Στοκεφάλαιοαυτόθαμιλήσ ουμεγιατααρχείασ τηνγλώσ σ α ºΘαχρησ ιμοποιηθούνσ υναρτήσ ειςαπότηνκαθιερωμένηβιβλιοθήκηεισ όδου»εξόδου
|
|
- Ῥαφαὴλ Βαρνακιώτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ 4 ΑΡΧΕΙΑ Στοκεφάλαιοαυτόθαμιλήσουμεγιατααρχείαστηνγλώσσα ºΘαχρησιμοποιηθούνσυναρτήσειςαπότηνκαθιερωμένηβιβλιοθήκηεισόδου»εξόδου ØÓºµκαι γιααυτόγίνεταιμιαπρώτηπαρουσίασηαυτήςτηςβιβλιοθήκηςº º½ Ηκαθιερωμένηβιβλιοθήκηεισόδου»εξόδου º½º½ Εμφάνισηκειμένου ΗβασικήσυνάρτησηεμφάνισηςδεδομένωνστηνβιβλιοθήκηαυτήείναιηÔÖÒØº Στηναπλήτηςμορφήησυνάρτησημπορείναχρησιμοποιηθείγιατηνεμφάνιση κειμένου όπωςπαρουσιάζεταιστοναλγόριθμο º½º Ησυνάρτηση ÔÖÒØανδεχτείσανόρισμαένααλφαριθμητικόεμφανίζειαυτότοαλφαριθμητικόστηνοθόνηº Σεδιαφορετικήπερίπτωσημέσαστοπρώτοαλφαριθμητικό πουονομάζεται ÓÖ¹ ÑØµδέχεταιμιασειράαπόπροσδιοριστέςº Οιπροσδιοριστέςαυτήξεκινούνμε τονχαρακτήρα ±καιακολουθείέναγράμμαº Αντογράμμααυτόείναι τότε αναμένεταιαλφαριθμητικόσανόρισμαόπωςκαιστοσυγκεκριμένοπαράδειγμαº Αλγόριθμος4.1Εμφάνισηκειμένουμετηνχρήσητης ÔÖÒØº ½ ÒÙ Ø Ó º ¾ ÒÙ Ø Ö Ò º ÒØ ÑÒ µ Ö ÛÓÖ ½ ¼ ¼ Ø Ö Ô Ý ÛÓÖ ÁÓÒÒÒ µ Ô Ö Ò Ø Ì Ø Ü Ø ÛØÓÙØ ÓÖÑØØÒ Ò µ Ô Ö Ò Ø Ì ÓÖÑØØ ÓÙØÔÙØ ± Ò ÛÓÖ µ ÖØÙÖÒ ¼
2 Αλγόριθμος 4.2 Εμφάνιση μεταβλητών διαφορετικού τύπου με χρήση της ÔÖÒØº ½ ÒÙ Ø Ó º ¾ ÒØ ÑÒ µ ÒØ Ñݾ ÓÙ ÑÝ ÖÝ ¼¼º¾ Ö ÑÝØØÖ³³ Ô Ö Ò Ø ÅÝ ±Ò ÑÝ µ Ô Ö Ò Ø ÅÝ Ö Ý ± ÒÑÝ Ø Ø Ö ± Ò ÑÝ ÖÝ ÑÝØØÖ µ ÖØÙÖÒ ¼ º½º¾ Εμφάνισημεταβλητών Ησυνάρτηση ÔÖÒØμπορείναχρησιμοποιηθείκαιγιατηνεμφάνισημεταβλητών πουδενείναιαλφαριθμητικά χρησιμοποιώνταςδιαφορετικούςπροσδιοριστέςºστον πίνακαπαρουσιάζονταιοιπροσδιοριστέςπουχρησιμοποιούνταιγιαδιάφορουςτύπους μεταβλητών Μορφοποιητής Σημασία ± Εμφάνισηαλφαριθμητικού ± Εμφάνισηακέραιουαριθμού ± Εμφάνισηακέραιουαριθμού ± Εμφάνιση ÓØαριθμού ± Εμφάνιση ÓÙαριθμού ± Εμφάνισηχαρακτήρα Εναπαράδειγμαεμφάνισηςμεταβλητώνδιαφορετικούτύπουμετηνχρήσητης ÔÖÒØπαρουσιάζεταιστοναλγόριθμο º¾º º½º Ανάγνωσηγραμμάτων Ηείσοδοςγραμμάτωναπότοπληκτρολόγιοπέρααπότο Òμπορείναγίνειμε τηνσυνάρτηση ØÖπουδιαθέτειηβιβλιοθήκη ØÓºΣτοπαράδειγματουαλγορίθμου º οχρήστηςεισάγειγράμματαμέχριναπατήσειτογράμμα º Κάθε γράμμαπουεισάγειανείναιλατινικόσύμβολοεμφανίζεταισανκεφαλαίοºωστόσο σεπολλέςπεριπτώσειςθέλουμενασταματήσουμετηνανάγνωσηόταντελειώσουν ταδεδομέναήότανοχρήστηςδιακόψειτηνείσοδοº Τοτέλοςτωνδεδομένων είναιηψευδοσταθερά ÇκαιπροκαλείταιστηνανάγνωσηαπότοπληκτρολόγιοότανοχρήστηςπατήσειτονχαρακτήρατερματισμούºΑυτόςοχαρακτήρας είναιοσυνδυασμόςτωνπλήκτρων ÇÆÌÊÇÄ γιαπεριβάλλοντα ÍÆÁκαι ÇÆÌÊÇÄ γιαπεριβάλλοντα ÏÁÆÇÏ˺Στοπαράδειγματουαλγορίθμουο χρήστηςεισάγειγράμματαμέχριναδώσειτονχαρακτήρατερματισμούºστοτέλος ηεφαρμογήεμφανίζειτοπλήθοςτωνγραμμάτωνπουεισήχθησανº
3 Αλγόριθμος4.3Εισαγωγήγραμμάτωνκαιεμφάνισηκεφαλαίουº ½ ÒÙ Ø Ó º ¾ Ö Ô Ø Ö Ü µ ܳ ³ ²² ܳ Þ ³ µ ÖØÙÖÒ Ü ³ ³ ³ ³ µ ÖØÙÖÒ Ü ÒØ ÑÒ µ Ö Ø Ø Ö Ó ½ Ø Ø ÖØÖ µ Ô Ö Ò Ø ± Ô Ø Ø Ø Ö µ µ Û Ø Ø Ö ³³ µ ÖØÙÖÒ ¼ Αλγόριθμος4.4Εισαγωγήγραμμάτωνμέχρι Çκαιεμφάνισητουπλήθους των γραμμάτωνº ½ ÒÙ Ø Ó º ¾ ÒØ ÑÒ µ Ö Ø Ø Ö ÒØ ÓÙÒØ ¼ Ó Ø Ø ÖØÖ µ Ô Ö Ò Ø ± Ø Ø Ö µ ÓÙÒØ Û Ø Ø Ö Çµ Ô Ö Ò Ø ÈÖÓÖÑ Ò ØÖÑÒØ ÛØ± Ö Ø Ö Ò ÓÙÒØ µ ½ ÖØÙÖÒ ¼
4 ¼ Αλγόριθμος4.5Ανάγνωσηκειμένουαπότοπληκτρολόγιομεχρήσητης Ø º ½ ÒÙ Ø Ó º ¾ ÒØ ÑÒ µ Ö Ö Ø Ò Ñ ½ ¼ ¼ Ö ØÒÑ ½ ¼ ¼ Ö Ö ½ ¼ ¼ Ô Ö Ò Ø Ó Ø ØÓ ÓÒÓÑ Ò µ Ø Ö Ø Ò Ñ µ Ô Ö Ò Ø Ó Ø ØÓ Ô Ø Ø Ó Ò µ Ø ØÒÑ µ Ô Ö Ò Ø Ó Ø Ø Ò Ý Ø Ò Ò µ Ø Ö µ ½ Ô Ö Ò Ø ÄÔØÓÑÖ Ò µ Ô Ö Ò Ø ÇÒÓÑ ± ÔØØÓ ± Ý Ø Ò ± Ò Ö ØÒÑ ØÒÑ Ö µ ÖØÙÖÒ ¼ º½º Ανάγνωσηκειμένου ΗανάγνωσηαλφαριθμητικώναπότοπληκτρολόγιομπορείναγίνειμεδιάφορεςσυναρτήσειςºΗμέθοδοςπουδενπαρουσιάζειπροβλήματακαιπουμπορείναχρησιμοποιηθείακόμακαιότανυπάρχουνκενάστοαλφαριθμητικόείναιησυνάρτηση Ø ηοποίαπαρουσιάζεταιστοναλγόριθμο ºº Εναςάλλοςτρόποςναδιαβάσει κανείςένααλφαριθμητικόαπότηνείσοδοείναιμετοναδιαβάσειόλαταγράμματα έναπροςέναμέχριοχρήστηςναεισάγειαλλαγήγραμμής όπωςπαρουσιάζεται στοναλγόριθμο ºº º½º Ανάγνωσημεταβλητών Ηανάγνωσημεταβλητώνπουδενείναιαλφαριθμητικάήχαρακτήρεςγίνεταιμετην χρήσητηςσυνάρτησης Ò ηοποίαέχειπαρόμοιαλειτουργίαμετην ÔÖÒØºΣτην Òοχρήστηςπαρέχειένααλφαριθμητικόμετουςπροσδιοριστέςόπωςκαιστην ÔÖÒØαλλάκαιτηνλίστατωνμεταβλητώνº Κάθεμεταβλητήστην Òπρέπει ναέχειτονχαρακτήρα ²πριναπόαυτήνº Αυτόςοτελεστήςείναιοτελεστής διεύθυνσηςπουθαδούμεαργότεραº Γιαπαράδειγμαηκλήση Ò ± ²Üµδιαβάζει την ακέραια μεταβλητή Ü από το πληκτρολόγιοº Στο παράδειγμα του αλγορίθμου ºοχρήστηςεισάγειμιασειράαπόμεταβλητέςοιοποίεςκαιεμφανίζονται στηνσυνέχειαº
