Πρότυπα. ΙωάννηςΓºΤσ ούλος
|
|
- Σωφρονία Ευταξίας
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση ØÑÔØ πρέπειναγίνεταιαμέσωςκάτωαπότηνκεντρικήδήλωση ØÑÔغ ½ ÒÙ Ó ØÖÑ ¾ Ù Ò ÒÑ Ô Ø ØÑÔØØÝÔÒÑ ØÝÔ ØÝÔ ÑÜÚÙ ØÝÔ ØÝÔ µ µ ÖØÙÖÒ ÖØÙÖÒ ÒØ ÑÒ µ ½¼ ½½ ÒØ Ü½¼¼ ݾ¼¼ ½¾ ÓÙ ¾¼¼º¾ º ½ ÒØ ÑÜÑÜÚÙ Ü Ý µ ÓÙ ÑÜÑÜÚÙ µ ÓÙØÅÜÑÜÒ ÓÙØÅÜÑÜÒ ÖØÙÖÒ ¼ Εκτόςαπόένα ØÑÔØμπορούμεναχρησιμοποιήσουμεδύοπρότυπαστηνίδια συνάρτηση όπωςπαρουσιάζεταικαιστοεπόμενοπαράδειγμα ½ ÒÙ Ó ØÖÑ ¾ Ù Ò ÒÑ Ô Ø ØÑÔØØÝÔÒÑ ØÝÔ½ ØÝÔÒÑ ØÝÔ ÓÙ ÑÙØ ØÝÔ½ ØÝÔ¾ µ ÖØÙÖÒ ½
2 ØÑÔØØÝÔÒÑ ØÝÔ½ ØÝÔÒÑ ØÝÔ ½¼ ÓÙ Ú ØÝÔ½ ØÝÔ¾ µ ½½ ½¾ ÖØÙÖÒ» ½ ÒØ ÑÒ µ ÒØ Ü½¼¼ ݾ¼¼ ÓÙ ¾¼¼º¾ º ÓÙ Ú ÑÙØ Ü Ý µ ¾¼ ÓÙ Ú Ú µ ÓÙØ ÎÙÚÒ ¾¾ ÓÙØ ÎÙÚÒ ¾ ÖØÙÖÒ ¼ ¾ Κατηγορίες προτύπων Ταπρότυπαμπορούνναχρησιμοποιηθούνκαισεκατηγορίες οιοποίεςθαέχουν γενικόκώδικαόπωςπαρουσιάζεταικαιπαρακάτω στηνγενικήκατηγορίαδυναμικού πίνακα ½ ÒÙ Ó ØÖÑ ¾ Ù Ò ÒÑ Ô Ø ØÑÔØØÝÔÒÑ Ì ÖÖÝ ÔÖÚØ ÒØ Ò Ø Ì Ø ½¼ ÔÙ ½½ ÖÖÝ µ ½¾ ÖÖÝ ÒØ Ò µ ½ ÖÖÝ µ ̲ ÓÔÖØÓÖ ÒØ ÒÁÒÜ µ ÒØ ØÄÒØ µ ØÑÔØ ØÝÔÒÑ Ì ÖÖÝÌ ÖÖÝ µ ¾¼ ØÒÛ Ì ½ ¾
3 ¾¾ Ò Ø ¾ ØÑÔØØÝÔÒÑ Ì ÖÖÝÌ ÖÖÝ ÒØ Ò µ ØÒÛ Ì Ò Ò Ø Ò ¼ ½ ¾ ØÑÔØØÝÔÒÑ Ì ÖÖÝÌ ÖÖÝ µ Ø Ø ØÑÔØØÝÔÒÑ Ì Ì² ÖÖÝÌ ÓÔÖØÓÖ ÒØ ÒÁÒÜ µ ¼ ½ ÖØÙÖÒ Ø ÒÁÒÜ ¾ ØÑÔØØÝÔÒÑ Ì ÒØ ÖÖÝÌ ØÄÒØ µ ÖØÙÖÒ Ò Ø ÒØ ÑÒ µ ÖÖÝÒØ ÒÖÖÝ µ ÖÖÝÓÙ ÖÖÝ µ ¼ ÓÖ ÒØ ¼ µ ½ ¾ ÒÖÖÝ ÖÖÝ ¼ º ÓÖ ÒØ ÒÓÙÒØ ÒÓÙÒØ ¼ ÒÓÙÒØ µ ÓÙØ ÒÖÖÝ ÒÓÙÒØ Ø ÖÖÝ ÒÓÙÒØ Ò ÖØÙÖÒ ¼ Επειδήησυνεχήςδήλωσωπροτύπωνμπορείναείναικουραστική πριναπότις μεθόδουςδηλαδήµυπάρχεικαιοεπόμενοςπιοεύκολοςτρόποςδήλωσηςκατηγορίας προτύπων ½ ÒÙ Ó ØÖÑ ¾ Ù Ò ÒÑ Ô Ø ØÑÔØØÝÔÒÑ Ì ÖÖÝ
4 ÔÖÚØ ÒØ Ò Ø Ì Ø ½¼ ÔÙ ½½ ÖÖÝ µ ½¾ ½ ØÒÛ Ì ½ Ò Ø ÖÖÝ ÒØ Ò µ ØÒÛ Ì Ò ¾¼ Ò Ø Ò ¾¾ ¾ ÖÖÝ µ Ø Ø Ì² ÓÔÖØÓÖ ÒØ ÒÁÒÜ µ ¼ ÖØÙÖÒ Ø ÒÁÒÜ ½ ¾ ÒØ ØÄÒØ µ ÖØÙÖÒ Ò Ø ¼ ÒØ ÑÒ µ ½ ¾ ÖÖÝÒØ ÒÖÖÝ µ ÖÖÝÓÙ ÖÖÝ µ ÓÖ ÒØ ¼ µ ÒÖÖÝ ÖÖÝ ¼ º ¼ ÓÖ ÒØ ÒÓÙÒØ ÒÓÙÒØ ¼ ÒÓÙÒØ µ
5 ½ ÓÙØ ÒÖÖÝ ÒÓÙÒØ Ø ÖÖÝ ÒÓÙÒØ Ò ¾ ÖØÙÖÒ ¼ Δυναμικοί πίνακες º½ Ορισμόςπινάκων Εξαιτίαςτηςευρύτατηςχρήσεωςδυναμικώνπινάκωνκαιάλλωνδομών στηνσύγχρονη υπάρχειμια πληθώρααπό τέτοιεςδομές σε έναπακέτοπουονομάζεται ËÌĺΣτηνσυνέχειαπαρουσιάζονταιμερικέςαπότιςδομέςαυτέςº Στοεπόμενο παράδειγμαδημιουργείταιέναςπίνακας στοιχείωνκαιαποθηκεύουμεσεαυτόν τιμέςκαιεμφανίζεταιομέσοςόροςτουςº ½ ÒÙ Ó ØÖÑ ¾ ÒÙ ÚØÓÖ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÚØÓÖ ÒØ Ü µ ÒØ ½¼ ÓÙ ÑÒ ¼º¼ ½½ ÓÖ ¼ Ü º Þ µ µ ½¾ ½ ÓÙØ ÒØÖ Ü Ø ÔÓ Ò Ò Ü ÑÒÑÒ Ü ÑÒÑÒ»Ü º Þ µ ÓÙØÅÒ Ú Ù ÑÒÒ ÖØÙÖÒ ¼ ¾¼ º¾ Δυναμικήεισαγωγήστοιχείων Προφανώςμπορείναδημιουργηθείκαιπίνακαςοοποίοςαυξομειώνειτηνδιάσταση ενόςπίνακα όπωςστοεπόμενοπαράδειγμαόπουεισάγονταιτιμέςθερμοκρασίες σεπίνακαº Ηείσοδοςτιμώντερματίζεταιότανοχρήστηςεισάγειτιμήκάτωαπό τοαπόλυτο ¼ ¹ ºβαθμοίκελσίουµº ½ ÒÙ Ó ØÖÑ ¾ ÒÙ ÚØÓÖ Ò ÅÁÆÌÅÈ º
6 Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÚØÓÖ ÓÙ ØÑÔ ½¼ ÓÙ Ú Ù ½½ ÒØ ½¾ Ó ½ ÓÙØ ÒØÖ ØÑÔÖØÙÖ ÎÙÅÁÆÌÅÈ Ø Ö Ñ Ò Ø Ø ÔÔÒ Ò Ú Ù ÚÙÅÁÆÌÅȵ Ö ØÑÔ º ÔÙ Ú Ù µ Û ØÖÙ µ ¾¼ ÓÖ ¼ ØÑÔ º Þ µ µ ¾¾ ÓÙØÌÑÔØÑÔ Ò ¾ ÖØÙÖÒ ¼ º Πίνακες αλφαριθμητικών ΟιδυναμικοίπίνακεςμπορούνναχρησιμοποιηθούνκαιστηνπερίπτωσηαλφαριθμητικώνºΣτοεπόμενοπαράδειγμαχρησιμοποιούνταιδύοδυναμικοίπίνακεςένας για τα ονόματα υπαλλήλων και ένας για τις αμοιβές τουςº Το πρόγραμμα εμφανίζει τονυπάλληλοπουλαμβάνειτονμεγαλύτερομισθό ½ ÒÙ Ó ØÖÑ ¾ ÒÙ ÚØÓÖ ÒÙ Ø Ö Ò Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÚØÓÖ Ø Ö Ò ÒÑ ÚØÓÖ ÒØ Ö Ý ½¼ ÒØ ½½ Ø Ö Ò ÑÜÒÑ ½¾ ÒØ ÑÜ ÖÝ ½ ÓÖ ¼ µ Ø Ö Ò Ò ÒØ ÓÙØ ÒØÖ ÒÑ Ò Ò Ò
