μάθημα 22 ο. Θεωρία Δεσμού Σθένους- Υβριδισμός

Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

Οργανική Χημεία. Κεφάλαιο 1: Δομή και δεσμοί

ΧΗΜΕΙΑ» ΣΟΥΠΙΩΝΗ ΜΑΓΔΑΛΗΝΗ ΜΑΘΗΜΑ: «ΓΕΝΙΚΗ. Διδάσκουσα: ΣΟΥΠΙΩΝΗ Α ΕΞΑΜΗΝΟ (ΧΕΙΜΕΡΙΝΟ)

7. Μοριακή Γεωμετρία και Θεωρία του Χημικού Δεσμού

Οργανική Χημεία 24 4

Μονοδιάσ τατοιπίνακες

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Ανώτερα Μαθηματικά ΙI

Transcript:

9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò & ÐñïâëÞìáôá 9.7 Âéâëéïãñáößá Ç 2 Ï ÁÍÔÉÊÅÉÌÅÍÁ ÌÅËÅÔÇÓ ÌåôÜ áðü ðñïóåêôéêþ ìåëýôç áõôïý ôïõ êåöáëáßïõ, èá ðñýðåé íá ãíùñßæåôå: Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý Ðùò ðåñéãñüöåôáé ï ó çìáôéóìüò áðëþí Þ ðïëëáðëþí äåóìþí ìå âüóç ôïí õâñéäéóìü Ðïéá ç ó Ýóç ôïõ õâñéäéóìïý ìå ôç ìïñéáêþ ãåùìåôñßá

½ ¼ þ º½ º ¹ ¹ µ µº Ï 1s 2s 2px 2py 2pz Ô ¹ º 2 µ 2 µº ý 1s 2s 2px 2py 2pz ¹ º ¹ 2 ý º ø À 4 µº º

º½ ý ½ ½ ¹ ¾ ¾Ô Ð ØÖÓÒ ÔÖÓÑÓØ ÓÒµ ¾ ¾Ô º ¹ º½º 2p 2p 2s 2s Προώθηση ηλεκτρονίου 1s 1s Θεμελιώδης κατάσταση ατόμου Διεγερμένη κατάσταση ατόμου º½ º º ¹ ¾ ¾Ô ¹ µº ¹ º ½Ó ¾ ½ ¾ ¾Ô Ü ½ ¹ ¾Ô Ý ½ ¹ ¾Ô Þ ½ º

½ ¾ þ À 4 µº ý ¹À º Ô º ¹ À 4 µ Ð 2 µ º º ¹ º º¾ ² Ý Ö Þ Ø ÓÒµ Ý Ö ÓÖ Ø Ð µº ¹ º ¹ ØÓÑ ÓÖ Ø Ð µ º ¹ º º º ³ º º ø

º þ ý þ ý ½ µ º¾µº z y x s τροχιακό p τροχιακό sp υβριδικά τροχιακά º¾ Ôµ Ôº º º º½ Ô Ô º Ô º Ô ½ ¼ µº Ð 2 º ÌÓ 1 2 2 2 º Ð Ð ¹ Ð 2 º ý Ô Ô µ º Ô º º Ô Ô Ð Ð Æ 3 2 3Ô 2 Ý 3Ô 2 Þ 3Ô 1 ܵ Ð 2 º º Ð 2

½ þ 2p 2p 2p 2p 2p Μίξη ατομικών τροχιακών s και p sp sp 2s Άτομο Be Υβριδισμένο άτομο Be º Ô Ô º Ô º Ô Ô Ðº º º¾ Ô 2 Ô 2 Ô º Ô 2 º ¹ Ô 2 1 µ Ô Ô 2 µº ½¾¼ º Ô 2 þµ 3 º º þ 1 2 2 2 2Ô 1 Ôº µ

º þ ý þ ý ½ sp υβριδικά τροχιακά Be p ατoμικά τροχιακά l Επικάλυψη sp υβριδικών τροχιακών Be με τα p ατoμικά τροχιακά του l º Ð 2 µ Ô µ Ô Ðµº