5 ½ Αλγόριθμος4.6Εισαγωγήαλφαριθμητικούγράμμαπροςγράμμαº ½ ÒÙ Ø Ó º ¾ ÚÓ Ö Ë Ø Ö Ò Ö Ü µ ÒØ ÓÙÒØ ¼ Ö Ø Ø Ö Ó Ø Ø ÖØÖ µ Ø Ø Ö ³ Ò ³ µ Ü ÓÙÒØ Ø Ø Ö ½ ÓÙÒØ Û Ø Ø Ö ³ Ò ³ µ Ü ÓÙÒØ ³ ¼ ³ ÒØ ÑÒ µ ¾¼ ¾½ Ö ÑÝÒÑ ½ ¼ ¼ ¾¾ Ô Ö Ò Ø Ó Ø ØÓ ÓÒÓÑ Ò µ ¾ Ö Ë Ø Ö Ò ÑÝÒÑ µ ¾ Ô Ö Ò Ø Ó Ø ± Ò ÑÝÒÑ µ ¾ ÖØÙÖÒ ¼ ¾ Αλγόριθμος4.7Είσοδοςμεταβλητώνμετηνχρήσητης Òº ½ ÒÙ Ø Ó º ¾ ÒØ ÑÒ µ ÒØ ÑÝ ÓÙ ÑÝ ÖÝ Ô Ö Ò Ø Ó Ø Ø Ò Ò µ Ò ± ²ÑÝ µ Ô Ö Ò Ø Ó Ø ØÓÒ Ñ ØÓ Ò µ Ò ± ²ÑÝ ÖÝ µ Ô Ö Ò Ø À Ò ± ÑÒØ ± ÜÖÑØ Ò ÑÝ ÑÝ ÖÝ µ ÖØÙÖÒ ¼ ½
6 ¾ º¾ Αρχείακειμένου Στον προγραμματισμό υπάρχουν δύο ειδών αρχεία τα αρχεία κειμένα και τα δυαδικά αρχείαº Τα αρχεία κειμένου περιέχουν δεδομένα τα οποία μπορούν να διαβαστούναπόοποιονδήποτεκειμενογράφοºσεαυτήντηνκατηγορίαείναιτααρχεία κώδικα για παράδειγμαº Στην δεύτερη κατηγορία είναι αρχεία τα οποία θέλουν ειδικήεφαρμογήγιατηνανάγνωσήτους όπωςτααρχεία ÛÓÖ τααρχεία Ü κτλº Τααρχείαστηνγλώσσα ανοίγουνμετηνχρήσητηςσυνάρτησης ÓÔÒ ÔØ ÑÓµ Τοπρώτοόρισμαείναιτοόνοματουαρχείουπουπρέπειναανοίξειήακόμακαι τοπλήρεςμονοπάτιστοσύστημααρχείωνπºχ»óñ»ù Ö»Ø Ø½ºØÜØΤοδεύτερο όρισμαείναιοτρόποςμετονοποίοανοίγειτοαρχείοº Αποδεκτέςτιμέςγιατην παράμετρο ÑÓπαρουσιάζονταιστονεπόμενοπίνακα ÅÓ Ö Û Ö Û Σημασία Άνοιγματουαρχείουγιαανάγνωση ΆνοιγμαγιαεγγραφήºΑντοαρχείοδενυπαρχειδημιουργείταιº Αν το αρχείο δεν υπάρχει δημιουργείταιº ΑνοίγειτοαρχείογιαεγγραφήστοτέλοςºΑντοαρχείοδεν υπάρχει δημιουργείταιº Αν υπάρχει τα δεδομένα τότε αποθηκεύονταιστοτέλοςτου Ανοίγειτοαρχείογιαανάγνωσηκαιεγγραφήº ΑνοίγειτοαρχείογιαανάγνωσηκαιεγγραφήºΑντοαρχείο δεν υπάρχει δημιουργείταιº Αν υπάρχει διαγράφεται ΑνοίγειτοαρχείογιαανάγνωσηκαιπροσάρτησηºΑνδενυπάρχει δημιουργείται αλλιώςταδεδομέναπροστιθένταιστοτέλοςº Ησυνάρτηση ÓÔÒεπιστρέφειτηνειδικήτιμή ÆÍÄÄανδενμπορείναανοίξει τοσυγκεκριμένοαρχείομετονσυγκεκριμένοπροσδιοριστήº Αντακαταφέρει επιστρέφειμιαειδικήδομή ÁÄ δείκτηςσεδομή ÁÄπουθαεξετάσουμε καιαργότεραµºτοπαράδειγματουαλγορίθμου ºπροσπαθείναανοίξειτοαρχείο Ø غØÜØστοντοπικόφάκελογιαανάγνωσηºΑντακαταφέρειεμφανίζειένασχετικό μήνυμα αλλιώς ένα μήνυμα λάθουςº º¾º½ Ανάγνωσηκειμένου Γιατηνανάγνωσηαπλούκειμένουαπόαρχείουπάρχουνδύοτρόποι οπρώτος είναιναγίνειανάγνωσητουαρχείουγράμμαπροςγράμμαº Οδεύτεροςείναινα γίνειανάγνωσηδιαβάζονταςτηνμιαγραμμήμετάτηνάλληº Οπρώτοςτρόπος παρουσιάζεταιστοναλγόριθμο º όπουγίνεταιανάγνωσηόλωντωνγραμμάτων από ένα αρχείο και εμφανίζεται ο συνολικός αριθμός γραμμάτων και ο συνολικόςαριθμόςγραμμώνº Γιατηνανάγνωσηκάθεγράμματοςχρησιμοποιήθηκε ησυνάρτηση Ø µºανθέλουμεναδιαβάσουμετοαρχείογραμμήςπροςγραμμή τότεπρέπειναχρησιμοποιηθείησυνάρτηση Ø µ όπωςπαρουσιάζεταιστοναλγόριθμο ºº Ησυνάρτηση Ø µπαίρνεισανορίσματατοαλφαριθμητικόπου θαδιαβάσει τομέγιστοπλήθοςγραμμάτωνπουθαδιαβάσεικαιτονδείκτηπρος
7 Αλγόριθμος4.8Προσπάθειαανοίγματοςαρχείουγιαανάγνωσηº ½ ÒÙ Ø Ó º ¾ ÒØ ÑÒ µ ÁÄ ÔÓÔÒ Ø Ø º ØÜØ Ö µ ÔÆÍÄĵ Ô Ö Ò Ø ÄØÓ Ø Ó ÒÓÑ ØÓÙ ÖÜÓÙ Ò µ Ô Ö Ò Ø ÌÓ Ö Ü Ó ÒÓÜ Ò µ Ó Ô µ ÖØÙÖÒ ¼ ½ τοαρχείοº Επιστρέφει ¼ ÆÍÄĵαντελειώσουνταδεδομένανº Ωστόσοκατά τηνεκτέλεσητουαλγορίθμουοιαλλαγέςγραμμήςεμφανίζονταιδύοφορέςºαυτό γίνεταιγιατίστοαλφαριθμητικόαντιγράφεταικαιοχαρακτήραςαλλαγήςγραμμής σαντελευταίογράμμαº Αυτήηπαρενέργειαμπορείναεπιλυθείδιαγράφονταςτο τελευταίογράμμααπότοαλφαριθμητικό όπωςπαρουσιάζεταικαιστοναλγόριθμο ºº º¾º¾ Μορφοποιημένηείσοδος Στηνπερίπτωσηπουθέλουμεναδιαβάσουμεδεδομέναπουδενείναιαπλώςγράμματα όπωςπχαριθμούς τότεαπαιτείταιηχρήσητηςσυνάρτησης ÒΣτο παράδειγματουαλγορίθμου ºστοαρχείο ÒÙÑÖ ºØÜØυπάρχουνσεκάθεγραμμή τρειςαριθμοίέναςακέραιοςπουείναιοαριθμόςμητρώουενόςσπουδαστήκαιδύο δεκαδικοίπουείναιηβαθμολογίατουσπουδαστήσεδιάλεξηκαιεργαστήριοαντίστοιχαº Τοπρόγραμμαεμφανίζειτοναριθμόμητρώουτουσπουδαστήμετην μεγαλύτερημέσηβαθμολογίαº Τοπλήθοςτωνμαθητώνείναιίσομε º Τοίδιο πρόγραμμαμπορείναγραφείκαιμεχρήσηπίνακαδομώνόπωςπαρουσιάζεταιστον αλγόριθμο º½ º º¾º Δημιουργίααρχείων Μέσααπότηνγλώσσαμπορούμεναδημιουργήσουμεκαιαρχείακειμένου ώστε νααποθηκευτούνσεαυτάπληροφορίεςº Στοπαράδειγμα ºοχρήστηςεισάγει ακέραιουςαριθμούςμέχριναεισάγειαρνητικήτιμήº Κάθεζυγόςαριθμόςαποθηκεύεταιστοαρχείο ºØÜØ