7 ÓÙØ ÒØÖ Ö Ý Ò ¾¼ Ò ÒÑ º ÔÙ Ò µ ¾¾ Ö Ý º ÔÙ µ ¾ ÑÜÒÑÒÑ ¼ ÑÜ ÖÝ Ö Ý ¼ ÓÖ ¼ µ Ö Ý ÑÜ ÖÝ µ ¼ ÑÜ ÖÝ Ö Ý ½ ÑÜÒÑÒÑ ¾ ÓÙØÅÜ Ö Ý ÑÜ ÖÝÒ ÓÙØÅÜÒÑÑÜÒÑÒ ÖØÙÖÒ ¼ º Πίνακεςαντικειμένων ½ ÒÙ Ó ØÖÑ ¾ ÒÙ ÚØÓÖ ÒÙ Ø Ö Ò Ù Ò ÒÑ Ô Ø ÈÖ ÓÒ ÔÖÚØ Ø Ö Ò ÒÑ ØÒÑ ½¼ ÔÙ ½½ ÈÖ ÓÒ µ ½¾ ÈÖ ÓÒ Ø Ö Ò Ò Ø Ö Ò µ ½ ÚÓ Ø µ ÈÖ ÓÒ ÈÖ ÓÒ µ ÒÑ ØÒÑ ¾¼ ¾¾ ÈÖ ÓÒ ÈÖ ÓÒ Ø Ö Ò Ò Ø Ö Ò µ ¾
8 ÒÑÒ ØÒÑ ÚÓ ÈÖ ÓÒ Ø µ ¼ ÓÙØÆÑ ÒÑÄ ØÒÑ ØÒÑÒ ½ ¾ ÒØ ÑÒ µ ÚØÓÖ ÈÖ ÓÒ Ô Ó Ô ÒØ ÓÖ ¼ µ ÈÖ ÓÒ Ô ¼ Ø Ö Ò Ò ½ ÓÙØ ÒØÖ ÒÑÒ ¾ Ò Ò ÓÙØ ÒØÖ ØÒÑ Ò Ò ÔÒÛ ÈÖ ÓÒ Ò µ Ô Ó Ô º ÔÙ Ô µ ÓÖ ¼ µ Ô Ó Ô Ø µ ÓÖ ¼ µ Ø Ô Ó Ô ¼ ÖØÙÖÒ ¼ ½ º Διαγραφήκαιπαρεμβολήστοιχείων ½ ÒÙ ÚØÓÖ ¾ ÒÙ Ó ØÖÑ ÒÙ Ø º ÒÙ Ý» ØÑ º Ù Ò ÒÑ Ô Ø ÚÓ Ô Ö Ò Ø Ú Ø Ó Ö ÚØÓÖ ÒØ Ü µ ÚØÓÖ ÒØ Ø Ö Ø Ó Ö Ø Ö ½¼ ÓÖ Ø ÖÜ º Ò µ Ø Ö Ü º Ò µ Ø Ö µ ½½ ÓÙØÜ Ø Ö Ò ½¾ ½ ÚÓ Ø Ú Ø Ó Ö ÚØÓÖ ÒØ ²Ü µ
9 ÚØÓÖ ÒØ Ø Ö Ø Ó Ö Ø Ö Ø ÖÜ º Ò µ Û Ø Ö Ü º Ò µ µ ¾¼ ÒØ Ú Ø Ö Ú±¼µ ¾¾ Ü º Ö Ø Ö µ ¾ Ø Ö ÒØ ÑÒ µ ¼ ÚØÓÖ ÒØ Ü ½ ÒØ ¾ ÖÒ ØÑ ÆÍÄÄ µ µ ÓÖ ¼ ½¼ µ Ü º ÔÙ ÖÒ µ ± ½ ¼ µ Ø Ú Ø Ó Ö Ü µ Ô Ö Ò Ø Ú Ø Ó Ö Ü µ ÖØÙÖÒ ¼ º Διδιάστατοιδυναμικοίπίνακες ½ ÒÙ ÚØÓÖ ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ØÝÔ ÚØÓÖ ÓÙ Ø ÚÓ ÑÅØÖÜ ÚØÓÖ Ø ² ÒØ ÖÓÛ ÒØ ÓÙÑÒ µ ÒØ º Ö Þ ÖÓÛ µ ½¼ ÓÖ ¼ ÖÓÛ µ ½½ º Ö Þ ÓÙÑÒ µ ½¾ ½ ÚÓ ÖÅØÖÜ ÚØÓÖ Ø ²µ ÒØ ÓÖ ¼ º Þ µ µ ÓÖ ¼ º Þ µ µ
10 ¾¼ ÓÙØ ¾¾ Ò ¾ ÚÓ Ô Ö Ò Ø Å Ø Ö Ü ÚØÓÖ Ø µ ÒØ ¼ ÓÖ ¼ º Þ µ µ ½ ¾ ÓÖ ¼ º Þ µ µ ÓÙØ ÓÙØÒ ¼ ÚÓ ÑÙØÅØÖÜ ÚØÓÖ Ø ² ÚØÓÖ Ø ² ÚØÓÖ Ø ²µ ½ ¾ ÒØ ÓÖ ¼ º Þ µ µ ÓÖ ¼ º Þ µ µ ¼ ÓÖ ¼ º Þ µ µ ¼ ½ ¾ ÒØ ÑÒ µ ÒØ Å Æ ÚØÓÖ Ø ÓÙØÀÓÛÑÒÝ ÖÓÛ ÒÅ ¼ ÓÙØÀÓÛÑÒÝ ÓÙÑÒ ½ ÒÆ ¾ ÑÅØÖÜ Å Æµ ÑÅØÖÜ Æ Åµ ÑÅØÖÜ Å Åµ ÖÅØÖÜ µ ½¼
11 ÖÅØÖÜ µ ÑÙØÅØÖÜ µ Ô Ö Ò Ø Å Ø Ö Ü µ ÖØÙÖÒ ¼ ¼ º ÈÖÑÙØØÓÒ ½ ÒÙ Ø º ¾ ÒÙ Ý» ØÑ º ÒÙ ÚØÓÖ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÚÓ ÑÈÖÑÙØØÓÒ ÚØÓÖ ÒØ ²Ô µ ÒØ ½¼ ÓÖ ¼ Ô º Þ µ µ ½½ Ô ½¾ ÓÖ ¼ Ô º Þ µ µ ½ ÒØ ÔÓ ÖÒ µ ± Ô º Þ µ ÒØ ÔÓ ÖÒ µ ± Ô º Þ µ ÒØ ØÔ ÔÓ ½ Ô ÔÓ ½ Ô ÔÓ ¾ Ô ÔÓ ¾ Ø ¾¼ ÚÓ ÔÖÒØÈÖÑÙØØÓÒ ÚØÓÖ ÒØ Ô µ ¾¾ ¾ ÒØ ÓÖ ¼ Ô º Þ µ µ ÓÙØÔ ÓÙØÒ ÒØ ÑÒ µ ¼ ½ ÒØ Æ ¾ ÚØÓÖ ÒØ Ô ÓÙØ ÒØÖ Þ Ó ÔÖÑÙØØÓÒ ÒÆ Ô º Ö Þ Æµ ÖÒ ØÑ ÆÍÄÄ µ µ ÑÈÖÑÙØØÓÒ Ô µ ÔÖÒØÈÖÑÙØØÓÒ Ô µ ½½
12 ÖØÙÖÒ ¼ ¼ Λίστες Ηεπόμενηαπότιςδεκάδεςδιαθέσιμεςδομέςτου ËÌÄπουθαεξετάσουμεείναι αυτότηςλίσταςº Μεαυτόμπορούμεναδημιουργήσουμεδυναμικέςδομέςστα οποίαπαίζειρόλογιακάθεστοιχείοποιοείναιτοεπόμενοκαιτοπροηγούμενοσε αυτόº º½ Ανάγνωσηστοιχείων ½ ÒÙ Ø ¾ ÒÙ Ó ØÖÑ ÒÙ Ø º ÒÙ Ý» ØÑ º Ù Ò ÒÑ Ô Ø ÚÓ ÓÛÄ Ø Ø ÒØ Ü µ Ø ÒØ Ø Ö Ø Ó Ö Ø Ö ½¼ ÓÖ Ø ÖÜ º Ò µ Ø Ö Ü º Ò µ Ø Ö µ ½½ ½¾ ÒØ Ú Ø Ö ½ ÓÙØ Ú Ù ÚÒ ÒØ ÑÒ µ Ø ÒØ Ü ¾¼ ÒØ ÖÒ ØÑ ÆÍÄÄ µ µ ¾¾ ÓÖ ¼ ½¼ µ ¾ ÒØ ÖÖÒ µ ±¾ Ö¼µ Ü º ÔÙ ÖÓÒØ ½¼¼ ÖÒ µ ± ½ ¼ µ Ü º ÔÙ ¾¼¼ ÖÒ µ ± ½ ¼ µ ¼ ÓÛÄ Ø Ü µ ½ ÖØÙÖÒ ¼ ¾ ½¾
13 º¾ Ταξινόμηση ½ ÒÙ Ø ¾ ÒÙ Ó ØÖÑ ÒÙ Ø º ÒÙ Ý» ØÑ º Ù Ò ÒÑ Ô Ø ÚÓ ÓÛÄ Ø Ø ÒØ Ü µ Ø ÒØ Ø Ö Ø Ó Ö Ø Ö ½¼ ÓÖ Ø ÖÜ º Ò µ Ø Ö Ü º Ò µ Ø Ö µ ½½ ½¾ ÒØ Ú Ø Ö ½ ÓÙØ Ú Ù ÚÒ ÒØ ÑÒ µ Ø ÒØ Ü ¾¼ ÒØ ÖÒ ØÑ ÆÍÄÄ µ µ ¾¾ ÓÖ ¼ ¾¼ µ ¾ ÒØ ÖÖÒ µ ±¾ Ö¼µ Ü º ÔÙ ÖÓÒØ ½¼¼ ÖÒ µ ± ½ ¼ µ Ü º ÔÙ ½¼¼ ÖÒ µ ± ½ ¼ µ ¼ ÓÙØ Ó Ö Ó Ö Ø Ø Ò ½ ÓÛÄ Ø Ü µ ¾ Ü º Ó Ö Ø µ ÓÙØ Ø Ö Ó Ö Ø Ø Ò ÓÛÄ Ø Ü µ Ü º ÙÒÕÙ µ ÓÙØ Ø Ö ÙÒÕÙ Ø Ò ÓÛÄ Ø Ü µ ÖØÙÖÒ ¼ Χάρτες Ηκατηγορία ÑÔείναιμιααρκετάχρήσιμηκατηγορίαμέσωτηςοποίαςμπορούμε ναχρησιμοποιήσουμεσανδείκτεςστουςπίνακεςακόμακαιστοιχείαταοποίαδεν ½