½ þ 2p 2p 2p 2p Μίξη ατομικών τροχιακών s και p sp 2 sp 2 sp 2 2s Άτομο B: 1s 2 2s 2 2p 1 Τρία υβριδικά sp 2 τροχιακά με ένα μονήρες ηλεκτρόνιο επικαλύπτονται με τρία p τροχιακά από τρία άτομα F º 3 Ô 2 Ô 1 2 2 2 2Ô 2 Ý 2Ô 2 Þ 2Ô 1 ܵº ý ¾ µ Ô º Ô 2 º º þ Ô ¹ 3 º

º þ ý þ ý ½ º º Ô 3 Ô 3 Ô º º Ô 3 À 4 µ º º 2p 2p 2p Μίξη ατομικών τροχιακών s και p sp 3 sp 3 sp 3 sp 3 2s Άτομο : 1s 2 2s 2 2p 2 Κάθε sp 3 υβριδικό τροχιακό επικαλύπτεται με το 1s ατομικό τροχιακό του ατόμου του Η προς σχηματισμό των τεσσάρων δεσμών - º À 4 Ô 3 1 1 µº Ô 3 3 µ 2 µ º º º ý ¹ À 4 3 2 Ô 3 º

½ þ ÎË ÈÊ º µº ¹ 3 2 À 4 µº 2p 2p 2p Μίξη ατομικών τροχιακών s και p sp 3 sp 3 sp 3 sp 3 2s Άτομο N: 1s 2 2s 2 2p 3 Τα τρία sp 3 υβριδικά τροχιακά με ένα μονήρες ηλεκτρόνιο επικαλύπτονται με το 1s ατομικό τροχιακό του ατόμου του Η προς σχηματισμό των τριών δεσμών N- º Ô 3 3 º

º þ ý þ ý ½ 2p 2p 2p Μίξη ατομικών τροχιακών s και p sp 3 sp 3 sp 3 sp 3 2s Άτομο O: 1s 2 2s 2 2p 4 Τα δυο sp 3 υβριδικά τροχιακά με ένα μονήρες ηλεκτρόνιο επικαλύπτονται με το 1s ατομικό τροχιακό του ατόμου του Η προς σχηματισμό των δυο δεσμών O- º Ô 3 2 º º º Ô 3 Ô º º ý ½¾¼ º ¹ º Ô 3 ȵ È Ð 5 ¹ º º

½ ¼ þ 3d 3d 3d 3d 3d 3d 3d 3d 3d 3p 3p 3p Μίξη ατομικών τροχιακών s, p και d Πέντε sp 3 d υβριδικά τροχιακά 3s Επικάλυψη sp 3 d υβριδικών τροχιακών P με τα p ατομικά τροχιακά του l. Άτομο P: [Ne]3s 2 3p 3 º Ô 3 Ó È È Ð 5 º

º þ ý þ ý ½ ½ º º Ô 3 2 Ô º º Ô 3 2 Ë 6 º½¼µ Ä Û º 3d 3d 3d 3d 3d 3d 3d 3d 3p 3p 3p Μίξη ατομικών τροχιακών s, p και d Έξι sp 3 d 2 υβριδικά τροχιακά 3s Επικάλυψη sp 3 d 2 υβριδικών τροχιακών S με τα p ατομικά τροχιακά του l. Άτομο S: [Ne]3s 2 3p 4 º½¼ Ô 3 2 Ó Ë Ë 6 º

½ ¾ þ º ¹ ¹ º 2 À 6 µ 2 À 4 µ 2 À 2 µ º½½º αιθάνιο ( 2 6 ) αιθυλένιο ( 2 4 ) ακετυλένιο ( 2 2 ) º½½ º º º½ ý ¹À ¹ Ô 3 ¹ Ô 3 ¹ Ô 3 º½¾µº