8 Αλγόριθμος4.9Ανάγνωσηγραμμάτωναπόαρχείοκαιεμφάνισηαριθμούγραμμάτων και αριθμού γραμμώνº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÁÄ ÔÓÔÒ Ø Ø º ØÜØ Ö µ Ö ÒØ ÖÓÙÒØ ¼ ÒØ Ò Ó Ù Ò Ø ¼ ÔÆÍÄĵ Ô Ö Ò Ø ÄØÓ Ø Ó ÒÓÑ ØÓÙ ÖÜÓÙ Ò µ ½ Ô Ö Ò Ø ÌÓ Ö Ü Ó ÒÓÜ Ò µ Ó Ø Ô µ ǵ ¾¼ ÓÙØ ¾½ ÖÓÙÒØ ¾¾ ³ Ò ³ µ Ò Ó Ù Ò Ø ¾ ¾ Û Çµ ¾ ÓÙØ ËÝÒÓ ÖÑÑØÖÓÙÒØÒ ¾ ÓÙØ Ë Ý Ò Ó ÖÑÑ Ò Ó Ù Ò ØÒ ¾ Ó Ô µ ¾ ¾ ÖØÙÖÒ ¼ ¼
9 Αλγόριθμος 4.10Εισαγωγήδεδομένωναπόαρχείοκειμένουμετηνχρήση της Ø µº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÁÄ ÔÓÔÒ Ø Ø º ØÜØ Ö µ Ö Ò ¾ ÒØ Ò Ó Ù Ò Ø ¼ ÔÆÍÄĵ Ô Ö Ò Ø ÄØÓ Ø Ó ÒÓÑ ØÓÙ ÖÜÓÙ Ò µ ½ Ô Ö Ò Ø ÌÓ Ö Ü Ó ÒÓÜ Ò µ Û Ø Ò ¾ Ô µ µ ÓÙØÆÛ Ò Ò Ò Ò Ó Ù Ò Ø ÓÙØ Ë Ý Ò Ó ÖÑÑ Ò Ó Ù Ò ØÒ ¾¼ Ó Ô µ ¾½ ¾¾ ÖØÙÖÒ ¼ ¾
10 Αλγόριθμος4.11Ανάγνωσηδεδομένωναπόαρχείομετην Ø καιδιαγραφή του χαρακτήρα αλλαγής γραμμήςº ½ ÒÙ Ø Ó º ¾ ÒÙ Ø Ö Ò º ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÁÄ ÔÓÔÒ Ø Ø º ØÜØ Ö µ Ö Ò ¾ ÒØ Ò Ó Ù Ò Ø ¼ ÔÆÍÄĵ Ô Ö Ò Ø ÄØÓ Ø Ó ÒÓÑ ØÓÙ ÖÜÓÙ Ò µ ½ Ô Ö Ò Ø ÌÓ Ö Ü Ó ÒÓÜ Ò µ Û Ø Ò ¾ Ô µ µ Ò Ø Ö Ò Ò µ ½ ³ ¼ ³ ÓÙØÆÛ Ò Ò Ò Ò Ó Ù Ò Ø ¾¼ ¾½ ÓÙØ Ë Ý Ò Ó ÖÑÑ Ò Ó Ù Ò ØÒ ¾¾ Ó Ô µ ¾ ¾ ÖØÙÖÒ ¼ ¾
11 Αλγόριθμος4.12Είσοδοςμαθητώναπόαρχείοκαιεύρεσητηςβαθμολογίας τουκαλύτερουσπουδαστήº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÒØ Ó ÑÜÓ ÓÙ Ø Ù Ö ÓÙ ÚÖ ÑÜÚÖ ÁÄ ÔÓÔÒ ÒÙÑÖ º ØÜØ Ö µ ÓÖ ¼ µ ½ Ò Ô ±± ± ²Ó ² Ø Ù Ö ² µ ÚÖ Ø Ù Ö µ» ¾ º ¼ ¼ ÚÖÑÜÚÖ µ ÑÜÓÓ ÑÜÚÖÚÖ ¾¼ ¾½ Ó Ô µ ¾¾ ÓÙØÇ Ý Ø Ö Ó Ô Ó Ù Ø Ò Ñ ÓÓ ÑÜÓÒ ¾ ÓÙØÇ Ý Ø Ö Ó ØÑÓ Ò ÑÜÚÖÒ ¾ ÖØÙÖÒ ¼ ¾
12 Αλγόριθμος4.13Ανάγνωσηπίνακαδομώναπόαρχείοº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ØÝÔ ØÖÙØ ÒØ Ó ÓÙ ÓÙ Ø Ù Ö ËØÙÒØ ÓÙ ÓÑÔÙØÚÖ ËØÙÒØ Ø µ ½ ÖØÙÖÒ Ø º Ø º Ø Ù Ö µ» ¾ º ¼ ÒØ ÑÒ µ ËØÙÒØ ÑÝ ¾¼ ËØÙÒØ Ø Ø Ù Ò Ø ¾½ ÓÙ ÚÖ ¾¾ ÒØ ¾ ÁÄ ÔÓÔÒ ÒÙÑÖ º ØÜØ Ö µ ¾ ÓÖ ¼ µ ¾ ¾ Ò Ô ±± ± ² ÑÝ º Ó ¾ ²ÑÝ º Ø Ù Ö ² ÑÝ º µ ¾ ÚÖÓÑÔÙØÚÖ ÑÝ µ ¾ ¼ ÚÖÓÑÔÙØÚÖ Ø Ø Ù Ò Ø µ µ ¼ ½ Ø Ø Ù Ò ØÑÝ ¾ Ó Ô µ ÓÙØÇ Ý Ø Ö Ó Ô Ó Ù Ø Ò Ñ ÓÓ Ø Ø Ù Ò Ø º ÓÒ ÓÙØÇ Ý Ø Ö Ó ØÑÓ Ò ÓÑÔÙØÚÖ Ø Ø Ù Ò ØµÒ ÖØÙÖÒ ¼ ¼
13 Αλγόριθμος4.14Εισαγωγήζυγώναριθμώνσεαρχείοº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ ÁÄ Ô ÒØ Ü ÒØ ÓÙÒØ ¼ ÔÓÔÒ º ØÜØ Û µ Ó ÓÙØÓ Ø ÞÝÓ ÖØÑÓ ½ ÒÜ Ü ± ¾ ¼ ²² ܼµ Ô Ö Ò Ø Ô ±Ò Ü µ ÓÙÒØ Û Ü ¼µ ¾¼ Ó Ô µ ¾½ ÓÙØ Ë Ý Ò Ó Ó ÞÝÓ ÓÙÒØÒ ¾¾ ÖØÙÖÒ ¼ ¾
14 ¼ º¾º Αντιγραφήαρχείων Μετηνγλώσσα μπορούμενααντιγράψουμεαρχεία όπωςστοπαράδειγμα º όπουταδεδομένααπότοπρώτοαρχείοαντιγράφονταιστοδεύτερογράμμαπρος γράμμαº
15 ½ Αλγόριθμος 4.15 Πρόγραμμα αντιγραφής αρχείωνº ½ ÒÙ Ø Ó º ¾ ÒÙ Ó ØÖÑ Ù Ò ÒÑ Ô Ø ÒØ ÑÒ µ Ö Ó Ù Ö ½ ¼ ¼ Ö Ø ½ ¼ ¼ ÁÄ Ò Ó Ù Ø Ö ÓÙØ Ó Ø ØÓ Ö Ü Ó Ô Ò Ø Ó Ù Ö µ ÓÙØ Ó Ø ØÓ Ö Ü Ó ÔÖÓÓÖ ÑÓÙ Ò ½ Ø Ø µ ÒÓÔÒ Ó Ù Ö Ö µ Ò µ ÓÙØÌÓ Ö Ü Ó Ó Ù Ö Ò ÝÔÖÜ Ò ¾¼ ¾½ Ó Ù ØÓÔÒ Ø Û µ ¾¾ Ó ¾ ¾ Ø Ò µ ¾ ǵ ¾ ÔÙØ Ó Ù Ø µ ¾ Û Çµ ¾ Ó Ò µ ¾ Ó Ó Ù Ø µ ¼ ½ ÖØÙÖÒ ¼ ¾
Προγραμματισ μόςσ ε» ΙωάννηςΓºΤσ ούλος
Προγραμματισμόςσε» ΙωάννηςΓºΤσούλος ¾¼½ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ½º½ Μεταβλητές ½º½º½ Δήλωση Η δήλωσημεταβλητώνμπορεί να γίνει σε οποιοδήποτεσημείοτου κώδικα σε αλλάείναιπροτιμότεροναγίνεταιστηναρχήτουπρογράμματος
Μονοδιάσ τατοιπίνακες
ΚΕΦΑΛΑΙΟ 2 ΠΙΝΑΚΕΣ ¾º½ Μονοδιάστατοιπίνακες Οιπίνακεςείναιδομέςδεδομένωνπουδιαθέτουνέναπλήθοςαπόστοιχείατουίδιου τύπουº Γιαπαράδειγμαηβαθμολογίασεέναμάθημααποθηκεύτεταισεπίνακαº Κάθεστοιχείοτουπίνακααντιπροσωπεύειτηνβαθμολογίαενόςσπουδαστήστο
Πρότυπα. ΙωάννηςΓºΤσ ούλος
Πρότυπα ΙωάννηςΓºΤσούλος ¾¼ ½ Συναρτήσειςπροτύπων Μετιςσυναρτήσειςπροτύπωνμπορούμενακάνουμεσυναρτήσειςοιοποίεςεκτελούντονίδιοκώδικα γιαδιαφορετικούςτύπουςδεδομένων όπωςπαρουσιάζεται καιστοεπόμενοπαράδειγμαºοιδηλώσειςσυναρτήσεωνμετηνχρήση
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις
Αντικειμενοστραφής Προγραμματισμός Ενδεκτικές ασκήσεις-απαντήσεις Τσούλος Ιωάννης, Επίκουρος Καθηγητής Τμ. Μηχανικών Πληροφορικής Τ.Ε. Άρτα, Μάιος 2015 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γιατηνδήλωσ ητωνδομώνχρησ ιμοποιείταιοπροσ διορισ τής ØÖÙØ όπωςσ την σ υνέχεια
ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ º½ Απλές δομές Ηδομήχρησ ιμοποιείταισ ανσ υλλογήμεταβλητώνδιαφορετικούτύπουπροκειμένου ναπεριγράψεισ υνολικάμιαοντότηταº ΓιαπαράδειγμαηοντότηταΑΝΘΡΩΠΟΣ αποτελείταιαπόταπεδία ½º Ονομα αλφαριθμητικόµ
Γραφικάμετηνχρήσ η ÛØ
Γραφικάμετηνχρήση ÛØ ΙωάννηςΓºΤσούλος Νοέμβριος ¾¼ Η Úδιαθέτειένα δικό της σύστημαγραφικών τοοποίομπορεί να είναι κάπωςπεριορισμένοσεσχέσημετο ÉÌήτο ÏÁÆ ¾ ÈÁαλλάδίνειμεταφέρσιμο κώδικακαιμπορείναχρησιμοποιηθείγιατηνκατασκευήπρογραμμάτωνγραφικής