14 είναι ακέραιοι αριθμοί όπως για παράδειγμα αλφαριθμητικάº Αυτή η δυνατότητα μοιάζειαρκετάμετιςβάσειςδεδομένων όπουχρησιμοποιούνταικλειδιάγιατην αναφοράσεδεδομέναº ½ ÒÙ ÑÔ ¾ ÒÙ Ø Ö Ò ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÚÓ ÓÛÅÔ ÑÔ Ø Ö Ò Ø Ö Ò Ü µ ÑÔ Ø Ö Ò Ø Ö Ò Ø Ö Ø Ó Ö Ø Ö ÓÖ Ø ÖÜ º Ò µ Ø Ö Ü º Ò µ Ø Ö µ ½¼ ½½ Ø Ö Ò Ø Ý Ø Ö ÓÒ ½¾ ÓÙØ ØÝ Ø Ý Ò ½ ÒØ ÑÒ µ ÑÔ Ø Ö Ò Ø Ö Ò Ô Ø Ô Ø ÀÄÁ ÈÊÇË ¾¼ Ô Ø ÃÇÆÀ ÃÇÆÀ Ô Ø ÀÅÌÀÁ ÎÊÇÁ ¾¾ Ô Ø ÊÃÁ ÌÊÁÈÇÄÀ ¾ ÓÛÅÔ Ô Ø µ ÖØÙÖÒ ¼
Μονοδιάσ τατοιπίνακες
ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ ¾º½ Μονοδιάστατοιπίνακες Οιπίνακεςείναιδομέςδεδομένωνπουδιαθέτουνέναπλήθοςαπόστοιχείατουίδιου τύπουº Γιαπαράδειγμαηβαθμολογίασεέναμάθημααποθηκεύτεταισεπίνακαº Κάθεστοιχείοτουπίνακααντιπροσωπεύειτηνβαθμολογίαενόςσπουδαστήστο
Διαβάστε περισσότεραΣτοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου
ΚΕΦΑΛΑΙΟ 4 ΑΡΧΕΙΑ Στοκεφάλαιοαυτόθαμιλήσουμεγιατααρχείαστηνγλώσσα ºΘαχρησιμοποιηθούνσυναρτήσειςαπότηνκαθιερωμένηβιβλιοθήκηεισόδου»εξόδου ØÓºµκαι γιααυτόγίνεταιμιαπρώτηπαρουσίασηαυτήςτηςβιβλιοθήκηςº º½
Διαβάστε περισσότεραΑντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις Τσούλος Ιωάννης, Επίκουρος Καθηγητής Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότεραΔυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
Διαβάστε περισσότεραΠρογραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος
Προγραμματισμόςσε» ΙωάννηςΓºΤσούλος ¾¼½ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ½º½ Μεταβλητές ½º½º½ Δήλωση Η δήλωσημεταβλητώνμπορεί να γίνει σε οποιοδήποτεσημείοτου κώδικα σε αλλάείναιπροτιμότεροναγίνεταιστηναρχήτουπρογράμματος
Διαβάστε περισσότεραΓραφικάμετηνχρήσ η ÛØ
Γραφικάμετηνχρήση ÛØ ΙωάννηςΓºΤσούλος Νοέμβριος ¾¼ Η Úδιαθέτειένα δικό της σύστημαγραφικών τοοποίομπορεί να είναι κάπωςπεριορισμένοσεσχέσημετο ÉÌήτο ÏÁÆ ¾ ÈÁαλλάδίνειμεταφέρσιμο κώδικακαιμπορείναχρησιμοποιηθείγιατηνκατασκευήπρογραμμάτωνγραφικής
Διαβάστε περισσότεραΑρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος
Αρχείαστην ÂÚ ΙωάννηςΓºΤσούλος Νοέμβριος ½½ ½ Ηκατηγορία ÁÒÔÙØËØÖÑ Ηκατηγορία ÁÒÔÙØËØÖÑείναιμιααφηρημένηκατηγορίακαιχρησιμοποιείταιγια τηνανάγνωση δεδομένων στην ÂÚαπόαρχείαεισόδουº Ωςαρχείαεισόδου μπορούμεναθεωρήσουμεαρχείαπουβρίσκονταιστονσκληρόδίσκοτουυπολογιστήήκαισυσκευέςεισόδουόπωςτοπληκτρολόγιοºοισημαντικότερεςμέθοδοι
Διαβάστε περισσότεραΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος
ΟπτικόςΠρογραμματισμός ΙωάννηςΓºΤσούλος ¾¼½ ÔØÖ ½ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Σεαυτήτηνενότηταθαεξεταστούνμερικέςαπότιςβασικέςδομέςπάνωστις οποίεςστηρίζεταιηβιβλιοθήκη É̺Οιδομέςαυτέςπεριλαμβάνουνδυναμικούς πίνακες
Διαβάστε περισσότεραΚληρονομικότητα. ΙωάννηςΓºΤσ ούλος
Κληρονομικότητα ΙωάννηςΓºΤσούλος ¾¼½ ½ Ηκατηγορία ÈÖ ÓÒ ΗκληρονομικότητααποτελείένααπόταβασικότεραχαρακτηριστικάτουαντικειμενοστραφούςπρογραμματισμούºΤαβασικάτηςστοιχείασε είναι ½ºΤαπεδίαπουχρειάζεταιναπεράσουνστηνκατηγορίαπουκληρονομείθα
Διαβάστε περισσότεραM 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Διαβάστε περισσότεραΓιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ º½ Απλές δομές Ηδομήχρησ ιμοποιείταισ ανσ υλλογήμεταβλητώνδιαφορετικούτύπουπροκειμένου ναπεριγράψεισ υνολικάμιαοντότηταº ΓιαπαράδειγμαηοντότηταΑΝΘΡΩΠΟΣ αποτελείταιαπόταπεδία ½º Ονομα αλφαριθμητικόµ
Διαβάστε περισσότερα½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
Διαβάστε περισσότεραS i L L I OUT. i IN =i S. i C. i D + V V OUT
Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ
Διαβάστε περισσότεραÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
Διαβάστε περισσότεραv w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
Διαβάστε περισσότεραΗυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
Διαβάστε περισσότεραΣχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διαβάστε περισσότεραp din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
Διαβάστε περισσότεραØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
Διαβάστε περισσότεραv[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9
Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ
Διαβάστε περισσότερα0RELOH,QWHUQHW :$3. This is the Internet version of the user's guide. Print only for private use. 6,0 GH ODUDWLRQRI RQIRUPLW\
ô ù ù ø ³ ò 0RELOH,QWHUQHW :$3 ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ò û" 6RQ\(UL VVRQ7 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$,1129$75213$7(176
Διαβάστε περισσότερα0RELOH,QWHUQHW :$3 :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò 0RELOH,QWHUQHW :$3 û 0RELOH,QWHUQHW :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ ù 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL
Διαβάστε περισσότεραarxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
Διαβάστε περισσότεραΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ. Εισ αγωγήσ τηνχρήσ ηδεικτών
ΚΕΦΑΛΑΙΟ 5 ΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ º½ Δείκτες º½º½ Εισαγωγήστηνχρήσηδεικτών Κάθεμεταβλητήστηνγλώσσα βρίσκεταισεσυγκεκριμένηθέσηστηνμνήμητου υπολογιστήºαυτήηθέσηονομάζεταικαιδιεύθυνσηκαιυπάρχειδυνατότητανατην
Διαβάστε περισσότερα¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ
Ë Öö ½º ÍÚÓ Ó Ò Ú Ò ÓÐÓ ÑÖ ö Ø ÓÖ ÓÑ Ö ÓÚ ½º½º ÍÚÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º ÈÓÖ î Ò ÑÖ ö ÔÖ Ó Ò ÓÚ ÚÓ Ø Ú º º º º º º º º º º º ½º º ÅÓ Ð ÑÖ ö º º º º º º º
Διαβάστε περισσότεραZ
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò
Διαβάστε περισσότεραÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½
Διαβάστε περισσότεραÍÆÁÎ ÊËÁ Ë ÆÌÁ Ç ÇÅÈÇËÌ Ä ÍÄÌ ËÁ Ô ÖØ Ñ ÒØÓ È ÖØ ÙÐ Ó Ý ÈÖÓ Ö Ñ Ò ÓÖ ÒØ Ó Ç ØÓ Ð Ê ÓÒ ØÖÙ Ò ËÙ Ó Ò Ð ÜÔ Ö Ñ ÒØÓ À Ë ÓÐ ÓÒ Æ Ð Ó¹Æ Ð Ó Å ÑÓÖ ÔÖ ÒØ Ô Ö ÓÔØ Ö Ð Ö Ó Ä Ò Ó Ò Ò ÔÓÖ Å ÒÙ Ð Ë Ò Þ Ö Å ÖÞÓ ½ ¾
Διαβάστε περισσότεραReserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload
ÈÖÐÑÒÖÝ ØÑØ Ó Ì¹Ç«ÏØ ÈÓØÓÖÔ Ó ÓÒ ¹½ ÐÓÑ ØÖ Ø Ø¹Ó«ÅÜÑÙÑ Ø¹Ó«ÛØ ÕÙÐ ¼¼¼ Ð ÑÜÑÙÑ ÔÝÐÓ ½ ¼¼¼ Ð ÓÙÖØ Ý Ó Ø ÓÒ ÓÑÔÒݵº ½ Ï Ì Ç Ï ÙÐ Ï ÔÝÐÓ Ï ÑÔØÝ ¾½ Ï ÔÝÐÓ Ï ÜÔÒÐ Ï ÒÓÒ ÜÔÒÐ ¾¾ 000000000000 111111111111 000000000000
Διαβάστε περισσότεραΕισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
Διαβάστε περισσότεραMorganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
Διαβάστε περισσότεραΠροσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότερα:$3. This is the Internet version of the user's guide. Print only for private use. :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 û :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ7 *60 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$%
Διαβάστε περισσότεραΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Σχηματισμός και αντίληψη εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 2 ËÕÑØ Ñ ÒØÐÝ ÒÛÒ 2.1 ËÕÑØ Ñ ÒÛÒ