º þ ý ý ½ º½¾ º Ô 3 ¹ Ô 3 ¹ Ô 3 ¹Àº º º¾ ¹ Ô 2 º ý Ô 2 Ô 2 Ô ¹ º½ º ¹ Ô 2 ¹ Ô 2 Ô º º ¹À Ô 2 º º½ º

½ þ 2p 2p 2s sp 2 Υβριδισμός sp 2 1s 1s Θεμελιώδης κατάσταση ατόμου Υβριδισμένη κατάσταση ατόμου º½ Ô 2 ¹ º Δημιουργία π δεσμού από επικάλυψη των p τροχιακών º½ º ¹ Ô 2 ¹ Ô 2 µ Ô Ô µ Ô 2 ¹Àº

º þ ý ý ½ º º ¹ ¹ ½ ¹Àº Ô º½ º Ô Ô µ º 2p 2p 2s sp Υβριδισμός sp 1s 1s Θεμελιώδης κατάσταση ατόμου Υβριδισμένη κατάσταση ατόμου º½ Ô º ¹ Ô¹ Ô Ô ¹ º ¹ º ¹À Ô º º½ º

½ þ Δημιουργία π δεσμών από επικάλυψητωνpτροχιακών º½ º ¹ Ô ¹ Ô µ Ô Ô µ Ô ¹ ¹Àº º º½ º¾ º ý º ¹ º ø ¹ ÎË ÈÊ º µº ÎË ÈÊ º º½ º¾ º Ôº ý

º þ ý ý ý ½ Ô 2 º º ½º Ä Û ¾º Ä Û º ÎË ÈÊ ¹ º ¹ µ º½ º Ô 2 ¹ Ô 3 º º

½ þ º½ º Υβριδισμός sp sp 2 sp 3 sp 3 d sp 3 d 2 Μίξη ατομικών τροχιακών ένα s + ένα p ένα s + δυο p ένα s + τρία p ένα s + τρία p + ένα d ένα s + τρία p + δυο d Μη υβριδοποιημένα ατομικά τροχιακά δυο p ένα p κανένα τέσσερα d τρία d Γεωμετρία Γραμμική Επίπεδη τριγωνική Τετραεδρική Τριγωνική διπυραμιδική Οκταεδρική Αναπαράσταση στο χώρο

º þ ý ý ý ½ º¾ º Υβριδισμός Γεωμετρία Γωνίες δεσμών Παράδειγμα sp Γραμμική Bel 2 180 o Be 2 O 2 sp 2 Επίπεδη τριγωνική BF 3 120 o NO 3 - sp 3 Τετραεδρική 4 109,5 o N 3 BF 4 sp 3 d Τριγωνική διπυραμιδική 120 o Pl 5 & 90 o PF 5 sp 3 d 2 Οκταεδρική SF 6 90 o XeF 4

½ ¼ þ º½ ¹ µ Ä Û À 2 Ç O µ º ÎË ÈÊ º ý º½ Ô 3 º Ô 3 µ º½ º 2p 2s sp 3 Υβριδισμός sp 3 1s 1s Θεμελιώδης κατάσταση ατόμου O Υβριδισμένη κατάσταση ατόμου O º½ Ô 3 º Ô 3 Ô 3 ¹ ½ À

º þ ý ý ý ½ ½ ¹ º º½ º º½ Ô 3 2 º ý ¹ º 2 ǹÀ ½¼ ½¼ µº µ ¹ º ³ ÎËÈ Ê º ý º ¹ ³ º ¹ ÎË Èʵ º

½ ¾ þ ¹ µ º ¹ ¹ º º¾ ËÇ 2 µ ËÇ 2 Ë 2 Ô 2 Ü Ô 1 Ý Ô 1 Þµ Ô 2 ¹ Ô º½ º Ô 2 Ë ¹ Ô 2 Ô º ý Ë 2 º Ë¹Ç º ¹ ËÇ 2 µ º¾¼º ¹ ˹Ǻ

º þ ý ý ý ½ O O S σ σ π O O S σ σ π S O O S O O º½ ËÇ 2 º ý Ô º S O O σ σ π S O O º¾¼ ËÇ 2 º