Δυναμικοί τύποι δεδομένων
Δυναμικοί τύποι δεδομένων ΙωάννηςΓºΤσούλος Δεκέμβριος ¾¼ Η ÂÚπεριέχειμιασειράαπόχρήσιμεςκατηγορίεςπουχρησιμοποιούνταιγια τηνδιαχείρισηδυναμικώνδεδομένων σταοποίαδενγνωρίζουμεεκτωνπροτέρων όχι μόνον την
M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1
Å Ü Ò ÙÐØ Ø ÍÒ Ú ÖÞ Ø Ø Ù Ó Ö Ù Ã Ø Ö Þ Ñ Ò Ù ÐÙ Ð Ò Ö Ëº Ó Ì Ä ÈÊÇÊ ÉÍÆ Æ ÃÁÀ ËÌÊÍ ËÌÁ ÁÎÇ ÄÍÁ Á ÆÌÊÇÈËÃ Ê Ä Á κ = 1.4µ ½ ½ ÁÞ ÒØÖÓÔ Ö Ð ÃÓÖ Ø Ò ÑÓ Þ Þ ÒØÖÓÔ Ó ØÖÙ ½ Ú ÔÓÑÓ Ù Ò ÜÙ ØÓØ ÐÒ Ú Ð Õ Ò Ø Ø
Αρχείασ την Â Ú. ΙωάννηςΓºΤσ ούλος
Αρχείαστην ÂÚ ΙωάννηςΓºΤσούλος Νοέμβριος ½½ ½ Ηκατηγορία ÁÒÔÙØËØÖÑ Ηκατηγορία ÁÒÔÙØËØÖÑείναιμιααφηρημένηκατηγορίακαιχρησιμοποιείταιγια τηνανάγνωση δεδομένων στην ÂÚαπόαρχείαεισόδουº Ωςαρχείαεισόδου μπορούμεναθεωρήσουμεαρχείαπουβρίσκονταιστονσκληρόδίσκοτουυπολογιστήήκαισυσκευέςεισόδουόπωςτοπληκτρολόγιοºοισημαντικότερεςμέθοδοι
ΟπτικόςΠρογραμματισ μός. ΙωάννηςΓºΤσ ούλος
ΟπτικόςΠρογραμματισμός ΙωάννηςΓºΤσούλος ¾¼½ ÔØÖ ½ ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Σεαυτήτηνενότηταθαεξεταστούνμερικέςαπότιςβασικέςδομέςπάνωστις οποίεςστηρίζεταιηβιβλιοθήκη É̺Οιδομέςαυτέςπεριλαμβάνουνδυναμικούς πίνακες
S i L L I OUT. i IN =i S. i C. i D + V V OUT
Ç ÒÓÚÒ ÓÒÚ ÖØÓÖ ÈÓ Ó ÒÓÚÒ Ñ ÔÖ Ñ ÓÒÚ ÖØÓÖ Ñ ÔÓ Ö ÞÙÑ Ú Ù ØÖ ÓÒÚ ÖØÓÖ Ù ÓÓ Ø Ù ¹ ÓÓ Øº ËÚ ØÖ ÓÒÚ ÖØÓÖ Ù Ö Ø Ö Ò Ñ Ò Ñ ÐÒ Ñ ÖÓ Ñ Ð Ñ Ò Ø Þ Ø Ú Ù Ò ÓÒØÖÓÐ Ò ÔÖ ÒÙ Ó Ù Ò Ð Ñ Ò ÓÒ ÒÞ ØÓÖº Æ Ò Ó ÓÚ ØÖ ÓÒÚ ÖØÓÖ
p din,j = p tot,j p stat = ρ 2 v2 j,
ÁÑ ÔÖ Þ Ñ Öº Ò ÍÔÙØ ØÚÓ Þ Ð ÓÖ ØÓÖ Ú ¹ Å Ò ÐÙ Í Å Ò ÐÙ Ø ÓÖ ÔÖÓÙÕ Ú Ù ÒÓ Ñ ÒÞ ØÖÙ Ò Ø Ü ÚÓ ÐÙ º Ç ÒÓÚÙ Ø ÞÒ Õ Ò ÖÒÙÐ Ú Ò Õ Ò Ò Õ Ò ÓÒØ ÒÙ Ø Ø ÔÖÓ¹ Ö ÕÙÒ ØÖÙ Ò ÓØÔÓÖ º ÅÒÓ Ó Ø ÓÖ ÞÒ ÒÓ Ñ ÒÞ ØÖÙ ÑÓ Ù ÔÖÓÚ
arxiv: v1 [math.dg] 3 Sep 2007
Ì Ö ØÓ Ð ÔÖÓ Ð Ñ Ò ØÛÓ Ò ÐÓ Ó Ø Å Ò ÓÛ ÔÖÓ Ð Ñ Ò Ê Ñ ÒÒ Ò Ô º Ò Ö Áº Ó Ö Ò Ó ½ arxiv:0709.0158v1 [math.dg] 3 Sep 2007 ØÖ Ø ÙØ ÓÖ Ò Ø ÓÐÙØ ÓÒ Ó Ø Ö ØÓ Ð ÔÖÓ Ð Ñ ÓÖ ÓÔ Ò Ò ÐÓ ÙÖ Ò Ê Ñ ÒÒ Ò Ô º Ì Ö ØÓ Ð ÔÖÓ
ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ
ÔØ Ö ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Στοκεφάλαιοαυτόθαπαρουσ ιασ τούνμερικέςαπότιςδυνατότητεςπουπαρέχειη βιβλιοθήκη ÉÌσ εαρχείακαθώςκαιτρόποισ ύνδεσ ηςκαιεκτέλεσ ηςερωτημάτων σ εβάσ ειςδεδομένωνº º½ Ηκατηγορία
ΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ. Εισ αγωγήσ τηνχρήσ ηδεικτών
ΚΕΦΑΛΑΙΟ 5 ΔΕΙΚΤΕΣ ΚΑΙ ΛΙΣΤΕΣ º½ Δείκτες º½º½ Εισαγωγήστηνχρήσηδεικτών Κάθεμεταβλητήστηνγλώσσα βρίσκεταισεσυγκεκριμένηθέσηστηνμνήμητου υπολογιστήºαυτήηθέσηονομάζεταικαιδιεύθυνσηκαιυπάρχειδυνατότητανατην
Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος
Κληρονομικότητα ΙωάννηςΓºΤσούλος ¾¼½ ½ Ηκατηγορία ÈÖ ÓÒ ΗκληρονομικότητααποτελείένααπόταβασικότεραχαρακτηριστικάτουαντικειμενοστραφούςπρογραμματισμούºΤαβασικάτηςστοιχείασε είναι ½ºΤαπεδίαπουχρειάζεταιναπεράσουνστηνκατηγορίαπουκληρονομείθα
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ¾ ÓÑ ¹ Ì Ø ÖØ»»¾ ÃÙ ÐôÑ Ø ÔÖ Ü ÛÒ ¹ ËØÓ Õ ô ÑÓÒ Ö Ñ Ø»¾¾ Ö Ñ Ø ÔÖ Ü ÔÓÙ Ø Ð Ø Ò Ò ÀºÍº Ò À ÔÖ ¾ Ù ôò
½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ À ÛÑ ØÖ ØÛÒ ÇÖ Ó ÛÒÛÒ º½ ÇÖ ÑÓ ØÓÙ ÐÓÙ ³ ÌÓ ÐÓ ³ Ò ÒØÓÑÓ ÓÑÓ Ò Ñ Ñ ÒÓ ½ ÔÖÓØ Ó ÓÖ ¹ ÑÓ Ø Ò ÖÕ º ËØÓ Ñ Ð Ø ÖÓ Ñ ÖÓ ØÓÙ ÔÖ Ø ÔÓØ Ð Ñ Ø ÔÓÙ ÓÖÓ Ò ÓÖÓÙ ÙÒ Ù ÑÓ ÓÖ Ó ÛÒÛÒ Ø ØÖ ôòûò ÓÙ Ô
ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ
ÔØ Ö ¾ ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ ¾º½ Δημιουργία απλού παραθύρου Γιατηνδημιουργίαπαραθύρουθαχρειασ τείοχρήσ τηςνατοποθετήσ ειμέσ ασ ε μιακυρίωςεφαρμογήέναοπτικόσ υσ τατικό Ï ØµΤοπιοαπλόοπτικόσ υσ τατικόπουμπορείναχρησ
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / 0 1 2 / + 3 / / 1 2 3 / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " # $ % $ ' $ % ) * % @ + * 1 A B C D E D F 9 O O D H
v w = v = pr w v = v cos(v,w) = v w
Íö Ú Ò ÔÖ Ø Ô Ö ÔÖ ØÝ Ô Ð Ùö Ú ÒÝÒ ÝÖ Ð ÓØ Ó µ º ºÃÐ ØÒ Ë ÓÖÒ Þ ÔÓ ÒÐ Ø Ó ÓÑ ØÖ ½ ÁÞ Ø Ð ØÚÓ Æ Ù Å Ú º ÖÙ µº Ã Ø Ùö Ú Ò ÝÖ Ú Ø ÒÅ ØØÔ»»ÛÛÛºÑ ºÚÙºÐØ» Ø ÖÓ» ¾» л Ò Ó» ÓÑ ÙÞ º ØÑ ½ Î ØÓÖ Ð Ö ÒÅ Ö Ú ØÓÖ ÒÅ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ
ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ ËÓÑÑ Ö Ò Ò ÖÞ Ù Ø Ñ Ø Ñ ÈÖÓ Ö ÑÑ Ë ØØ Ò ÔÙÖ µ ½ ÒÐ
Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή
ÔØ Ö ΕΙΣΟΔΟΣ ΔΕΔΟΜΕΝΩΝ º½ ÉÄ Ò Ø Ηβασ ικήκατηγορίατης ÉØγιαείσ οδοδεδομένωνείναιηéä Ò Øμετηνοποία οχρήσ τηςμπορείναεισ άγεισ εμιαγραμμήένααλφαριθμητικόºστοναλγόριθμο º½παρουσ ιάζεταιηδήλωσ ηγιαένακεντρικόπαράθυρομετοοποίοοχρήσ
! " # $ % & $ % & $ & # " ' $ ( $ ) * ) * +, -. / # $ $ ( $ " $ $ $ % $ $ ' ƒ " " ' %. " 0 1 2 3 4 5 6 7 8 9 : ; ; < = : ; > : 0? @ 8? 4 A 1 4 B 3 C 8? D C B? E F 4 5 8 3 G @ H I@ A 1 4 D G 8 5 1 @ J C
) * +, -. + / - 0 1 2 3 4 5 6 7 8 9 6 : ; < 8 = 8 9 >? @ A 4 5 6 7 8 9 6 ; = B? @ : C B B D 9 E : F 9 C 6 < G 8 B A F A > < C 6 < B H 8 9 I 8 9 E ) * +, -. + / J - 0 1 2 3 J K 3 L M N L O / 1 L 3 O 2,
Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει
Ã Ð Ó ËØÓ Õ ÛÒ ÐÓ ³ È Ö ÐÓÙ º½ È Ö Õ Ñ Ò ØÓÙ ÐÓÙ ³ ÇÖ ÑÓ ½ ½½ ÈÖ Ø ½ ÈÛ Ö ÓÙÑ ØÓ ÒØÖÓ ØÓÙ ÐÓÙº ÈÖÓØ ¾ ½ ÉÓÖ ÐÓ Ø ÑÒ Ñ ÒÓ ÔØ Ñ ÒÓ º ÈÖÓØ ½ ½ ÔØ Ñ Ò º ÈÖÓØ ¾¼ ¾¾ ½ ÛÒ ØÑ Ñ Ø ÐÓÙ Ø ØÖ ÔÐ ÙÖ ÐÓÙº à ï Ä ÁÇ
Προσομοίωση Δημιουργία τυχαίων αριθμών
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Προσομοίωση Δημιουργία τυχαίων αριθμών Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ14) Περίοδος ΕΡΓΑΣΙΑ 1 η. Τότε r r b c. και ( )
Εισαγωγή στις Φυσικές Επιστήμες (ΦΥΕ4) Περίοδος 8-9 ΕΡΓΑΣΙΑ η Θέμα (μονάδες ) i. Δείξτε ότι ( a b) c a ( b c ) + b( a c ). a b c+ c a b+ b c a ii. Δείξτε την ταυτότητα Jacobi : ( ) ( ) ( ) Απάντηση i.
Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº
ÔØ Ö ΓΡΑΦΙΚΑ ΚΑΙ ΠΟΛΥΜΕΣΑ Ηβιβλιοθήκη ÉÌμπορείναχρησ ιμοποιηθείκαιγιατηνδημιουργίαπρογραμμάτων μεαπλάγραφικά γραμμές κείμενο κύκλουςκτλµόπωςεπίσ ηςγιατηνδημιουργία γραφημάτων από δεδομέναº º½ Àκατηγορία
arxiv:quant-ph/ v1 28 Nov 2002
Ò ÒÚ Ø Ø ÓÒ ØÓ ÉÙ ÒØÙÑ Ñ Ì ÓÖÝ arxiv:quant-ph/0211191v1 28 Nov 2002 Û Ö Ïº È ÓØÖÓÛ ÁÒ Ø ØÙØ Ó Ì ÓÖ Ø Ð È Ý ÍÒ Ú Ö ØÝ Ó Ý ØÓ Ä ÔÓÛ ½ ÈÐ ½ ¾ Ý ØÓ ÈÓÐ Ò ¹Ñ Ð Ô ÐÔ ºÙÛ º ÙºÔÐ Â Ò Ë ÓÛ ÁÒ Ø ØÙØ Ó È Ý ÍÒ Ú Ö
Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί
v[m/s] U[mV] 2,2 3,8 6,2 8,1 9,7 12,0 13,8 14,2 14,6 14,9
Á ¹ È ÖÙÔ ½º ÖÞ ÚÓÞ Ö ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 1 = 45,0 m/s ÔÖÙ ÒÓÑ ÔÖ Ð ÞÙ Ó ÔÙØ Ñ ÒÓÖÑ ÐÒÓ Ò ÔÖ Ú ÔÖÙ Ö ÙØÓÑÓ Ð ÓÒ Ø ÒØÒÓÑ ÖÞ ÒÓÑ ÒØ ÒÞ Ø Ø v 2 = 15,0 m/s Ó Ò Ð º Í ÓÐ Ó Ö Ò ÚÓÞ Ñ ØÙ ÞÚÙ ÙÕ Ø ÒÓ
plants d perennials_flowers
ÈÖÓ Ð Ø Ç Ø ÌÀÇÅ Ë ÁÌ Ê Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Â Å Ë Âº ÄÍ Ù Ò ÐÐ ÍÒ Ú Ö ØÝ ÌÀÇÅ Ë ÄÍà ËÁ ÏÁ Ì Ò ÍÒ Ú Ö ØĐ Ø Ï Ò Ò Îº ˺ ËÍ Ê ÀÅ ÆÁ Æ ÍÒ Ú Ö ØÝ Ó Å ÖÝÐ Ò Ì ÓÙ Ø Ö Ö Ñ ÒÝ ÔÔÐ Ø ÓÒ Û Ö Ò Ó Ø ÓÖ ÒØ Ø ÑÓ Ð ÓÓ
Z
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö ÈÖ ÑÓö È Ø ÖÐ Ò Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÌÇÅËÃÇ Â ÊÇ º½ ÍÚÓ Î Ø Ñ ÔÓ Ð Ú Ù ÓÑÓ Ù Ú Ö Ð Þ Ó ÒÓÚÒ Ñ Ð ØÒÓ ØÑ ØÓÑ Öº ÈÓÞÒ Ú Ò Ø Ð ØÒÓ Ø ÔÓÑ Ñ ÒÓ Þ Ö ÞÙÑ Ú Ò Ñ Ò ÒÓ Ø Ò
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Επίδοση Υπολογιστικών Συστημάτων Α.-Γ. Σταφυλοπάτης Πειράματα Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Διατακτικοί αριθμοί Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
ÍÒ Ú Ö Ø Ð Ù ÖÒ Ö ÄÝÓÒ Á ÁÒ Ø ØÙØ È Ý ÕÙ ÆÙÐ Ö ÄÝÓÒ Ì ÓØÓÖ Ø ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ ØÙ Ù Ò Ð À ¼ ¼ ÙÜ ÓÐÐ ÓÒÒ ÙÖ ÖÓÒ ÕÙ Ø ÒØ Ö Ð Ö Ø ÓÒ Ù ÐÓÖ Ñ ØÖ Ù ÊÙÒ ÁÁ Ù Ì Ú ØÖÓÒº Ô Ö È ÖÖ ¹ ÒØÓ Ò Ð ÖØ ËÓÙØ ÒÙ Ð ½
Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
ÄÓ Ñ ÒÓ ØÓ Ãô ØÓ Ë Ø Ñ Ø Ì Ñ À Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009 ½ º Ó Ó Ð Ó Διεύθυνση Πληροφορικής ΔΕΗ Τομέας Συστημάτων Γραφείου ÚºÞÓÙ Ó ºÓѺ Ö ¹Ñ Ð Αθήνα 19 Ιουνίου 2009 Συνεδριο Δημιουργων ΕΛ/ΛΑΚ 2009
Å Ñ ¾ º½ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ ÈÙÖ Ò Ò Ñ Ö ÑÑ Ô Ò º º º º º º º º º º º ½ º ÈÒ Ñ Ö ÑÑ Ô Ò º º º º º º
È Ö Õ Ñ Ò Á ³ Ò ÖÜ Ñ Ñ ØÓ ÁÁ ÖÕ Ñ Ñ Ø ½ Å Ñ ½ ½º½ Û º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ ÈÓÖ Ñ Ð Ø º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º º º º º º º º
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μαθηματική μορφολογία. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μαθηματική μορφολογία Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 11 ÅÑØ ÑÓÖÓÐÓ 11.1 ÅÓÖÓÐÓ ÔÜÖ ÙôÒ ÒÛÒ À ÑÑØ
Õâñéäéóìüò. Ðïéá åßíáé ç áíüãêç åéóáãùãþò ôçò Ýííïéáò ôïõ õâñéäéóìïý. Ðïéá åßíáé ôá âáóéêüôåñá åßäç õâñéäéóìïý