Διαβάστε περισσότερα:$3. This is the Internet version of the user's guide. Print only for private use. %OXHWRRWK GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 :$3 û :$3 :$3 ù %OXHWRRWK ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ñ û" 6RQ\(UL VVRQ 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\ (UL VVRQ0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$
Διαβάστε περισσότεραΘα εμφανίσει την τιμή 232 αντί της ακριβούς
Ì ÔÓ ÓÑ ÒÛÒ Ö Å Ø ØÖÓÔ ÑôÒ Fahrenheit ÑÓ Celsius Fahrenheit Celsius c = (5/9)(f 32) public class Fahr2Cels { public static void main(string args[]) { int f = 451; // Τι συμβαίνει στους 451F? int c; c =
Διαβάστε περισσότεραplants d perennials_flowers
ÈÖÓ Ð Ø Ç Ø ÌÀÇÅ Ë ÁÌ Ê Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Â Å Ë Âº ÄÍ Ù Ò ÐÐ ÍÒ Ú Ö ØÝ ÌÀÇÅ Ë ÄÍà ËÁ ÏÁ Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Ò Îº ˺ ËÍ Ê ÀÅ ÆÁ Æ ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò Ì ÓÙ Ø Ö Ö Ñ ÒÝ ÔÔÐ Ø ÓÒ Û Ö Ò Ó Ø ÓÖ ÒØ Ø ÑÓ Ð ÓÓ
Διαβάστε περισσότεραΣανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
Διαβάστε περισσότεραΑνώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Διαβάστε περισσότεραΣυνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
ÄÓ Ñ ÒÓ ØÓ Ãô ØÓ Ë Ø Ñ Ø Ì Ñ À Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ½ º Ó Ó Ð Ó Διεύθυνση Πληροφορικής ΔΕΗ Τομέας Συστημάτων Γραφείου ÚºÞÓÙ Ó ºÓѺ Ö ¹Ñ Ð Αθήνα 19 Ιουνίου 2009 Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
Διαβάστε περισσότεραΩ = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.
Î Ð Ù ËØ Å Ò Ì ÑÝ Ù Ø ÓÖ Ó Ô ØÓ Î ÐÒ Ù ¾¼¼ ÌÙÖ ÒÝ ½ Ì ÑÝ ÒÅ Ö ÚÅ º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º ËØ Ø Ø Ò Ô Ö Ñ ÒØ º º º º º º º º º º º º º º º º ½º¾º ÃÐ Ò ÑÓ Ð º º º º º º º º
Διαβάστε περισσότεραΤεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Διαβάστε περισσότερα6,0 1RWIRU&RPPHU LDO8VH
6,0 ò ò ø ô 6,0 ù" ñ û" (UL VVRQ$V (UL VVRQ 0RELOH&RPPXQL DWLRQV$% ò (UL VVRQ0RELOH&RPPXQL DWLRQV$% ø (UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=7 5$,1129$75213$7(176 ø *60 ù ø 7Œ7H[W,QSXW± 7HJL &RPPXQL DWLRQV
Διαβάστε περισσότεραΘεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
Διαβάστε περισσότεραÕâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý
9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò
Διαβάστε περισσότεραΕισαγωγικά. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Εισαγωγικά ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò ½ Οργάνωση Μαθήματος Διαδικαστικά
Διαβάστε περισσότεραÅ Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º
È Ö Õ Ñ Ò Á ³ Ò ÖÜ Ñ Ñ ØÓ ÁÁ ÖÕ Ñ Ñ Ø ½ Å Ñ ½ ½º½ Û º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º º º º º º º
Διαβάστε περισσότεραZ L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
Διαβάστε περισσότεραFaculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale
Faculté des Sciences Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale Promoteur : Annick Sartenaer Directeur : Caroline Sainvitu Mémoire présenté pour l'obtention du
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Διαβάστε περισσότεραΑνώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
Διαβάστε περισσότερα+ m ev 2 e 2. 4πε 0 r.