½ þ º 6 À 6 µ Ô 2 ¹ Ô 2 Ô º Ô 2 Ô 2 ¹ º Ô 2 ½ ¹ ¹À º¾½µº Ô Ó º¾¾º sp 2 º¾½ Ô 2 º

º þ ý ý ý ½ º¾¾ º º¾ º º¾ º

½ þ º ² ½º À 4 Ð 2 ¹ º ¾º µ Ë 6 µ À 2 Ç µ È Ð 5 µ ÆÀ 3 º º º µ È Ð 5 µ ËÇ 2 µ ËÇ 3 µ ƺ º µ Ð 3 µ Ð + 2 µ ÆÇ + 2 µ Ç 2 µ ÆÇ 3 µ 3 º º ÆÀ 3 µ À 2 ǵ µ Ä Û µ µ µ º

º ² þ ý ý ½ º µ À 4 µ 3 À 8 µ 3 À 6 µ 3 À 4 º º µ Ð 5 µ 2 Ç µ ËÇ 3 µ ƺ µ µ µ Úµ º

½ þ º þ ˺ º ÑÑÓÒ Ò º º Ò Ò Ö Ð Ñ ØÖÝ Ø Ø ÓÒ ÀÓÙ ØÓÒ Å Ò ÓÑÔ ÒÝ ¾¼¼¾º ʺº ÐÐ Ô Ò ÈºÄº º ÈÓÔ Ð Ö Ñ Ð ÓÒ Ò Ò ÅÓÐ ÙÐ Ö ÓÑ ØÖÝ ÖÓÑ Ä Û ØÓ Ð ØÖÓÒ Ò Ø ÇÜ ÓÖ ÍÒ Ú Ö ØÝ ÈÖ Æ Û ÓÖ ¾¼¼½º ʺÀº È ÖØÙ Ò ÏºËº À Ö ÛÓÓ Ò Ö Ð Ñ ØÖÝ ¹ ÈÖ Ò ÔÐ Ò ÅÓ ÖÒ ÔÔÐ Ø ÓÒ Ø Ø ÓÒ ÈÖ ÒØ ¹À ÐÐ Æ Û Â Ö Ý ½ º º º Ë Ö Ú Ö Ò ÈºÏº Ø Ò ÁÒÓÖ Ò Ñ ØÖÝ Ö Ø ÓÒ ÇÜ ÓÖ ÍÒ Ú Ö ØÝ ÈÖ ÇÜ ÓÖ ½ º ȺϺ Ø Ò Ò Âº º Ö Ò Ò Ö Ð Ñ ØÖÝ ¾Ò Ø ÓÒ ÏºÀº Ö Ñ Ò Æº ÓÖ ½ ¾º úϺ Ï ØØ Ò Êº º Ú Ò ÅºÄº È Ò Ö Ð Ñ ØÖÝ Ø ¹ Ø ÓÒ ÈÖ ÒØ ¹À ÐÐ Æ Û Â Ö Ý ¾¼¼¼º ʺ º ÙÖÒ ÙÒ Ñ ÒØ Ð Ó Ñ ØÖÝ Ø Ø ÓÒ ÈÖ ÒØ ¹À ÐÐ Æ Û Â Ö Ý ¾¼¼¾º źº Ï ÒØ Ö Ñ Ð ÓÒ Ò ÇÜ ÓÖ Ë Ò ÈÙ Ð Ø ÓÒ ÇÜ ÓÖ ¾¼¼¼º ʺ Ò Ñ ØÖÝ Ø Ø ÓÒ Å Ö Û¹À ÐÐ Ó ØÓÒ ½ º ºÄº Å Ð Ö Ò º º Ì ÖÖ ÁÒÓÖ Ò Ñ ØÖÝ ¾Ò Ø ÓÒ ÈÖ ÒØ ¹ À ÐÐ Æ Û Â Ö Ý ½ º º ý ý ¹ ½ º º º þ ý ý ¾¼¼¾º º ý ý ¾¼¼ º