9 Õâñéäéóìüò ÐÅÑÉÅ ÏÌÅÍÁ 9.1 ÅéóáãùãÞ 9.2 Õâñéäéóìüò & õâñéäéêü ôñï éáêü 9.3 Åßäç õâñéäéóìïý êáé õâñéäéêþí ôñï éáêþí 9.4 Õâñéäéóìüò êáé ðïëëáðëïß äåóìïß 9.5 Õâñéäéóìüò êáé ìïñéáêþ ãåùìåôñßá 9.6 ÅñùôÞóåéò
Reserve & Trapped. Mission Fuel. Military Ordnance. Expendable Payload. Passengers + Bags ( lbs/pass.) Revenue Cargo. Non expendable Payload
ÈÖÐÑÒÖÝ ØÑØ Ó Ì¹Ç«ÏØ ÈÓØÓÖÔ Ó ÓÒ ¹½ ÐÓÑ ØÖ Ø Ø¹Ó«ÅÜÑÙÑ Ø¹Ó«ÛØ ÕÙÐ ¼¼¼ Ð ÑÜÑÙÑ ÔÝÐÓ ½ ¼¼¼ Ð ÓÙÖØ Ý Ó Ø ÓÒ ÓÑÔÒݵº ½ Ï Ì Ç Ï ÙÐ Ï ÔÝÐÓ Ï ÑÔØÝ ¾½ Ï ÔÝÐÓ Ï ÜÔÒÐ Ï ÒÓÒ ÜÔÒÐ ¾¾ 000000000000 111111111111 000000000000
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Σχηματισμός και αντίληψη εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Σχηματισμός και αντίληψη εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 2 ËÕÑØ Ñ ÒØÐÝ ÒÛÒ 2.1 ËÕÑØ Ñ ÒÛÒ
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 6: Συναρτήσεις πολλών Μεταβλητών Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το περιεχόμενο
Δυαδικά Συστήματα. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Δυαδικά Συστήματα ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò Ù Ë Ø Ñ ½ ¾ Δυαδικό
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 5: Συναρτήσεις Πολλών Μεταβλητών Μέρος ΙI Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Μετασχηματισμός Fourier 2-Δ ακολουθιών Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 5 ÅØ ÕÑØ Ñ Fourier ¾¹ ÓÐÓÙôÒ
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 2: Αναλυτική Γεωμετρία Αθανάσιος Μπράτσος Τμήμα Πολιτικών Μηχ.ΤΕ και Μηχ. Τοπογραφίας & Γεωπληροφορικής
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 8: Προσεγγιστική Λύση Γραμμικών Συστημάτων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
x E[x] x xµº λx. E[x] λx. x 2 3x +2
¾ λ¹ ÐÓÒ Ó ÙÖ ½ ¼ º õ ¹ ¹ ÙÖ ¾ ÙÖ º ÃÐ ¹ ½ ¼º ¹ Ð Ñ ÐÙÐÙ µ λ¹ λ¹ ÐÙÐÙ µº λ¹ º ý ½ ¼ ø λ¹ ÃÐ º λ¹ ÌÙÖ Ò ÌÙÖ º ÌÙÖ Ò ÚÓÒ Æ ÙÑ ÒÒ ¹ ÇÊÌÊ Æ Ä Çĺ ý λ¹ ¹ º Ö ÙØ ÓÒ Ñ Ò µ Ø ¹ ÓÛ ÓÑÔÙØ Ö µ ¹ λ¹ º λ¹ ÙÒØ ÓÒ Ð
tan(2α) = 2tanα 1 tan 2 α
½º ÙÒ Ð ØØ ½º Ò Ò Å Ò Ò M 1 = {1,4,9,16,25,36,49,64,...}, M 2 = {4,6,8,9,10,12,14,15,...}. µ Ö Ò Ë M 1 ÙÒ M 2 ÙÖ Ò Ò Ö Ò Ø ÓÖÑ Ð Ù º µ Ò Ë M 1 M 2 Òº µ Ò Ë M 1 \M 2 ÙÒ M 2 \M 1 Òº µ Ï Ú Ð ÚÓÒ Ò Ò Ö Ú Ö
Faculté des Sciences. Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale
Faculté des Sciences Etude du couplage entre un algorithme génétique et des méthodes d optimisation locale Promoteur : Annick Sartenaer Directeur : Caroline Sainvitu Mémoire présenté pour l'obtention du
6,0 1RWIRU&RPPHU LDO8VH
6,0 ò ò ø ô 6,0 ù" ñ û" (UL VVRQ$V (UL VVRQ 0RELOH&RPPXQL DWLRQV$% ò (UL VVRQ0RELOH&RPPXQL DWLRQV$% ø (UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=7 5$,1129$75213$7(176 ø *60 ù ø 7Œ7H[W,QSXW± 7HJL &RPPXQL DWLRQV
Εισαγωγικά. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Εισαγωγικά ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò ½ Οργάνωση Μαθήματος Διαδικαστικά
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής. Αθανάσιος Μπράτσος
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 4: Διανυσματικές Συναρτήσεις μιας Μεταβλητής Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο
, z = 1 ( Lψ = Eψ, E = E fixed, L = +v(x,t), = 4 z z, x R 2 ½º µ
ÇÄ ÈÇÄ Ì ÀÆÁÉÍ ÆÌÊ Å ÌÀ Å ÌÁÉÍ Ë ÈÈÄÁÉÍ Ë ÍÅÊ ÆÊË ½ ½½¾ È Ä ÁË Í Ê Æ µº Ì Ð ¼½ ¼¼º Ü ¼½ ØØÔ»»ÛÛÛºÑ ÔºÔÓÐÝØ Ò ÕÙ º Ö» Ò Ó ÓÐ ØÓÒ Û Ø Ù ÒØ Ð Ö ÐÓ Ð Þ Ø ÓÒ ÓÖ Ø ÆÓÚ ÓڹΠÐÓÚ ÕÙ Ø ÓÒ Ø ÒÓÒÞ ÖÓ Ò Ö Ý ÒÒ Ã Þ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ
ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ ÌÅÀÅ Ä ÉÇÍ Controlµ Ã Ì ÉÏÊÀÌ Ë Registersµ º Bussesµ ÃÍÃÄÇÁ ÅÀÉ ÆÀË Machine Cyclesµ Á ÍÄÇÁ ØÑ Ñ Ð ÕÓÙ
Θα εμφανίσει την τιμή 232 αντί της ακριβούς
Ì ÔÓ ÓÑ ÒÛÒ Ö Å Ø ØÖÓÔ ÑôÒ Fahrenheit ÑÓ Celsius Fahrenheit Celsius c = (5/9)(f 32) public class Fahr2Cels { public static void main(string args[]) { int f = 451; // Τι συμβαίνει στους 451F? int c; c =
¾ Ë Öö º¾º Å ØÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º Ê ÞÙÐØ Ø Ù º º º º º º º º º º º º º º º º º º º º º º º º º½º Ê ÞÙÐØ
Ë Öö ½º ÍÚÓ Ó Ò Ú Ò ÓÐÓ ÑÖ ö Ø ÓÖ ÓÑ Ö ÓÚ ½º½º ÍÚÓ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º¾º ÈÓÖ î Ò ÑÖ ö ÔÖ Ó Ò ÓÚ ÚÓ Ø Ú º º º º º º º º º º º ½º º ÅÓ Ð ÑÖ ö º º º º º º º
a x = x a x. Ηθετικήλύσητηςεξίσωσηςαυτής(για a = 1)είναιοαριθμόςτου Fibonacci 5 1 φ =. 2 ΟΑριστοτέληςδενχρησιμοποιείτονόρο,αλλάπροτιμάτοκάθετος.