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÇËÆÇÎ ÅÇÄ ÃÍÄËà ÁÇ Á Áà º½ ÍÚÓ ÅÓÐ ÙÐ Ó Þ Ó Ö ÚÒ Ú Ð ØÒÓ Ø Ó ÒÓÚÒ Ø ÚÒ ÐÓÚ ÓÐÓ Ø ÑÓÚ ØÓ ØÓ¹ ÑÓÚ ÑÓÐ ÙÐ ÓÒÓÚ Ò Ñ ÖÓÑÓÐ Ùк Ç Ö ÚÒ Ú ØÙ ÞÚ ÞÓ
Διαβάστε περισσότεραarxiv:quant-ph/ v1 28 Nov 2002
Ò ÒÚ Ø Ø ÓÒ ØÓ ÉÙ ÒØÙÑ Ñ Ì ÓÖÝ arxiv:quant-ph/0211191v1 28 Nov 2002 Û Ö Ïº È ÓØÖÓÛ ÁÒ Ø ØÙØ Ó Ì ÓÖ Ø Ð È Ý ÍÒ Ú Ö ØÝ Ó Ý ØÓ Ä ÔÓÛ ½ ÈÐ ½ ¾ Ý ØÓ ÈÓÐ Ò ¹Ñ Ð Ô ÐÔ ºÙÛ º ÙºÔÐ Â Ò Ë ÓÛ ÁÒ Ø ØÙØ Ó È Ý ÍÒ Ú Ö
Διαβάστε περισσότερα[Na + ] [NaCl] + [Na + ]
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÂÙÖ Ö Ò ÊÙ ÓÐ ÈÓ ÓÖÒ Ò Ë ËÚ Ø Ò ¾¼½½»¾¼½¾ ÈÓ Ð Ú Ä ÃÌÊÁ ÆÁ ÁÆ Å Æ ÌÆÁ ÈÇ ÎÁ º½ º½º½ Ð ØÖ ÒÓ ÔÓÐ Ò ØÓ Ð ØÖ Ò Ò Ó Ð ØÖ Ò ÔÓ Ú Ð Ó Ö ÞÐÓö ÑÓ Ò Ó ÒÓÚ Ù ÓØÓÚ ØÚ Ñ Ó Ó ÒÓÚÒ Ð ÓØ Ø
Διαβάστε περισσότεραΑλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Διαβάστε περισσότεραarxiv: v3 [math.ap] 25 Nov 2009
ÅÁ ÊǹÄÇ Ä Æ Ä ËÁË ÏÁÌÀ ÇÍÊÁ Ê Ä Ë Í ËÈ Ëº È ÊÌ Á ËÌ Î Æ ÈÁÄÁÈÇÎÁ Æ Æ Ì Ç ÆÇÎ Æ ÂÇ ÀÁÅ ÌÇ Ì arxiv:0804.1730v3 [math.ap] 25 Nov 2009 ØÖ Øº Ä Ø ω,ω 0 ÔÔÖÓÔÖ Ø Û Ø ÙÒØ ÓÒ Ò q [1, ]º Ï ÒØÖÓ Ù Ø Û Ú ¹ ÖÓÒØ
Διαβάστε περισσότεραa x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.
Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º
Διαβάστε περισσότεραp a (p m ) A (p v ) B p A p B
½ ËØ Ø ÐÙ ½º½ ÍÚÓ ÈÖ ÔÖÓÙÕ Ú Ù Ñ Ò ÐÙ Ð Ó ÐÙ Ù Ò ÐÙ ÑÓ ÑÓ ÔÓ Ð Ø Ò Þ ÔÖ Ñ Ò Ð ¹ ÐÙ Ù Ò Ú ÐÙ Ò Ð ÙÒÙØ Ö ÔÓ Ñ ØÖ Ò Þ ÔÖ Ñ Ò Þ Ò Ó Ö ØÒÓ Þ Õ Ó ÓÒØ Ø Ð Þ Ñ Ò Ø Ò Ö ÐÒ Ð Ð ØÖÓÑ Ò ØÒ Ð µº ÇÚ Ð Ó ÕÒÓ ÞÖ Ú Ù ÔÓ
Διαβάστε περισσότεραΔυαδικά Συστήματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Δυαδικά Συστήματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò Ù Ë Ø Ñ ½ ¾ Δυαδικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 5 ÅØ ÕÑØ Ñ Fourier ¾¹ ÓÐÓÙôÒ
Διαβάστε περισσότεραf 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº
ÇÐÓ Ð ÖÛ º½ Å ØÖ Ñ ËÙÒ ÖØ È Ö Ø Ö º½ µ Å ÙÒ ÖØ f : X Y Ñ Ø Ü Ñ ÒôÒ ÙÒ ÐÛÒ Ô ½ Ñ Ô Ò f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. À Ô Ò ÙØ Ø Ö ÙÑÔÐ ÖôÑ Ø Ù Ö Ø Òô Ù Ö Ø ØÓÑ º µ Ò B P(Y ) Ò σ¹ Ð Ö Ó Ó Ò
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: 2-Δ συνεχή σήματα Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 3 ¾¹ ÙÒÕ ÑØ Å ÙÒÕ Ò ÑÔÓÖ Ò ÔÖ Ø Ô Ò ¾¹ ÙÒÕ Ñ Ð
Διαβάστε περισσότεραÈ ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙÖ Ð Ò Ò Ö Ò Ò Å Ø Ö Ð Ë Ò ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ÆÓÚ Ñ
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μαθηματική μορφολογία Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 11 ÅÑØ ÑÓÖÓÐÓ 11.1 ÅÓÖÓÐÓ ÔÜÖ ÙôÒ ÒÛÒ À ÑÑØ
Διαβάστε περισσότερα) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Διαβάστε περισσότεραN i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1
Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ Æ ΠÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
Διαβάστε περισσότεραΕφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Διαβάστε περισσότερα! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