Ã Ð Ó ½¾ ËØÓ Õ ÛÒ ÐÓ Ø³ ÇÑÓ Ø Ø ½¾º½ Ì Ô Ö Õ Ñ Ò ØÓÙ ÐÓ٠س ÇÖ ÑÓ ÇÖ ÑÓ Ø ÓÑÓ Ø Ø Ù Ù Ö ÑÑÛÒ Õ Ñ ØÛÒº ÈÖ Ø ½ ÌÓ ôö Ñ º ÈÖÓØ ¾ ÇÑÓ Ø Ø ØÖ ôòûòº ÈÖÓØ ½ Ò ÐÓ Ö ØÑ Ñ ØÛÒº ÈÖÓØ ½ ½ Ò ÐÓ Ñ º ½¾ ½¾ à ï Ä ÁÇ ½¾º
0RELOH,QWHUQHW :$3 :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò 0RELOH,QWHUQHW :$3 û 0RELOH,QWHUQHW :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ ù 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL
arxiv: v3 [math.ap] 25 Nov 2009
ÅÁ ÊǹÄÇ Ä Æ Ä ËÁË ÏÁÌÀ ÇÍÊÁ Ê Ä Ë Í ËÈ Ëº È ÊÌ Á ËÌ Î Æ ÈÁÄÁÈÇÎÁ Æ Æ Ì Ç ÆÇÎ Æ ÂÇ ÀÁÅ ÌÇ Ì arxiv:0804.1730v3 [math.ap] 25 Nov 2009 ØÖ غ Ä Ø ω,ω 0 ÔÔÖÓÔÖ Ø Û Ø ÙÒØ ÓÒ Ò q [1, ]º Ï ÒØÖÓ Ù Ø Û Ú ¹ ÖÓÒØ
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 7: Προσεγγιστική Λύση Εξισώσεων Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του
:$3. This is the Internet version of the user's guide. Print only for private use. :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 û :$3 ù ñ 6,0 ù" :HE 6RQ\(UL VVRQ GH ODUDWLRQRI RQIRUPLW\ ñ û " 6RQ\(UL VVRQ7 *60 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$%
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼
Ö ØÓØ Ð Ó È Ò Ô Ø Ñ Ó ÈÓÐÙØ ÕÒ ËÕÓÐ Ò ÌÑ Ñ Ö Ñ Ø Ò ÐÙ Ä ÛÒ È Ø Ó Ð Â ÐÓÒ ¾¼¼ ¾ È Ö Õ Ñ Ò ÈÖ ÐÓ Ó i ½ Ð Ö ÑÓ Ë ÐÑ Ø ½ ½º½ ÔÐÙ ÈÖÓ Ð Ñ ØÛÒ Ð Ö ÑÓ º º º º º º º º º º º º º º º º ½ ½º¾ Ð Ö ÑÓ Ù Ó ô º º º
Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών
Θεωρία Συνόλων Ενότητα: Επιλογής επόμενα Γιάννης Μοσχοβάκης Τμήμα Μαθηματικών Θεωρία Συνόλων Σημειώματα Σημειώμα ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση 1.1. Εχουν προηγηθεί οι κάτωθι
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 11: SPLINES. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 11: SPLINES Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
p a (p m ) A (p v ) B p A p B
½ ËØ Ø ÐÙ ½º½ ÍÚÓ ÈÖ ÔÖÓÙÕ Ú Ù Ñ Ò ÐÙ Ð Ó ÐÙ Ù Ò ÐÙ ÑÓ ÑÓ ÔÓ Ð Ø Ò Þ ÔÖ Ñ Ò Ð ¹ ÐÙ Ù Ò Ú ÐÙ Ò Ð ÙÒÙØ Ö ÔÓ Ñ ØÖ Ò Þ ÔÖ Ñ Ò Þ Ò Ó Ö ØÒÓ Þ Õ Ó ÓÒØ Ø Ð Þ Ñ Ò Ø Ò Ö ÐÒ Ð Ð ØÖÓÑ Ò ØÒ Ð µº ÇÚ Ð Ó ÕÒÓ ÞÖ Ú Ù ÔÓ
f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. (X, A) f (Y, B) g (Z, C) f 1 (E) A Õ E Eº (iii) a R f 1 ([a, )) Mº (iv) a R f 1 ((, a]) Mº
ÇÐÓ Ð ÖÛ º½ Å ØÖ Ñ ËÙÒ ÖØ È Ö Ø Ö º½ µ Å ÙÒ ÖØ f : X Y Ñ Ø Ü Ñ ÒôÒ ÙÒ ÐÛÒ Ô ½ Ñ Ô Ò f 1 : P(Y ) P(X) : B f 1 (B) {x X : f(x) B}. À Ô Ò ÙØ Ø Ö ÙÑÔÐ ÖôÑ Ø Ù Ö Ø Òô Ù Ö Ø ØÓÑ º µ Ò B P(Y ) Ò σ¹ Ð Ö Ó Ó Ò
+ m ev 2 e 2. 4πε 0 r.
Ç ÒÙØ Þ Ó Þ Þ Ñ ÒÓ Ó Ò Óö Ë ËÚ Ø Ò Ò Ó Ø Ò ê ¾¼½½»¾¼½¾ ÈÓ Ð Ú ÇËÆÇÎ ÅÇÄ ÃÍÄËà ÁÇ Á Áà º½ ÍÚÓ ÅÓÐ ÙÐ Ó Þ Ó Ö ÚÒ Ú Ð ØÒÓ Ø Ó ÒÓÚÒ Ø ÚÒ ÐÓÚ ÓÐÓ Ø ÑÓÚ ØÓ ØÓ¹ ÑÓÚ ÑÓÐ ÙÐ ÓÒÓÚ Ò Ñ ÖÓÑÓÐ Ùк Ç Ö ÚÒ Ú ØÙ ÞÚ ÞÓ
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 8: Τριπλά Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος διατίθεται
0RELOH,QWHUQHW :$3. This is the Internet version of the user's guide. Print only for private use. 6,0 GH ODUDWLRQRI RQIRUPLW\
ô ù ù ø ³ ò 0RELOH,QWHUQHW :$3 ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ò û" 6RQ\(UL VVRQ7 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\(ul VVRQ 0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$,1129$75213$7(176
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: 2-Δ συνεχή σήματα. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: 2-Δ συνεχή σήματα Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 3 ¾¹ ÙÒÕ ÑØ Å ÙÒÕ Ò ÑÔÓÖ Ò ÔÖ Ø Ô Ò ¾¹ ÙÒÕ Ñ Ð
ÌÓ ÑÝ Ñ ÐÝ Ò Ö Ò Û Ø ÓÙØ Û ÓÑ Ø ÔÖÓ Ø ÛÓÙÐ Ò Ú Ö ÓÑÔÐ Ø
ÇÆ ÌÀ Ä ËËÁ Á ÌÁÇÆ Ç ÄÇË Ä Ì ÇÍʹŠÆÁ ÇÄ Ë Ý Ì ÓÑ È ÙÐ Ä Ñ ÖØ ÖØ Ø ÓÒ ËÙ Ñ ØØ ØÓ Ø ÙÐØÝ Ó Ø Ö Ù Ø Ë ÓÓÐ Ó Î Ò Ö ÐØ ÍÒ Ú Ö ØÝ Ò Ô ÖØ Ð ÙÐ ÐÐÑ ÒØ Ó Ø Ö ÕÙ Ö Ñ ÒØ ÓÖ Ø Ö Ó Ç ÌÇÊ Ç ÈÀÁÄÇËÇÈÀ Ò Å Ø Ñ Ø Ù Ù
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù
Î Ò È Ö Ó Ì ÈË Ì Ñ ØÙ Ò ÈÖÓÑÓ Ó Ë Ù ËÙÑ Ö Ó ½ Î Ò Ó Ú Ö ÓÙÐØ ½ ½º½ Ú Ò Ó Þ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º¾ Å Ò ÑÓ Ò Ö ÒØ º º º º º º º º º º º º º º º º º
:$3. This is the Internet version of the user's guide. Print only for private use. %OXHWRRWK GH ODUDWLRQRI RQIRUPLW\
ù ù ø ³ ò :$3 :$3 û :$3 :$3 ù %OXHWRRWK ô ñ 6,0 ù" GH ODUDWLRQRI RQIRUPLW\ ñ û" 6RQ\(UL VVRQ 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% ô6rq\ (UL VVRQ0RELOH&RPPXQL DWLRQV$% 6RQ\(UL VVRQ0RELOH&RPPXQL DWLRQV$% 58/=75$
c = a+b AC = AB + BC k res = k 1 +k 2
Ã Ô Ø Ð Á ÒÐ ØÙÒ ï ½ ÅÓ ÐÐ ÚÓÒ Î ØÓÖÖÙÑ Ò ÁÒ Ñ Ö ÅÓØ Ú Ø ÓÒ Ò Ò Òµ È Ö Ö Ô Ò Ò ÐÒ Û Ö Ô Ð ÞÙÖ Ð Ö ¹ Ò ËØÖÙ ØÙÖ Î ØÓÖÖ ÙÑ º Ò Ö ÙÒ Ò Ø Ò ØÞ Ò Û Ö Ð ÒÒØ ÚÓÖ Ù º Ò ÈÖÞ ÖÙÒ Ö ÓÐ Ø ÔØ Ö Û ÒÒ Û Ö ÙÒ ÙÑ Ò Ñ Ø
imagine virtuală plan imagine
Ô ØÓÐÙÐ ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ¾ ÈÁÌÇÄÍÄ ½º ÅÇ ÍÄÍÄ ÄÁ Ê Ê ÇÅ ÌÊÁ Å Ê Á ÙÔÖ Ò ½ ÅÓ ÙÐÙÐ Ð Ö Ö ÓÑ ØÖ Ñ Ö ½ ½º½ ÁÒØÖÓ Ù Ö ÑÓ Ð ÓÑ ØÖ Ð Ñ Ö º º º º º º º º º º º º º ½º½º½ ÈÖÓ ñ Ô Ö Ô Ø Ú º º º º º º º
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙ
È ÖÖÝ Àº Ä Ó ½½¼ ÍÒ ÓÒ ËØÖ Ø Ë ¾ ½ ÀÓÐÑ Ú º ˺ Å ÒÒ ÔÓÐ ÅÆ Å ÒÒ ÔÓÐ ÅÆ ¼ ½¾¹ ¾ ¹¼» Ü ½¾¹ ¾ ¹½ ½¾¹ ¾ ¹ Ô Ð Ó ÑºÙÑÒº Ù Ù Ø ÓÒ È º º ź Ò º º Ò º Å Ø ÐÐÙÖ Ð Ò Ò Ö Ò Ò Å Ø Ö Ð Ë Ò ÖÒ Å ÐÐÓÒ ÍÒ Ú Ö ØÝ ÆÓÚ Ñ
ÍÆÁÎ ÊËÁ Ë ÆÌÁ Ç ÇÅÈÇËÌ Ä ÍÄÌ ËÁ Ô ÖØ Ñ ÒØÓ È ÖØ ÙÐ Ó Ý ÈÖÓ Ö Ñ Ò ÓÖ ÒØ Ó Ç ØÓ Ð Ê ÓÒ ØÖÙ Ò ËÙ Ó Ò Ð ÜÔ Ö Ñ ÒØÓ À Ë ÓÐ ÓÒ Æ Ð Ó¹Æ Ð Ó Å ÑÓÖ ÔÖ ÒØ Ô Ö ÓÔØ Ö Ð Ö Ó Ä Ò Ó Ò Ò ÔÓÖ Å ÒÙ Ð Ë Ò Þ Ö Å ÖÞÓ ½ ¾
N i. D i (x) = 1 N i. D(x, x ik ). (3, 1), (3, 0.9), (3, 0.8), (3, 0.8) (4, 0), (4, 0.1), (4, 0.2). k=1. j=1
Å Ì Å ÌÁà Á Î µ ÍÔÓÖ Å Ø Ñ Ø Á Ú Ð ØÖÓØ Ò ÚØÓÖ ØÙÑ Å Ð Ø À Ò Ú Ù Ø ¾¼¼ ½ âì ÎÁÄËà ÎÊËÌ ½º Ê ÎÊâ ÆÂ Î ÇÊ Î ÃÓ ö Ð ÑÓ Ò Ö ÞÚÖ Ò ÚÞÓÖ ÑÓ ÒÓ Ö ÞÚÖ Ø Ø ÓÞº ÓÔÖ Ð Ø ÞÖ ÙÒ ÑÓ Ö Þ Ð Ø ÚÞÓÖ Ó Ú ÞÒ Ò Ö ÞÖ ÓÚ ÚÞÓÖ
Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 6: Επικαμπύλια Ολοκληρώματα. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Μαθηματικά ΙΙΙ Ενότητα 6: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ Το περιεχόμενο του μαθήματος
Ω = {ω 1,..., ω 6 }, ω = ω 1,..., ω m 1, 6, ω 1,...,, ω j {1, 2,...5}, m 1.
Î Ð Ù ËØ Å Ò Ì ÑÝ Ù Ø ÓÖ Ó Ô ØÓ Î ÐÒ Ù ¾¼¼ ÌÙÖ ÒÝ ½ Ì ÑÝ ÒÅ Ö ÚÅ º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º ËØ Ø Ø Ò Ô Ö Ñ ÒØ º º º º º º º º º º º º º º º º ½º¾º ÃÐ Ò ÑÓ Ð º º º º º º º º
Απλοποίηση λογικών συναρτήσεων. URL:
Ø ÖÓ Ü Ñ ÒÓ ÓØ Απλοποίηση λογικών συναρτήσεων ôö Ó Éº Ð Ü Ò Ö ÔÓÙÐÓ Ä ØÓÖ Èº º ¼» ¼ e-mail: alexandg@uop.gr URL: http://users.iit.demokritos.gr/~alexandg ÌÑ Ñ Ô Ø Ñ Ì ÕÒÓÐÓ Ì Ð Ô Ó ÒÛÒ ôò È Ö Õ Ñ Ò É ÖØ
Εφαρμοσμένα Μαθηματικά
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Εφαρμοσμένα Μαθηματικά Ενότητα 3: Αντίστροφος Μετασχηματισμός Laplace Αθανάσιος Μπράτσος Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας ΤΕ Το
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 4: Συναρτήσεις Πολλών Μεταβλητών Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 1: Διαφορικές Εξισώσεις Μέρος Ι Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
ca t = β 1z t 1(q t γ)+β 2z t 1(q t >γ)+ε t z t = g(x t,π)+u t
Ì Ö ÓÐ ÅÓ Ð Ó Ø ÍË ÙÖÖ ÒØ ÓÙÒØ ÊÓ ÖØÓ ÙÒ Ò ÇØÓ Ö ½ ¾¼½ ØÖ Ø Ï Ø Ö Ú ÍË ÙÖÖ ÒØ ÓÙÒØ Ñ Ð Ò Á Ø Ö ÓÐ Ú Ò Ø Ø Ø Ú ÓÖ Ó Ø ÙÖÖ ÒØ ÓÙÒØ Ö ÒØ ÙÖ Ò Ø Ò ÙÖÔÐÙ ÓÖ Ø Ø Ø Þ Ó Ø Ñ¹ Ð Ò Ñ ØØ Ö Á Ø Ö Ø Ö ÓÐ Ö Ð Ø ÓÒ Ô
º º½ Destination-Sequenced Distance-Vector (DSDV) º º º º. º º Temporally Ordered Routing Algorithm (TORA) º º º
È Ò Ô Ø Ñ Ó È ØÖôÒ ÈÓÐÙØ ÕÒ ËÕÓÐ ÌÑ Ñ Å Õ Ò ôò ÀÐ ØÖÓÒ ôò ÍÔÓÐÓ ØôÒ ÈÐ ÖÓ ÓÖ ÔÐÛÑ Ø Ö Ð Ö ÑÓ Ô Ó ÒÛÒ Ad-hoc Ã Ò Ø ØÙ È Ò ôø à ÒÓ Å ¾½¾ Ô Ð ÔÛÒ ÉÖ ØÓ ÖÓÐ È ØÖ ÁÓ Ð Ó ¾¼¼ c Copyright È Ò ôø à ÒÓ ÁÓ Ð Ó ¾¼¼
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Εισαγωγή. Καθηγητής Γεώργιος Τζιρίτας. Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Εισαγωγή Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 1 Û Å ØÒ ÐÙ Ø Ý ÛØÓÖ Ý Ò Ò ÔÐÓÒ ØÑ ØÓÙ ÙÖÛ ÓÒÓº À ÔÜÖ ÒÛÒ
Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis
Øyvind Borg Role of Alumina Support in Cobalt Fischer-Tropsch Synthesis Thesis for the degree of doktor ingeniør Trondheim, April 2007 Norwegian University of Science and Technology Faculty of Natural
Ανώτερα Μαθηματικά ΙI
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ανώτερα Μαθηματικά ΙI Ενότητα 9: Επικαμπύλια Ολοκληρώματα Αθανάσιος Μπράτσος Τμήμα Ναυπηγών Μηχανικών ΤΕ Το περιεχόμενο του μαθήματος
Ιστοσελίδα:
½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ÌÀÄ ½ Ð Ü Ιστοσελίδα: www.telecom.tuc.gr/courses/tel412 ÌÀÄ ½¾ Â ÛÖ ÈÐ ÖÓ ÓÖ ÃÛ ÛÒ ¼ ÌÑ Ñ ÀÅÅÍ ÈÓÐÙØ ÕÒ Ó ÃÖ Ø Συνελικτικοι Κωδικες (n, k) L blocks ½ ¾ k ½ ¾ k ½ ¾ k [ ] g1 G T kl
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Επεξεργασία Εικόνων. Ενότητα: Αποκατάσταση εικόνων. Καθηγητής Γεώργιος Τζιρίτας
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα: Αποκατάσταση εικόνων Καθηγητής Γεώργιος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών ÃÐÓ 12 ÔÓØ Ø ÒÛÒ ÈÓÐÐ ÓÖ Ó Ò Ø Ø ÐÝ Ù ØÒØ ÔÖÑÖÛ
Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration. DTU Wind Energy - PhD
Adaptive Trailing Edge Flaps for Active Load Alleviation in a Smart Rotor Configuration DTU Wind Energy - PhD Leonardo Bergami DTU Wind Energy PhD-0020(EN) August 2013 DTU Vindenergi Active Load Alleviation
Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º
Þ ÔÓÚ Ø Ø Ö Ø Ò ÈÖ ÙÖ Ò ÐÙÖÙ ÔÖ Ð ½ ¾¼½¼ Ç ÖÚ Ø Ö Ø Ð ÒÙ Ù Ó Ø Ò ÒØ Ö Ø º È ÖÑ ÙÒ Ð Ô ÒØÖÙ Ñ Ø Ö Ð ÔÖ ÐÙ Ø ÒÙ Ù Ó Ø Ò ÖÙØ º È Ò Ø Ø Ð Ó Ö Ô ÒØÖÙ ÔÖ ÒØ Ø Ù ÓÖ Ô ÙÒ º ÔÓ Ø Ñ º ÓÒØ ÒØ ½ Å Ò ½ ½º ÄÙÑ Ñ Ø
½ ÍÚÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ò ÓÔ Ó Ò Ó Ù Ø ÓÖ Ñ Ö ÞÑ ØÖ Ò Ñ ÔÓ Ù Ú ÑÓ Ó Ö ÑÓ ÐÓö ÒÓ Ø Ø ö ÒÙ Ò Ó ÔÖÓ Ð Ñ Ø Ó Ù ÔÖ Ø Ò Ñ ÔÖ Ñ Ò Ñ ö Ð ÑÓ ØÓ ÔÖ ÞÒ ÔÖÓ Ò ÑÓ Ó Ú
Ò Ð Þ Ð ÓÖ Ø Ñ Ô ØÒ Ö Þ ÔÖ Ñ Ø ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Å Ð Ò Ò ÓÚ ¾¼¾½»¼ ¼ º ¼¾º ¾¼¼ º Ë ö Ø ÇÚ Ö ÔÖ Ø ÚÐ Ö Ø ÔÖ Ð Ò Ñ ØÓ Ò Ð Þ Ð ÓÖ Ø Ñ Ó Ñ ÙØÓÖ Ö ÙÔÓÞÒ Ó Ù Ó Ú ÖÙ ÙÖ ËÐÓö ÒÓ Ø ÞÖ ÙÒ Ú Ò Ò ÔÖÚÓ Ó Ò ÔÓ Ø ÔÐÓÑ