Διαβάστε περισσότεραÎ Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù ËÙÑ Ö Ó ½ Î Ò Ó Ú Ö ÓÙÐØ ½ ½º½ Ú Ò Ó Þ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Å Ò ÑÓ Ò Ö ÒØ º º º º º º º º º º º º º º º º º
Διαβάστε περισσότεραAPI: Applications Programming Interface
ÒØ Ñ ÒÓ ØÖ ÔÖÓ» Ñ ÒØ Ñ ÒÓ ØÖ ÔÖÓ Ö ÑÑ Ø Ñ ½ Ö Ø Ò Ô Ö Ø ÒØ Ñ ÒÛÒ ÒÒÓ ôòøóù ÔÖ Ñ Ø Ó ÑÓÙ Ì ÔÓ ÓÑ ÒÛÒ Ì µ (i) ÒÓÐÓØ ÑôÒ (ii)ôö Ü º Ð ØÖ Ò Ò ÖÛÔÓ ØÖ ÔÐ Ò Ø Ó Ó Ù Ø Ñ Ø ººº ½ºÈÖÛØ ÓÒØ Ø ÔÓ int double char
Διαβάστε περισσότεραÔÖÓØ Ô ØÓ ESO (M. Sarazin and F. Roddier, A&A 227, 294-300, 1990) Õ Ò ¹
Seeing-GR Å ØÖôÒØ Ø Ø Ö Õ Ø ØÑ Ö Ø Ò ÐÐ Å Ð Ñ ØÖ 1 Æ ØÓÖ ÒÒ 2 È ÖÞ ËØ Ð Ó 3 ÌÖ ÑÓÙ Ù Ð 4 Ã Ö Ñ Ò Ð 5 ÒØÛÒ ÒÒ 5 ÓÙÐ ÒÒ 5 ÃÓÙÖÓÙÑÔ ØÞ Ãô Ø 5 Ë Ö ÒÒ 5 1 Hamburger Sternwarte, Gojenbergsweg 112, 21029 Hamburg,
Διαβάστε περισσότεραÖ ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼ ¾ È Ö Õ Ñ Ò ÈÖ ÐÓ Ó i ½ Ð Ö ÑÓ Ë ÐÑ Ø ½ ½º½ ÔÐÙ ÈÖÓ Ð Ñ ØÛÒ Ð Ö ÑÓ º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ö ÑÓ Ù Ó ô º º º
Διαβάστε περισσότερα2 SFI
ų 2009 2 Û 9  ¼ Ü «Ë ÐÁ Û ¼ÞÝÁ «Ð¼Â ß Ú Ì ÑÓ ±¼ ¼µÕ Û (Santa Fe) «Đ Þ ¼± «ÐÐÇ ¾ ¼Ï ««¼ Ã«Ø Ú Ó Ý¼ºÏ «Å Å ¾»«¼ É ½ ÒØ ÒÚ Ç 1944 ²Ì ¼ ÉÌ (Patrick J. Hurley, 1883 1963) ¼È Ë 1984 ÞÎ ¼ Ë ÉÜ Ò «Þ Þ ÅÌÞ Ù
Διαβάστε περισσότεραΧ. Σωτηρίου. Σχήμα 1: 2 16 LCD πίνακας της πλακέτας Spartan 3E
ÈÒÔ ØÑÓ ÃÖØ ¹ ÌÑÑ Ô ØÑ ÍÔÓÐÓ ØôÒ À;¾¼ ¹ Ö ØÖÓ ôò ÃÙÐÛÑØÛÒ ÉÑÖÒ ÜÑÒÓ ¹ Ñ ³ØÓ ¾¼½½¹¾¼½¾ Ö ØÖ Ö ¹ ÍÐÓÔÓ ÇÓ ³ÒÜ LCD»½¾»¾¼½¾ Û ½¼»½»¾¼½ Χ. Σωτηρίου ½ ËØÕÓ Ø Ö Ο στόχος της τέταρτης εργαστηριακής εργασίας είναι
Διαβάστε περισσότεραΜαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
Διαβάστε περισσότερα18.2 Sistemi sa eliptichkim krivama Sistem analogan PUKDH... 50
ÃÖ ÔØÓ Ö Å Ó Ö Ú ÓÚ ½ ÔÖ Ð ¾¼½¾ º ËÓ Ö Ò ½ ÍÚÓ ¾ Ç ÒÓÚÒ ÔÓ ÑÓÚ Á ØÓÖ ÈÖ Ð Ó ÒÓÚ Ø ÓÖ ÖÓ Ú Â ÒÓ Ø ÚÒ Ü Ö Ø Ñ ½ Ë ÚÖ Ñ Ò ÔÖÓØÓÕÒ Ü Ö ½ ÃÓÒ ÕÒ ÔÓ ½ 8 RC4 17 9 Ë ÑÓ Ò ÖÓÒ ÜÙ ÔÖÓØÓÕÒ Ü Ö ½ 10 ËÐÙÕ Ò Ü Ö ½ 11
Διαβάστε περισσότερα½ ÍÚÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ò ÓÔ Ó Ò Ó Ù Ø ÓÖ Ñ Ö ÞÑ ØÖ Ò Ñ ÔÓ Ù Ú ÑÓ Ó Ö ÑÓ ÐÓö ÒÓ Ø Ø ö ÒÙ Ò Ó ÔÖÓ Ð Ñ Ø Ó Ù ÔÖ Ø Ò Ñ ÔÖ Ñ Ò Ñ ö Ð ÑÓ ØÓ ÔÖ ÞÒ ÔÖÓ Ò ÑÓ Ó Ú
Ò Ð Þ Ð ÓÖ Ø Ñ Ô ØÒ Ö Þ ÔÖ Ñ Ø ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Å Ð Ò Ò ÓÚ ¾¼¾½»¼ ¼ º ¼¾º ¾¼¼ º Ë ö Ø ÇÚ Ö ÔÖ Ø ÚÐ Ö Ø ÔÖ Ð Ò Ñ ØÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ó Ñ ÙØÓÖ Ö ÙÔÓÞÒ Ó Ù Ó Ú ÖÙ ÙÖ ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Ò ÔÖÚÓ Ó Ò ÔÓ Ø ÔÐÓÑ
Διαβάστε περισσότεραΘεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ
Διαβάστε περισσότεραÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÌÅÀÅ Ä ÉÇÍ Controlµ Ã Ì ÉÏÊÀÌ Ë Registersµ º Bussesµ ÃÍÃÄÇÁ ÅÀÉ ÆÀË Machine Cyclesµ Á ÍÄÇÁ ØÑ Ñ Ð ÕÓÙ
Διαβάστε περισσότεραÄÓ ÓÖ ØÖ Ø Ø ÌÝÔ Ü Ø ÒØ Ð ÌÝÔ Ö ÈÓÐÐ ½ Ò Â Ò Û Ò Ò ÙÖ ¾ ½ ºÈÓÐÐÙ º ºÙ ÓÑÔÙØ Ò Ä ÍÒ Ú Ö ØÝ Ó Ã ÒØ Ø ÒØ Ö ÙÖÝ Ò Ð Ò ¾ ÒÞÛ ÒºØÙ ºÒÐ Ò ÓÚ Ò ÍÒ Ú Ö ØÝ Ó Ì
ÄÓ ÓÖ ØÖØ Ø ÌÝÔ Ü ØÒØÐ ÌÝÔ Ö ÈÓÐÐ ½ Ò ÂÒ ÛÒÒÙÖ ¾ ½ ºÈÓÐÐÙººÙ ÓÑÔÒ Ä ÍÒÚÖ ØÝ Ó ÃÒØ Ø ÒØÖÙÖÝ ÒÐÒ ¾ ÒÞÛÒºØÙºÒÐ ÒÓÚÒ ÍÒÚÖ ØÝ Ó ÌÒÓÐÓÝ Ì ÆØÖÐÒ ØÖغ Ì ÓÒ¹ÓÖÖ ÐÑ ÐÙÐÙ ÐÐÓÛ Ò ÐÒØ ÓÖÑй ØÓÒ Ó ØÖØ Ø ØÝÔ Ì³ µ Ù Ò
Διαβάστε περισσότεραAdaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD
Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration DTU Wind Energy - PhD Leonardo Bergami DTU Wind Energy PhD-0020(EN) August 2013 DTU Vindenergi Active Load Alleviation
Διαβάστε περισσότεραÇ ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º
Þ ÔÓÚ Ø Ø Ö Ø Ò ÈÖ ÙÖ Ò ÐÙÖÙ ÔÖ Ð ½ ¾¼½¼ Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º ÓÒØ ÒØ ½ Å Ò ½ ½º ÄÙÑ Ñ Ø
Διαβάστε περισσότερα, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ
ÇÄ ÈÇÄ Ì ÀÆÁÉÍ ÆÌÊ Å ÌÀ Å ÌÁÉÍ Ë ÈÈÄÁÉÍ Ë ÍÅÊ ÆÊË ½ ½½¾ È Ä ÁË Í Ê Æ µº Ì Ð ¼½ ¼¼º Ü ¼½ ØØÔ»»ÛÛÛºÑ ÔºÔÓÐÝØ Ò ÕÙ º Ö» Ò Ó ÓÐ ØÓÒ Û Ø Ù ÒØ Ð Ö ÐÓ Ð Þ Ø ÓÒ ÓÖ Ø ÆÓÚ ÓڹΠÐÓÚ ÕÙ Ø ÓÒ Ø ÒÓÒÞ ÖÓ Ò Ö Ý ÒÒ Ã Þ
Διαβάστε περισσότεραRole of Alumina Support in Cobalt Fischer-Tropsch Synthesis
Øyvind Borg Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Thesis for the degree of doktor ingeniør Trondheim, April 2007 Norwegian University of Science and Technology Faculty of Natural
Διαβάστε περισσότεραΧ. Σωτηρίου. Μετά τον τελευταίο χαρακτήρα του μηνύματος, θα ακολουθεί ο πρώτος, έτσι το μήνυμα ουσιαστικά θα περιστρέφεται διαρκώς.
ÈÒÔ ØÑÓ ÃÖØ ¹ ÌÑÑ Ô ØÑ ÍÔÓÐÓ ØôÒ À;¾¼ ¹ Ö ØÖÓ ôò ÃÙÐÛÑØÛÒ ÉÑÖÒ ÜÑÒÓ ¹ Ñ ³ØÓ ¾¼½¾¹¾¼½ Ö ØÖ Ö ½ ¹ Ç ³ÒÜ ¹ØÑÑØÛÒ ½»½¼»¾¼½¾ Û ½»½¼»¾¼½¾ Χ. Σωτηρίου ½ ËØÕÓ Ø ½ Ö Ο στόχος της πρώτης εργαστηριακής εργασίας
Διαβάστε περισσότεραΑνώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Διαφορικές Εξισώσεις Μέρος ΙΙ Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Διαβάστε περισσότεραtan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Διαβάστε περισσότερα½ È Ê Ç Î Ç Ê ÇÚ ÒÓÚ ÓØ À Ð ÖØÓÚ Ç ÒÓÚ ÓÑ ØÖ Ò Ò ÔÖ Ú ÒÓÚ ÔÖ Ö º ÍÔÖ ÚÓ Ù Ò Ò Ù ÑÓ Ò ÔÖ Ú Ñ Ò ÓÔÙÒ º Í ÓÔÙÒ I Ù ÙÔÐ Ò Ò Þ Ú ÒÓ Ø Ù Ø ÑÙ ÓÑ Ö ÐÒ ÖÓ¹ Ú
½ ËÊÈËà à ÅÁÂ Æ Íà ÃÄ ËÁ ÆÁ Æ Í ÆÁ ËÈÁËÁ ÃÆÂÁ XIV Å Ì Å ÌÁ ÃÁ ÁÆËÌÁÌÍÌ ÃÆÂÁ ½ ÍÖ Ò Ñ Ê ÁÎÇ à â ÆÁÆ ÍÔÖ ÚÒ Ñ Ø Ñ Ø Ó Ò Ø ØÙØ Ë Æ º ÀÁÄ ÊÌ ÇËÆÇÎ ÇÅ ÌÊÁ ÈÊ Î Ç Ë ÇËÅÇ Æ Å ÃÇ Á ÆÂ êº Ê â ÆÁÆ ÈÖ ÑÐ ÒÓ Ò XI
Διαβάστε περισσότεραΘεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Διαβάστε περισσότεραx E[x] x xµº λx. E[x] λx. x 2 3x +2
¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð
Διαβάστε περισσότερα7in x 10in Felder appm.tex V3 - May 7, :10 A.M. Page 1
7in x 10in Felder appm.tex V3 - May 7, 2015 12:10 A.M. Page 1 APPENDIX M Ò ÛÖ ØÓ Ç¹ÆÙÑÖ ÈÖÓÐÑ ÔØÖ º Ò Ü Ó Ü º º º º ÐÐ Ó ØÑ ÛÓÖ º º º º Áº κ ÁÁº ÁÁÁº Áκ º Ü Ø = Ñ Ü Ø = Ü Ü º º º º º º º º º µ Ñ Ü Ø
Διαβάστε περισσότεραΑνώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Διαβάστε περισσότερα½µ S = F 1 (y 0 ) = {x X F(x) = y 0 }. F 1 (y 0 ) X Y
ÅÒÓ Ó ØÖÙ Ó Ø Ù Þ Ó ÖÒÙØÓµ ß ÒÓ ÒÓÖÑ ÐÒÓ ÔÖ Ú ½ ß Ö Ó Å Ð Ò ÓÚ ÓÚÓ Ø Ø Ò ÜØÓ Ð Ñ ÒØ ÖÒ Ò Õ Ò ÑÓØ Ú Ü ÙÚ ÔÓ ¹ ÑÓÚ Ú Þ Ò Þ Ø ÓÖÙ ÑÒÓ Ó ØÖÙ Ó Ø Ò Ú Ò ÞÓÒ Þ Ó ÑÓ Ù ÓÖÑÙÐ ÜÙ Ò ÞÙ ÑÒÓ Ó ØÖÙ Ó Ø º ÈÓ ÚÐ Õ ÑÓ
Διαβάστε περισσότερα1RWIRU&RPPHU LDO8VH (UL VVRQ0RELOH,QWHUQHW :$3 'H ODUDWLRQRI&RQIRUPLW\
ô ò ò ò :$3 ù ù ø ù ñ ò ò (UL VVRQ0RELOH,QWHUQHW ñ ø 'H ODUDWLRQRI&RQIRUPLW\ (UL VVRQ7V ù (UL VVRQ 0RELOH&RPPXQL DWLRQV$% ò (UL VVRQ0RELOH&RPPXQL DWLRQV$% ø (UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=7 5$,1129$75213$7(176
Διαβάστε περισσότερα